Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Polyphyllin VII是一种靶向CD44阳性结肠癌细胞的潜在药物

卷 22, 期 5, 2022

发表于: 12 April, 2022

页: [426 - 435] 页: 10

弟呕挨: 10.2174/1568009622666220304110222

价格: $65

摘要

背景:目前结肠癌的治疗受到治疗失败和复发的阻碍,主要原因是结肠癌干细胞(CSCs)。因此,使用靶向CSCs的药物治疗应该能够有效地消除结肠癌细胞和阻止癌症复发。 目的:本研究旨在通过靶向CD44阳性结肠癌细胞,验证PPVII是否能成为治疗结肠癌的有效候选药物。 方法: 该研究旨在测试PPVII是否能通过靶向CD44阳性结肠癌细胞而成为治疗结肠癌的有效候选药物。 结果:本研究首次通过TCGA/GTEX数据库分析证明CD44在结肠癌组织中高表达。受试者工作特征曲线(ROC)分析显示,CD44作为大肠癌的诊断和预测指标具有较高的准确性。同时,生存曲线分析也显示CD44高表达与结肠癌患者预后不良相关。免疫组化染色进一步证实结肠癌组织中CD44表达增高;CD44表达阳性率为87.95%。研究发现,从七叶一枝花(Paris polyphylla)根中提取的成分Polyphyllin VII (PPVII)具有抑制结肠癌细胞迁移的作用。我们的结果也证明了PPVII可以抑制结肠癌细胞的成球能力。进一步的实验结果表明,PPVII可以下调结肠癌细胞中CD44的表达。PPVII对CD44阳性结肠癌细胞有抑制作用。 结论:PPVII可能是一种靶向CD44阳性结肠癌细胞治疗结肠癌的有效候选试剂。

关键词: PPVII,结肠癌,肿瘤干细胞,CD44, CSCs,肿瘤。

« Previous
图形摘要

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Catarinella, M.; Monestiroli, A.; Escobar, G.; Fiocchi, A.; Tran, N.L.; Aiolfi, R.; Marra, P.; Esposito, A.; Cipriani, F.; Aldrighetti, L.; Iannacone, M.; Naldini, L.; Guidotti, L.G.; Sitia, G. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol. Med., 2016, 8(2), 155-170.
[http://dx.doi.org/10.15252/emmm.201505395] [PMID: 26769348]
[3]
Garg, M. Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance. World J. Stem Cells, 2017, 9(8), 118-126.
[http://dx.doi.org/10.4252/wjsc.v9.i8.118] [PMID: 28928908]
[4]
Angius, A.; Scanu, A.M.; Arru, C.; Muroni, M.R.; Rallo, V.; Deiana, G.; Ninniri, M.C.; Carru, C.; Porcu, A.; Pira, G.; Uva, P.; Cossu-Rocca, P.; De Miglio, M.R. Portrait of cancer stem cells on colorectal cancer: Molecular biomarkers, signaling pathways and miRNAome. Int. J. Mol. Sci., 2021, 22(4), 1603.
[http://dx.doi.org/10.3390/ijms22041603] [PMID: 33562604]
[5]
Modarai, S.R.; Gupta, A.; Opdenaker, L.M.; Kowash, R.; Masters, G.; Viswanathan, V.; Zhang, T.; Fields, J.Z.; Boman, B.M. The anti-cancer effect of retinoic acid signaling in CRC occurs via decreased growth of ALDH+ colon cancer stem cells and increased differentiation of stem cells. Oncotarget, 2018, 9(78), 34658-34669.
[http://dx.doi.org/10.18632/oncotarget.26157] [PMID: 30410666]
[6]
Dinger, T.F.; Chen, O.; Dittfeld, C.; Hetze, L.; Hüther, M.; Wondrak, M.; Löck, S.; Eicheler, W.; Breier, G.; Kunz-Schughart, L.A. Microenvironmentally-driven plasticity of CD44 isoform expression determines engraftment and stem-like phenotype in CRC cell lines. Theranostics, 2020, 10(17), 7599-7621.
[http://dx.doi.org/10.7150/thno.39893] [PMID: 32685007]
[7]
Di, J.; Duiveman-de Boer, T.; Zusterzeel, P.L.; Figdor, C.G.; Massuger, L.F.; Torensma, R. The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol. (Dordr.), 2013, 36(5), 363-374.
[http://dx.doi.org/10.1007/s13402-013-0142-8] [PMID: 23928726]
[8]
Roudi, R.; Barodabi, M.; Madjd, Z.; Roviello, G.; Corona, S.P.; Panahei, M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol. Cell. Oncol., 2020, 7(5), 1788366.
[http://dx.doi.org/10.1080/23723556.2020.1788366] [PMID: 32944642]
[9]
Jordan, C.T.; Guzman, M.L.; Noble, M. Cancer stem cells. N. Engl. J. Med., 2006, 355(12), 1253-1261.
[http://dx.doi.org/10.1056/NEJMra061808] [PMID: 16990388]
[10]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[11]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[12]
Dallas, N.A.; Xia, L.; Fan, F.; Gray, M.J.; Gaur, P.; van Buren, G.II.; Samuel, S.; Kim, M.P.; Lim, S.J.; Ellis, L.M. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res., 2009, 69(5), 1951-1957.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2023] [PMID: 19244128]
[13]
Frank, M.H.; Wilson, B.J.; Gold, J.S.; Frank, N.Y. Clinical implications of colorectal cancer stem cells in the age of single-cell omics and targeted therapies. Gastroenterology, 2021, 160(6), 1947-1960.
[http://dx.doi.org/10.1053/j.gastro.2020.12.080] [PMID: 33617889]
[14]
Sadeghi, A.; Roudi, R.; Mirzaei, A.; Zare Mirzaei, A.; Madjd, Z.; Abolhasani, M. CD44 epithelial isoform inversely associates with invasive characteristics of colorectal cancer. Biomarkers Med., 2019, 13(6), 419-426.
[http://dx.doi.org/10.2217/bmm-2018-0337] [PMID: 30942083]
[15]
Fan, X.; Zhu, M.; Qiu, F.; Li, W.; Wang, M.; Guo, Y.; Xi, X.; Du, B. Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. Int. Immunopharmacol., 2020, 88, 106991.
[http://dx.doi.org/10.1016/j.intimp.2020.106991] [PMID: 33182071]
[16]
Du, L.; Wang, H.; He, L.; Zhang, J.; Ni, B.; Wang, X.; Jin, H.; Cahuzac, N.; Mehrpour, M.; Lu, Y.; Chen, Q. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res., 2008, 14(21), 6751-6760.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1034] [PMID: 18980968]
[17]
Wang, H.; Zhai, Z.; Li, N.; Jin, H.; Chen, J.; Yuan, S.; Wang, L.; Zhang, J.; Li, Y.; Yun, J.; Fan, J.; Yi, J.; Ling, R. Steroidal saponin of Trillium tschonoskii. Reverses multidrug resistance of hepatocellular carcinoma. Phytomedicine, 2013, 20(11), 985-991.
[http://dx.doi.org/10.1016/j.phymed.2013.04.014] [PMID: 23786867]
[18]
Li, Z-H.; Wan, J-Y.; Wang, G-Q.; Zhao, F-G.; Wen, J-H. Identification of compounds from Paris polyphylla (ChongLou) active against Dactylogyrus intermedius. Parasitology, 2013, 140(8), 952-958.
[http://dx.doi.org/10.1017/S0031182013000139] [PMID: 23552446]
[19]
Yin, X.; Qu, C.; Li, Z.; Zhai, Y.; Cao, S.; Lin, L.; Feng, L.; Yan, L.; Ni, J. Simultaneous determination and pharmacokinetic study of polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII in beagle dog plasma after oral administration of Rhizoma Paridis extracts by LC-MS-MS. Biomed. Chromatogr., 2013, 27(3), 343-348.
[http://dx.doi.org/10.1002/bmc.2797] [PMID: 22903625]
[20]
Xiao, X-H.; Yuan, Z-Q.; Li, G-K. Separation and purification of steroidal saponins from Paris polyphylla by microwave-assisted extraction coupled with countercurrent chromatography using evaporative light scattering detection. J. Sep. Sci., 2014, 37(6), 635-641.
[http://dx.doi.org/10.1002/jssc.201301341] [PMID: 24772456]
[21]
Zhang, C.; Jia, X.; Wang, K.; Bao, J.; Li, P.; Chen, M.; Wan, J-B.; Su, H.; Mei, Z.; He, C. Polyphyllin VII induces an autophagic cell death by activation of the JNK pathway and inhibition of PI3K/AKT/mTOR pathway in HepG2 cells. PLoS One, 2016, 11(1), e0147405.
[http://dx.doi.org/10.1371/journal.pone.0147405] [PMID: 26808193]
[22]
Zhang, C.; Jia, X.; Bao, J.; Chen, S.; Wang, K.; Zhang, Y.; Li, P.; Wan, J-B.; Su, H.; Wang, Y.; Mei, Z.; He, C. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. BMC Complement. Altern. Med., 2016, 16(1), 58.
[http://dx.doi.org/10.1186/s12906-016-1036-x] [PMID: 26861252]
[23]
He, D-X.; Li, G-H.; Gu, X-T.; Zhang, L.; Mao, A-Q.; Wei, J.; Liu, D-Q.; Shi, G-Y.; Ma, X. A new agent developed by biotransformation of polyphyllin VII inhibits chemoresistance in breast cancer. Oncotarget, 2016, 7(22), 31814-31824.
[http://dx.doi.org/10.18632/oncotarget.6674] [PMID: 26701723]
[24]
Lin, Z.; Liu, Y.; Li, F.; Wu, J.; Zhang, G.; Wang, Y.; Lu, L.; Liu, Z. Anti-lung cancer effects of polyphyllin VI and VII potentially correlate with apoptosis in vitro and in vivo. Phytother. Res., 2015, 29(10), 1568-1576.
[http://dx.doi.org/10.1002/ptr.5430] [PMID: 26272214]
[25]
Wang, Y.J.; Bailey, J.M.; Rovira, M.; Leach, S.D. Sphere-forming assays for assessment of benign and malignant pancreatic stem cells. Methods Mol. Biol., 2013, 980, 281-290.
[http://dx.doi.org/10.1007/978-1-62703-287-2_15] [PMID: 23359160]
[26]
Pastrana, E.; Silva-Vargas, V.; Doetsch, F. Eyes wide open: A critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 2011, 8(5), 486-498.
[http://dx.doi.org/10.1016/j.stem.2011.04.007] [PMID: 21549325]
[27]
Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat. Rev. Clin. Oncol., 2020, 17(4), 204-232.
[http://dx.doi.org/10.1038/s41571-019-0293-2] [PMID: 31792354]
[28]
Lytle, N.K.; Ferguson, L.P.; Rajbhandari, N.; Gilroy, K.; Fox, R.G.; Deshpande, A.; Schürch, C.M.; Hamilton, M.; Robertson, N.; Lin, W.; Noel, P.; Wartenberg, M.; Zlobec, I.; Eichmann, M.; Galván, J.A.; Karamitopoulou, E.; Gilderman, T.; Esparza, L.A.; Shima, Y.; Spahn, P.; French, R.; Lewis, N.E.; Fisch, K.M.; Sasik, R.; Rosenthal, S.B.; Kritzik, M.; Von Hoff, D.; Han, H.; Ideker, T.; Deshpande, A.J.; Lowy, A.M.; Adams, P.D.; Reya, T. A multiscale map of the stem cell state in pancreatic adenocarcinoma. Cell, 2019, 177(3), 572-586.e22.
[http://dx.doi.org/10.1016/j.cell.2019.03.010] [PMID: 30955884]
[29]
Heldin, P.; Kolliopoulos, C.; Lin, C-Y.; Heldin, C-H. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell. Signal., 2020, 65, 109427.
[http://dx.doi.org/10.1016/j.cellsig.2019.109427] [PMID: 31654718]
[30]
Brennan, F.R.; O’Neill, J.K.; Allen, S.J.; Butter, C.; Nuki, G.; Baker, D. CD44 is involved in selective leucocyte extravasation during inflammatory central nervous system disease. Immunology, 1999, 98(3), 427-435.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00894.x] [PMID: 10583604]
[31]
Skandalis, S.S.; Karalis, T.T.; Chatzopoulos, A.; Karamanos, N.K. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell. Signal., 2019, 63, 109377.
[http://dx.doi.org/10.1016/j.cellsig.2019.109377] [PMID: 31362044]
[32]
Consortium, G.T. GTEx Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348(6235), 648-660.
[http://dx.doi.org/10.1126/science.1262110] [PMID: 25954001]
[33]
Feng, F-F.; Cheng, P.; Sun, C.; Wang, H.; Wang, W. Inhibitory effects of polyphyllins I and VII on human cisplatin-resistant NSCLC via p53 upregulation and CIP2A/AKT/mTOR signaling axis inhibition. Chin. J. Nat. Med., 2019, 17(10), 768-777.
[http://dx.doi.org/10.1016/S1875-5364(19)30093-7] [PMID: 31703757]
[34]
He, H.; Xu, C.; Zheng, L.; Wang, K.; Jin, M.; Sun, Y.; Yue, Z. Polyphyllin VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF-κB pathways in A549 human lung cancer cells. Mol. Med. Rep., 2020, 21(2), 597-606.
[http://dx.doi.org/10.3892/mmr.2019.10879] [PMID: 31974591]
[35]
Wang, P.; Yang, Q.; Du, X.; Chen, Y.; Zhang, T. Targeted regulation of Rell2 by microRNA-18a is implicated in the anti-metastatic effect of polyphyllin VI in breast cancer cells. Eur. J. Pharmacol., 2019, 851, 161-173.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.041] [PMID: 30817902]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy