Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

HDAC Inhibition as Neuroprotection in COVID-19 Infection

Author(s): Yudibeth Sixto-López and José Correa-Basurto*

Volume 22, Issue 16, 2022

Published on: 05 April, 2022

Page: [1369 - 1378] Pages: 10

DOI: 10.2174/1568026622666220303113445

Price: $65

Abstract

The SARS-CoV-2 virus is responsible for COVID-19 affecting millions of humans around the world. COVID-19 shows various clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia, and hyposmia). Approximately 30% of patients with COVID-19 showed neurological symptoms, from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, and hyposmia, among others. The neurotropism of the SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage such as acute demyelination, neuroinflammation, etc. At the molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood-brain barrier allowing the entrance of monocytes and lymphocytes, causing neuroinflammation, neurodegeneration, and demyelination. In addition, the proinflammatory cytokines have been observed in ischemic, hemorrhagic strokes, seizures, and encephalopathy. In this sense, early neuroprotective management should be adopted to avoid or decrease neurological damage due to SARS-CoV-2 infection. Several approaches can be used; one of them includes using HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down-regulates the proinflammatory cytokines (IL-6 and TNF-α) decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the central nervous System (CNS) and decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce neurological damage and symptoms, and the possibility to use HDACi as neuroprotective therapy.

Keywords: Neuroprotection, SARS-CoV-2, HDAC inhibitors, COVID-19, Neurological symptoms, CNS

« Previous
Graphical Abstract

[1]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[2]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[3]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[4]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[5]
Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol., 2020, 92(7), 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[6]
Gao, S.; Zhang, L. ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput. Struct. Biotechnol. J., 2020, 18, 4040-4047.
[http://dx.doi.org/10.1016/j.csbj.2020.11.032] [PMID: 33282147]
[7]
Conceicao, C.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; Varga, M.; Tsirigoti, C.; Tully, M.; Chiu, C.; Moffat, K.; Silesian, A.P.; Hammond, J.A.; Maier, H.J.; Bickerton, E.; Shelton, H.; Dietrich, I.; Graham, S.C.; Bailey, D. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol., 2020, 18(12), e3001016.
[http://dx.doi.org/10.1371/journal.pbio.3001016] [PMID: 33347434]
[8]
Liu, J.; Li, Y.; Liu, Q.; Yao, Q.; Wang, X.; Zhang, H.; Chen, R.; Ren, L.; Min, J.; Deng, F.; Yan, B.; Liu, L.; Hu, Z.; Wang, M.; Zhou, Y. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov., 2021, 7(1), 17.
[http://dx.doi.org/10.1038/s41421-021-00249-2] [PMID: 33758165]
[9]
Pellegrini, L.; Albecka, A.; Mallery, D.L.; Kellner, M.J.; Paul, D.; Carter, A.P.; James, L.C.; Lancaster, M.A. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell, 2020, 27(6), 951-961.e5.
[http://dx.doi.org/10.1016/j.stem.2020.10.001] [PMID: 33113348]
[10]
Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.E.; Liu, F.; Dai, Y.; Szigeti-Buck, K.; Yasumoto, Y.; Wang, G.; Castaldi, C.; Heltke, J.; Ng, E.; Wheeler, J.; Alfajaro, M.M.; Levavasseur, E.; Fontes, B.; Ravindra, N.G.; Van Dijk, D.; Mane, S.; Gunel, M.; Ring, A.; Kazmi, S.A.J.; Zhang, K.; Wilen, C.B.; Horvath, T.L.; Plu, I.; Haik, S.; Thomas, J.L.; Louvi, A.; Farhadian, S.F.; Huttner, A.; Seilhean, D.; Renier, N.; Bilguvar, K.; Iwasaki, A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med., 2021, 218(3), e20202135.
[http://dx.doi.org/10.1084/jem.20202135] [PMID: 33433624]
[11]
Chen, R.; Wang, K.; Yu, J.; Howard, D.; French, L.; Chen, Z.; Wen, C.; Xu, Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front. Neurol., 2021, 11, 573095.
[http://dx.doi.org/10.3389/fneur.2020.573095] [PMID: 33551947]
[12]
Rodriguez-Perez, A.I.; Garrido-Gil, P.; Pedrosa, M.A.; Garcia-Garrote, M.; Valenzuela, R.; Navarro, G.; Franco, R.; Labandeira-Garcia, J.L. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav. Immun., 2020, 87, 256-271.
[http://dx.doi.org/10.1016/j.bbi.2019.12.011] [PMID: 31863823]
[13]
Doobay, M.F.; Talman, L.S.; Obr, T.D.; Tian, X.; Davisson, R.L.; Lazartigues, E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R373-R381.
[http://dx.doi.org/10.1152/ajpregu.00292.2006] [PMID: 16946085]
[14]
Borah, P.; Deb, P.K.; Chandrasekaran, B.; Goyal, M.; Bansal, M.; Hussain, S.; Shinu, P.; Venugopala, K.N.; Al-Shar’i, N.A.; Deka, S.; Singh, V. Neurological consequences of SARS-CoV-2 infection and concurrence of treatment-induced neuropsychiatric adverse events in COVID-19 patients: Navigating the uncharted. Front. Mol. Biosci., 2021, 8, 627723.
[http://dx.doi.org/10.3389/fmolb.2021.627723] [PMID: 33681293]
[15]
Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell, 2020, 183(1), 16-27.e1.
[http://dx.doi.org/10.1016/j.cell.2020.08.028] [PMID: 32882182]
[16]
Flores, G. SARS-COV-2 (COVID-19) has neurotropic and neuroinvasive properties. Int. J. Clin. Pract., 2021, 75(2), e13708.
[http://dx.doi.org/10.1111/ijcp.13708] [PMID: 32935417]
[17]
Chen, X. Potential neuroinvasive and neurotrophic properties of SARS-CoV-2 in pediatric patients: Comparison of SARS-CoV-2 with non-segmented RNA viruses. J. Neurovirol., 2020, 26(6), 929-940.
[http://dx.doi.org/10.1007/s13365-020-00913-5] [PMID: 33057966]
[18]
Kordzadeh-Kermani, E.; Khalili, H.; Karimzadeh, I. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19). Future Microbiol., 2020, 15(13), 1287-1305.
[http://dx.doi.org/10.2217/fmb-2020-0110] [PMID: 32851877]
[19]
Kutsuna, S. Clinical manifestations of coronavirus disease. Japan Med. Assoc. J., 2021, 4(2), 76-80.
[PMID: 33997439]
[20]
Ahmed, M.U.; Hanif, M.; Ali, M.J.; Haider, M.A.; Kherani, D.; Memon, G.M.; Karim, A.H.; Sattar, A. Neurological manifestations of COVID-19 (SARS-CoV-2): A review. Front. Neurol., 2020, 11, 518.
[http://dx.doi.org/10.3389/fneur.2020.00518] [PMID: 32574248]
[21]
Keyhanian, K.; Umeton, R.P.; Mohit, B.; Davoudi, V.; Hajighasemi, F.; Ghasemi, M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. J. Neuroimmunol., 2020, 350, 577436.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577436] [PMID: 33212316]
[22]
Maginnis, M.S. Virus-receptor interactions: The key to cellular invasion. J. Mol. Biol., 2018, 430(17), 2590-2611.
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[23]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[24]
Lv, H.; Wu, N.C.; Mok, C.K.P. COVID-19 vaccines: Knowing the unknown. Eur. J. Immunol., 2020, 50(7), 939-943.
[http://dx.doi.org/10.1002/eji.202048663] [PMID: 32437587]
[25]
Campos, D.M.O.; Fulco, U.L.; de Oliveira, C.B.S.; Oliveira, J.I.N. SARS-CoV-2 virus infection: Targets and antiviral pharmacological strategies. J. Evid. Based Med., 2020, 13(4), 255-260.
[http://dx.doi.org/10.1111/jebm.12414] [PMID: 33058394]
[26]
Wahl, A.; Gralinski, L.E.; Johnson, C.E.; Yao, W.; Kovarova, M.; Dinnon, K.H., III; Liu, H.; Madden, V.J.; Krzystek, H.M.; De, C.; White, K.K.; Gully, K.; Schäfer, A.; Zaman, T.; Leist, S.R.; Grant, P.O.; Bluemling, G.R.; Kolykhalov, A.A.; Natchus, M.G.; Askin, F.B.; Painter, G.; Browne, E.P.; Jones, C.D.; Pickles, R.J.; Baric, R.S.; Garcia, J.V. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 2021, 591(7850), 451-457.
[http://dx.doi.org/10.1038/s41586-021-03312-w] [PMID: 33561864]
[27]
Liu, K.; Zou, R.; Cui, W.; Li, M.; Wang, X.; Dong, J.; Li, H.; Li, H.; Wang, P.; Shao, X.; Su, W.; Chan, H.C.S.; Li, H.; Yuan, S. Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-CoV2. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1361-1370.
[http://dx.doi.org/10.1021/acsptsci.0c00163] [PMID: 34778724]
[28]
Jit, B.P.; Qazi, S.; Arya, R.; Srivastava, A.; Gupta, N.; Sharma, A. An immune epigenetic insight to COVID-19 infection. Epigenomics, 2021, 13(6), 465-480.
[http://dx.doi.org/10.2217/epi-2020-0349] [PMID: 33685230]
[29]
El Baba, R.; Herbein, G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin. Epigenetics, 2020, 12(1), 118.
[http://dx.doi.org/10.1186/s13148-020-00912-7] [PMID: 32758273]
[30]
Takahashi, Y.; Hayakawa, A.; Sano, R.; Fukuda, H.; Harada, M.; Kubo, R.; Okawa, T.; Kominato, Y. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci. Rep., 2021, 11(1), 3379.
[http://dx.doi.org/10.1038/s41598-021-82970-2] [PMID: 33564039]
[31]
Salgado-Albarrán, M.; Navarro-Delgado, E.I.; Del Moral-Morales, A.; Alcaraz, N.; Baumbach, J.; González-Barrios, R.; Soto-Reyes, E. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst. Biol. Appl., 2021, 7(1), 21.
[http://dx.doi.org/10.1038/s41540-021-00181-x] [PMID: 34031419]
[32]
Herbein, G.; Wendling, D. Histone deacetylases in viral infections. Clin. Epigenetics, 2010, 1(1-2), 13-24.
[http://dx.doi.org/10.1007/s13148-010-0003-5] [PMID: 22704086]
[33]
Delcuve, G.P.; Khan, D.H.; Davie, J.R. Roles of histone deacetylases in epigenetic regulation: Emerging paradigms from studies with inhibitors. Clin. Epigenetics, 2012, 4(1), 5.
[http://dx.doi.org/10.1186/1868-7083-4-5] [PMID: 22414492]
[34]
Shein, N.A.; Shohami, E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol. Med., 2011, 17(5-6), 448-456.
[http://dx.doi.org/10.2119/molmed.2011.00038] [PMID: 21274503]
[35]
Hachem, M. SARS-CoV-2 journey to the brain with a focus on potential role of docosahexaenoic acid bioactive lipid mediators. Biochimie, 2021, 184, 95-103.
[http://dx.doi.org/10.1016/j.biochi.2021.02.012] [PMID: 33639198]
[36]
P, K.M.; Sivashanmugam, K.; Kandasamy, M.; Subbiah, R.; Ravikumar, V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci., 2021, 266, 118883.
[http://dx.doi.org/10.1016/j.lfs.2020.118883] [PMID: 33316266]
[37]
Fodoulian, L.; Tuberosa, J.; Rossier, D.; Boillat, M.; Kan, C.; Pauli, V.; Egervari, K.; Lobrinus, J.A.; Landis, B.N.; Carleton, A.; Rodriguez, I. SARS-CoV-2 receptors and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience, 2020, 23(12), 101839.
[http://dx.doi.org/10.1016/j.isci.2020.101839] [PMID: 33251489]
[38]
Jakhmola, S.; Indari, O.; Chatterjee, S.; Jha, H.C. SARS-CoV-2, an underestimated pathogen of the nervous system. SN Compr. Clin. Med., 2020, 2(11), 1-10.
[http://dx.doi.org/10.1007/s42399-020-00522-7] [PMID: 33015550]
[39]
Durrant, D.M.; Ghosh, S.; Klein, R.S. The olfactory bulb: An immunosensory effector organ during neurotropic viral infections. ACS Chem. Neurosci., 2016, 7(4), 464-469.
[http://dx.doi.org/10.1021/acschemneuro.6b00043] [PMID: 27058872]
[40]
Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.; Chance, R.; Macaulay, I.C.; Chou, H.J.; Fletcher, R.B.; Das, D.; Street, K.; de Bezieux, H.R.; Choi, Y.G.; Risso, D.; Dudoit, S.; Purdom, E.; Mill, J.; Hachem, R.A.; Matsunami, H.; Logan, D.W.; Goldstein, B.J.; Grubb, M.S.; Ngai, J.; Datta, S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv., 2020, 6(31), eabc5801.
[http://dx.doi.org/10.1126/sciadv.abc5801] [PMID: 32937591]
[41]
Lima, M.; Siokas, V.; Aloizou, A.M.; Liampas, I.; Mentis, A.A.; Tsouris, Z.; Papadimitriou, A.; Mitsias, P.D.; Tsatsakis, A.; Bogdanos, D.P.; Baloyannis, S.J.; Dardiotis, E. Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system. Curr. Treat. Options Neurol., 2020, 22(11), 37.
[http://dx.doi.org/10.1007/s11940-020-00647-z] [PMID: 32994698]
[42]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[43]
Taher, T.; Sheikh, A.B.; Anwar, F.; Khosa, F. SARS-CoV-2: Its potential neurological manifestations and plausible mechanism: A review article. Acta Neurol. Belg., 2021, 121(2), 331-339.
[http://dx.doi.org/10.1007/s13760-020-01577-y] [PMID: 33464546]
[44]
Bostancıklıoğlu, M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm. Bowel Dis., 2020, 26(8), e89-e91.
[PMID: 32440692]
[45]
DosSantos, M.F.; Devalle, S.; Aran, V.; Capra, D.; Roque, N.R.; Coelho-Aguiar, J.M.; Spohr, T.C.L.S.E.; Subilhaga, J.G.; Pereira, C.M.; D’Andrea Meira, I.; Niemeyer Soares Filho, P.; Moura-Neto, V. Neuromechanisms of SARS-CoV-2: A review. Front. Neuroanat., 2020, 14, 37.
[http://dx.doi.org/10.3389/fnana.2020.00037] [PMID: 32612515]
[46]
Xu, J.; Wu, Z.; Zhang, M.; Liu, S.; Zhou, L.; Yang, C.; Liu, C. The role of the gastrointestinal system in neuroinvasion by SARS-CoV-2. Front. Neurosci., 2021, 15, 694446.
[http://dx.doi.org/10.3389/fnins.2021.694446] [PMID: 34276298]
[47]
Yapici-Eser, H.; Koroglu, Y.E.; Oztop-Cakmak, O.; Keskin, O.; Gursoy, A.; Gursoy-Ozdemir, Y. Neuropsychiatric symptoms of COVID-19 explained by SARS-CoV-2 proteins’ mimicry of human protein interactions. Front. Hum. Neurosci., 2021, 15, 656313.
[http://dx.doi.org/10.3389/fnhum.2021.656313] [PMID: 33833673]
[48]
Ray, S.T.J.; Abdel-Mannan, O.; Sa, M.; Fuller, C.; Wood, G.K.; Pysden, K.; Yoong, M.; McCullagh, H.; Scott, D.; McMahon, M.; Thomas, N.; Taylor, M.; Illingworth, M.; McCrea, N.; Davies, V.; Whitehouse, W.; Zuberi, S.; Guthrie, K.; Wassmer, E.; Shah, N.; Baker, M.R.; Tiwary, S.; Tan, H.J.; Varma, U.; Ram, D.; Avula, S.; Enright, N.; Hassell, J.; Ross Russell, A.L.; Kumar, R.; Mulholland, R.E.; Pett, S.; Galea, I.; Thomas, R.H.; Lim, M.; Hacohen, Y.; Solomon, T.; Griffiths, M.J.; Michael, B.D.; Kneen, R.; Breen, G.; Castell, H.; Collie, C.; George, L.; Hartmann, M.; Henrion, M.; Kinali, M.; Petropoulos, C.; Ramdas, S.; Vlachou, V.; Vollmer, B.; Facer, B.; Dunai, C. CoroNerve study group. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study. Lancet Child Adolesc. Health, 2021, 5(9), 631-641.
[http://dx.doi.org/10.1016/S2352-4642(21)00193-0] [PMID: 34273304]
[49]
Hassanzadeh, K.; Perez Pena, H.; Dragotto, J.; Buccarello, L.; Iorio, F.; Pieraccini, S.; Sancini, G.; Feligioni, M. Considerations around the SARS-CoV-2 spike protein with particular attention to COVID-19 brain infection and neurological symptoms. ACS Chem. Neurosci., 2020, 11(15), 2361-2369.
[http://dx.doi.org/10.1021/acschemneuro.0c00373] [PMID: 32627524]
[50]
Sharifian-Dorche, M.; Huot, P.; Osherov, M.; Wen, D.; Saveriano, A.; Giacomini, P.S.; Antel, J.P.; Mowla, A. Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. J. Neurol. Sci., 2020, 417, 117085.
[http://dx.doi.org/10.1016/j.jns.2020.117085] [PMID: 32871412]
[51]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease. 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[52]
Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.S.; Pollak, T.A.; Tenorio, E.L.; Sultan, M.; Easton, A.; Breen, G.; Zandi, M.; Coles, J.P.; Manji, H.; Al-Shahi Salman, R.; Menon, D.K.; Nicholson, T.R.; Benjamin, L.A.; Carson, A.; Smith, C.; Turner, M.R.; Solomon, T.; Kneen, R.; Pett, S.L.; Galea, I.; Thomas, R.H.; Michael, B.D.; Allen, C.; Archibald, N.; Arkell, J.; Arthur-Farraj, P.; Baker, M.; Ball, H.; Bradley-Barker, V.; Brown, Z.; Bruno, S.; Carey, L.; Carswell, C.; Chakrabarti, A.; Choulerton, J.; Daher, M.; Davies, R.; Di Marco Barros, R.; Dima, S.; Dunley, R.; Dutta, D.; Ellis, R.; Everitt, A.; Fady, J.; Fearon, P.; Fisniku, L.; Gbinigie, I.; Gemski, A.; Gillies, E.; Gkrania-Klotsas, E.; Grigg, J.; Hamdalla, H.; Hubbett, J.; Hunter, N.; Huys, A-C.; Ihmoda, I.; Ispoglou, S.; Jha, A.; Joussi, R.; Kalladka, D.; Khalifeh, H.; Kooij, S.; Kumar, G.; Kyaw, S.; Li, L.; Littleton, E.; Macleod, M.; Macleod, M.J.; Madigan, B.; Mahadasa, V.; Manoharan, M.; Marigold, R.; Marks, I.; Matthews, P.; McCormick, M.; McInnes, C.; Metastasio, A.; Milburn-McNulty, P.; Mitchell, C.; Mitchell, D.; Morgans, C.; Morris, H.; Morrow, J.; Mubarak Mohamed, A.; Mulvenna, P.; Murphy, L.; Namushi, R.; Newman, E.; Phillips, W.; Pinto, A.; Price, D.A.; Proschel, H.; Quinn, T.; Ramsey, D.; Roffe, C.; Ross Russell, A.; Samarasekera, N.; Sawcer, S.; Sayed, W.; Sekaran, L.; Serra-Mestres, J.; Snowdon, V.; Strike, G.; Sun, J.; Tang, C.; Vrana, M.; Wade, R.; Wharton, C.; Wiblin, L.; Boubriak, I.; Herman, K.; Plant, G. CoroNerve Study Group. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry, 2020, 7(10), 875-882.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X] [PMID: 32593341]
[53]
Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; Vivekanandam, V.; Khoo, A.; Geraldes, R.; Chinthapalli, K.; Boyd, E.; Tuzlali, H.; Price, G.; Christofi, G.; Morrow, J.; McNamara, P.; McLoughlin, B.; Lim, S.T.; Mehta, P.R.; Levee, V.; Keddie, S.; Yong, W.; Trip, S.A.; Foulkes, A.J.M.; Hotton, G.; Miller, T.D.; Everitt, A.D.; Carswell, C.; Davies, N.W.S.; Yoong, M.; Attwell, D.; Sreedharan, J.; Silber, E.; Schott, J.M.; Chandratheva, A.; Perry, R.J.; Simister, R.; Checkley, A.; Longley, N.; Farmer, S.F.; Carletti, F.; Houlihan, C.; Thom, M.; Lunn, M.P.; Spillane, J.; Howard, R.; Vincent, A.; Werring, D.J.; Hoskote, C.; Jäger, H.R.; Manji, H.; Zandi, M.S. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 2020, 143(10), 3104-3120.
[http://dx.doi.org/10.1093/brain/awaa240] [PMID: 32637987]
[54]
Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), 611-627.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[55]
Sah, P.; Fitzpatrick, M.C.; Zimmer, C.F.; Abdollahi, E.; Juden-Kelly, L.; Moghadas, S.M.; Singer, B.H.; Galvani, A.P. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci. USA, 2021, 118(34), e2109229118.
[http://dx.doi.org/10.1073/pnas.2109229118] [PMID: 34376550]
[56]
Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or moderate Covid-19. N. Engl. J. Med., 2020, 383(18), 1757-1766.
[http://dx.doi.org/10.1056/NEJMcp2009249] [PMID: 32329974]
[57]
Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, E.G.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; Miller, F.; Herbst, H.; Corman, V.M.; Martin, H.; Radbruch, H.; Heppner, F.L.; Horst, D. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep., 2021, 11(1), 4263.
[http://dx.doi.org/10.1038/s41598-021-82862-5] [PMID: 33608563]
[58]
Sardu, C.; Marfella, R.; Maggi, P.; Messina, V.; Cirillo, P.; Codella, V.; Gambardella, J.; Sardu, A.; Gatta, G.; Santulli, G.; Paolisso, G. Implications of ABO blood group in hypertensive patients with covid-19. Res. Sq, 2020, rs.3.rs-28258.
[http://dx.doi.org/10.21203/rs.3.rs-28258/v2]
[59]
Ghanbari, R.; Teimoori, A.; Sadeghi, A.; Mohamadkhani, A.; Rezasoltani, S.; Asadi, E.; Jouyban, A.; Sumner, S.C. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol., 2020, 15(18), 1747-1758.
[http://dx.doi.org/10.2217/fmb-2020-0120] [PMID: 33404263]
[60]
Mumoli, N.; Florian, C.; Cei, M.; Evangelista, I.; Colombo, A.; Razionale, G.; Moroni, L.; Mazzone, A. Palliative care in a COVID-19 internal medicine ward: A preliminary report. IJID, 2021, 105, 141-143.
[61]
Bormann, M.; van de Sand, L.; Witzke, O.; Krawczyk, A. Recent antiviral treatment and vaccination strategies against SARS-CoV-2. Klin. Monatsbl. Augenheilkd., 2021, 238(5), 569-578.
[http://dx.doi.org/10.1055/a-1423-8961] [PMID: 34020485]
[62]
Nehme, Z.; Pasquereau, S.; Herbein, G. Control of viral infections by epigenetic-targeted therapy. Clin. Epigenetics, 2019, 11(1), 55.
[http://dx.doi.org/10.1186/s13148-019-0654-9] [PMID: 30917875]
[63]
Schäfer, A.; Baric, R.S. Epigenetic landscape during coronavirus infection. Pathogens, 2017, 6(1), E8.
[http://dx.doi.org/10.3390/pathogens6010008] [PMID: 28212305]
[64]
Scoppettuolo, P.; Borrelli, S.; Naeije, G. Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav Immun Health, 2020, 5, 100094.
[http://dx.doi.org/10.1016/j.bbih.2020.100094] [PMID: 33521692]
[65]
Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol., 2020, 92(6), 552-555.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[66]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[67]
Beaud, V.; Crottaz-Herbette, S.; Dunet, V.; Vaucher, J.; Bernard-Valnet, R.; Du Pasquier, R.; Bart, P.A.; Clarke, S. Pattern of cognitive deficits in severe COVID-19. J. Neurol. Neurosurg. Psychiatry, 2021, 92(5), 567-568.
[http://dx.doi.org/10.1136/jnnp-2020-325173] [PMID: 33219042]
[68]
Chen, Z.; Li, G. Immune response and blood-brain barrier dysfunction during viral neuroinvasion. Innate Immun., 2021, 27(2), 109-117.
[http://dx.doi.org/10.1177/1753425920954281] [PMID: 32903111]
[69]
Alquisiras-Burgos, I.; Peralta-Arrieta, I.; Alonso-Palomares, L.A.; Zacapala-Gómez, A.E.; Salmerón-Bárcenas, E.G.; Aguilera, P. Neurological complications associated with the blood-brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection. Mol. Neurobiol., 2021, 58(2), 520-535.
[http://dx.doi.org/10.1007/s12035-020-02134-7] [PMID: 32978729]
[70]
Lambertsen, K.L.; Biber, K.; Finsen, B. Inflammatory cytokines in experimental and human stroke. J. Cereb. Blood Flow Metab., 2012, 32(9), 1677-1698.
[http://dx.doi.org/10.1038/jcbfm.2012.88] [PMID: 22739623]
[71]
Asadi-Pooya, A.A. Seizures associated with coronavirus infections. Seizure, 2020, 79, 49-52.
[http://dx.doi.org/10.1016/j.seizure.2020.05.005] [PMID: 32416567]
[72]
Naughton, S.X.; Raval, U.; Pasinetti, G.M. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J. Alzheimers Dis., 2020, 76(1), 21-25.
[http://dx.doi.org/10.3233/JAD-200537] [PMID: 32538855]
[73]
Mullaguri, N.; Hepburn, M.; Gebel, J.M., Jr; Itrat, A.; George, P.; Newey, C.R. COVID-19 disease and hypercoagulability leading to acute ischemic stroke. Neurohospitalist, 2021, 11(2), 131-136.
[http://dx.doi.org/10.1177/1941874420960324] [PMID: 33791056]
[74]
Qiu, F.; Wu, Y.; Zhang, A.; Xie, G.; Cao, H.; Du, M.; Jiang, H.; Li, S.; Ding, M. Changes of coagulation function and risk of stroke in patients with COVID-19. Brain Behav., 2021, 11(6), e02185.
[http://dx.doi.org/10.1002/brb3.2185] [PMID: 33998177]
[75]
Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol., 2020, 127, 104362.
[http://dx.doi.org/10.1016/j.jcv.2020.104362] [PMID: 32305883]
[76]
Zakeri, A.; Jadhav, A.P.; Sullenger, B.A.; Nimjee, S.M. Ischemic stroke in COVID-19-positive patients: An overview of SARSCoV- 2 and thrombotic mechanisms for the neurointerventionalist. 2021, 13(3), 202-206.
[http://dx.doi.org/10.1136/neurintsurg-2020-016794]
[77]
Sashindranath, M.; Nandurkar, H.H. Endothelial dysfunction in the brain: Setting the stage for stroke and other cerebrovascular complications of COVID-19. Stroke, 2021, 52(5), 1895-1904.
[http://dx.doi.org/10.1161/STROKEAHA.120.032711] [PMID: 33794655]
[78]
Jin, Y.; Ji, W.; Yang, H.; Chen, S.; Zhang, W.; Duan, G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct. Target. Ther., 2020, 5(1), 293.
[http://dx.doi.org/10.1038/s41392-020-00454-7] [PMID: 33361764]
[79]
Levi, M.; van der Poll, T.; Büller, H.R. Bidirectional relation between inflammation and coagulation. Circulation, 2004, 109(22), 2698-2704.
[http://dx.doi.org/10.1161/01.CIR.0000131660.51520.9A] [PMID: 15184294]
[80]
Pitt, B.; Sutton, N.R.; Wang, Z.; Goonewardena, S.N.; Holinstat, M. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur. J. Pharmacol., 2021, 898, 173988.
[http://dx.doi.org/10.1016/j.ejphar.2021.173988] [PMID: 33667455]
[81]
Shukla, S.; Tekwani, B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol., 2020, 11, 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[82]
Sixto-López, Y.; Correa-Basurto, J. Docking Approaches Used in Epigenetic Drug Investigations. In: Molecular Docking for Computer- Aided Drug Design; Mohane S. Coumar, Ed.; Academic Press 2021, pp. 367-390.
[83]
Thomas, E.A.; D’Mello, S.R. Complex neuroprotective and neurotoxic effects of histone deacetylases. J. Neurochem., 2018, 145(2), 96-110.
[http://dx.doi.org/10.1111/jnc.14309] [PMID: 29355955]
[84]
Cuadrado-Tejedor, M.; Pérez-González, M.; García-Muñoz, C.; Muruzabal, D.; García-Barroso, C.; Rabal, O.; Segura, V.; Sánchez-Arias, J.A.; Oyarzabal, J.; Garcia-Osta, A. Taking advantage of the selectivity of histone deacetylases and phosphodiesterase inhibitors to design better therapeutic strategies to treat Alzheimer’s Disease. Front. Aging Neurosci., 2019, 11, 149.
[http://dx.doi.org/10.3389/fnagi.2019.00149] [PMID: 31281249]
[85]
Sharma, S.; Taliyan, R. Targeting histone deacetylases: A novel approach in Parkinson’s disease. Parkinsons Dis., 2015, 2015, 303294.
[http://dx.doi.org/10.1155/2015/303294] [PMID: 25694842]
[86]
Fessler, E.B.; Chibane, F.L.; Wang, Z.; Chuang, D.M. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr. Pharm. Des., 2013, 19(28), 5105-5120.
[http://dx.doi.org/10.2174/1381612811319280009] [PMID: 23448466]
[87]
Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[88]
Zhao, T.; Li, Y.; Liu, B.; Wu, E.; Sillesen, M.; Velmahos, G.C.; Halaweish, I.; Alam, H.B. Histone deacetylase inhibitor treatment attenuates coagulation imbalance in a lethal murine model of sepsis. Surgery, 2014, 156(2), 214-220.
[http://dx.doi.org/10.1016/j.surg.2014.04.022] [PMID: 24957668]
[89]
Teodori, L.; Sestili, P.; Madiai, V.; Coppari, S.; Fraternale, D.; Rocchi, M.B.L.; Ramakrishna, S.; Albertini, M.C. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-COVID-19 therapeutics. Front. Pharmacol., 2020, 11, 582003.
[http://dx.doi.org/10.3389/fphar.2020.582003] [PMID: 33363465]
[90]
Licciardi, P.V.; Karagiannis, T.C. Regulation of immune responses by histone deacetylase inhibitors. ISRN Hematol., 2012, 2012, 690901.
[http://dx.doi.org/10.5402/2012/690901] [PMID: 22461998]
[91]
Patnaik, S. Anupriya, Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front. Pharmacol., 2019, 10, 588.
[http://dx.doi.org/10.3389/fphar.2019.00588] [PMID: 31244652]
[92]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[93]
Zhang, H.; Kuchroo, V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin. Immunol., 2019, 44, 101324.
[http://dx.doi.org/10.1016/j.smim.2019.101324] [PMID: 31676122]
[94]
Li, N.; Zhao, D.; Kirschbaum, M.; Zhang, C.; Lin, C.L.; Todorov, I.; Kandeel, F.; Forman, S.; Zeng, D. HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4796-4801.
[http://dx.doi.org/10.1073/pnas.0712051105] [PMID: 18347343]
[95]
Santa Cruz, A.; Mendes-Frias, A.; Oliveira, A.I.; Dias, L.; Matos, A.R.; Carvalho, A.; Capela, C.; Pedrosa, J.; Castro, A.G.; Silvestre, R. Interleukin-6 is a biomarker for the development of fatal severe acute respiratory syndrome coronavirus 2 pneumonia. Front. Immunol., 2021, 12, 613422.
[http://dx.doi.org/10.3389/fimmu.2021.613422] [PMID: 33679753]
[96]
Soria-Castro, R.; Schcolnik-Cabrera, A.; Rodríguez-López, G.; Campillo-Navarro, M.; Puebla-Osorio, N.; Estrada-Parra, S.; Estrada-García, I.; Chacón-Salinas, R.; Chávez-Blanco, A.D. Exploring the drug repurposing versatility of valproic acid as a multifunctional regulator of innate and adaptive immune cells. J. Immunol. Res., 2019, 2019, 9678098.
[http://dx.doi.org/10.1155/2019/9678098] [PMID: 31001564]
[97]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[98]
Vishwakarma, S.; Iyer, L.R.; Muley, M.; Singh, P.K.; Shastry, A.; Saxena, A.; Kulathingal, J.; Vijaykanth, G.; Raghul, J.; Rajesh, N.; Rathinasamy, S.; Kachhadia, V.; Kilambi, N.; Rajgopal, S.; Balasubramanian, G.; Narayanan, S. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. Int. Immunopharmacol., 2013, 16(1), 72-78.
[http://dx.doi.org/10.1016/j.intimp.2013.03.016] [PMID: 23541634]
[99]
Carta, S.; Tassi, S.; Semino, C.; Fossati, G.; Mascagni, P.; Dinarello, C.A.; Rubartelli, A. Histone deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: Role of microtubules. Blood, 2006, 108(5), 1618-1626.
[http://dx.doi.org/10.1182/blood-2006-03-014126] [PMID: 16684958]
[100]
Glauben, R.; Sonnenberg, E.; Wetzel, M.; Mascagni, P.; Siegmund, B. Histone deacetylase inhibitors modulate interleukin 6-dependent CD4+ T cell polarization in vitro and in vivo. J. Biol. Chem., 2014, 289(9), 6142-6151.
[http://dx.doi.org/10.1074/jbc.M113.517599] [PMID: 24421314]
[101]
Nusinzon, I.; Horvath, C.M. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 14742-14747.
[http://dx.doi.org/10.1073/pnas.2433987100] [PMID: 14645718]
[102]
Vlasáková, J.; Nováková, Z.; Rossmeislová, L.; Kahle, M.; Hozák, P.; Hodny, Z. Histone deacetylase inhibitors suppress IFNalpha-induced up-regulation of promyelocytic leukemia protein. Blood, 2007, 109(4), 1373-1380.
[http://dx.doi.org/10.1182/blood-2006-02-003418] [PMID: 17062732]
[103]
Xu, X.; Li, X.; Zhao, Y.; Huang, H. Immunomodulatory effects of histone deacetylation inhibitors in graft-vs.-host disease after allogeneic stem cell transplantation. Front. Immunol., 2021, 12, 641910.
[http://dx.doi.org/10.3389/fimmu.2021.641910] [PMID: 33732262]
[104]
Cleophas, M.C.P.; Crişan, T.O.; Klück, V.; Hoogerbrugge, N.; Netea-Maier, R.T.; Dinarello, C.A.; Netea, M.G.; Joosten, L.A.B. Romidepsin suppresses monosodium urate crystal-induced cytokine production through upregulation of suppressor of cytokine signaling 1 expression. Arthritis Res. Ther., 2019, 21(1), 50.
[http://dx.doi.org/10.1186/s13075-019-1834-x] [PMID: 30728075]
[105]
Wang, H.; Qin, R.; Zhang, J.; Chen, Y. Possible immunity, inflammation, and oxidative stress mechanisms of Alzheimer’s disease in COVID-19 patients. Clin. Neurol. Neurosurg., 2021, 201, 106414.
[http://dx.doi.org/10.1016/j.clineuro.2020.106414] [PMID: 33341456]
[106]
Zhao, T.; Li, Y.; Liu, B.; Bronson, R.T.; Halaweish, I.; Alam, H.B. Histone deacetylase III as a potential therapeutic target for the treatment of lethal sepsis. J. Trauma Acute Care Surg., 2014, 77(6), 913-919.
[http://dx.doi.org/10.1097/TA.0000000000000347] [PMID: 25051385]
[107]
Felisbino, M.B.; Ziemann, M.; Khurana, I.; Okabe, J.; Al-Hasani, K.; Maxwell, S.; Harikrishnan, K.N.; de Oliveira, C.B.M.; Mello, M.L.S.; El-Osta, A. Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci. Rep., 2021, 11(1), 2163.
[http://dx.doi.org/10.1038/s41598-021-81794-4] [PMID: 33495488]
[108]
Leoni, F.; Zaliani, A.; Bertolini, G.; Porro, G.; Pagani, P.; Pozzi, P.; Donà, G.; Fossati, G.; Sozzani, S.; Azam, T.; Bufler, P.; Fantuzzi, G.; Goncharov, I.; Kim, S.H.; Pomerantz, B.J.; Reznikov, L.L.; Siegmund, B.; Dinarello, C.A.; Mascagni, P. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2995-3000.
[http://dx.doi.org/10.1073/pnas.052702999] [PMID: 11867742]
[109]
Causey, M.W.; Salgar, S.; Singh, N.; Martin, M.; Stallings, J.D. Valproic acid reversed pathologic endothelial cell gene expression profile associated with ischemia-reperfusion injury in a swine hemorrhagic shock model. J. Vasc. Surg., 2012, 55(4), 1096-1103.e51.
[http://dx.doi.org/10.1016/j.jvs.2011.08.060] [PMID: 22100532]
[110]
Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol., 2020, 11, 588654.
[http://dx.doi.org/10.3389/fphar.2020.588654] [PMID: 33240091]
[111]
Yoon, S.; Eom, G.H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Med. J., 2016, 52(1), 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[112]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[113]
Gao, X.; Shen, L.; Li, X.; Liu, J. Efficacy and toxicity of histone deacetylase inhibitors in relapsed/refractory multiple myeloma: Systematic review and meta-analysis of clinical trials. Exp. Ther. Med., 2019, 18(2), 1057-1068.
[http://dx.doi.org/10.3892/etm.2019.7704] [PMID: 31363365]
[114]
Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br. J. Clin. Pharmacol., 2021, 87(12), 4577-4597.
[http://dx.doi.org/10.1111/bcp.14889] [PMID: 33971031]
[115]
Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel), 2010, 3(9), 2751-2767.
[http://dx.doi.org/10.3390/ph3092751] [PMID: 27713375]
[116]
Hamze, A. How do we improve histone deacetylase inhibitor drug discovery? Expert Opin. Drug Discov., 2020, 15(5), 527-529.
[http://dx.doi.org/10.1080/17460441.2020.1736032] [PMID: 32116055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy