Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Bis-1,3,4-Oxadiazole Derivatives as Novel and Potential Urease Inhibitors; Synthesis, In Vitro, and In Silico Studies

Author(s): Sana Shah, Momin Khan*, Mahboob Ali, Abdul Wadood, Ashfaq Ur Rehman, Zarbad Shah, Muhammad Yousaf, Uzma Salar and Khalid Mohammed Khan

Volume 18, Issue 7, 2022

Published on: 31 March, 2022

Page: [820 - 830] Pages: 11

DOI: 10.2174/1573406418666220301161934

Price: $65

Abstract

Aims: To synthesize bis-1,3,4-oxadiazole derivatives as novel and potential urease inhibitors.

Background: Despite many important biological activities associated with oxadiazoles, they are still neglected by medicinal chemists for their possible urease inhibitory activity. Keeping in view the countless importance of urease inhibitors, we have synthesized a new library of substituted bisoxadiazole derivatives (1-21) to evaluate their urease inhibitory potential.

Objective: The aim includes the synthesis of substituted bis-oxadiazole derivatives (1-21) in order to evaluate their urease inhibitory potential.

Methods: Bis-1,3,4-oxadiazole derivatives 1-21 were synthesized through sequential reactions using starting material isophthalic acid. Esterification reaction was done by refluxing in methanol for 2 h in the presence of the catalytic amount of concentrated H2SO4 till dissolution. In the second step, dimethyl isophthalate and hydrazine hydrate in excess (1:5) were refluxed in methanol to afford isophthalic dihydrazide. Then, isophthalic dihydrazide was treated with different substituted benzaldehydes in a 1:2 ratio under acidic conditions.

Results: In vitro urease, the inhibitory activity of the synthesized compounds was evaluated and the results demonstrated good activities with IC50 values in the range of 13.46 ± 0.34 to 74.45 ± 3.81 μM as compared to the standard thiourea (IC50 = 21.13 ± 0.415 μM). Most of the compounds were found to be more potent than the standard. The structure-activity relationship (SAR) suggested that the variations in the inhibitory activities of the compounds were due to different substitutions. Furthermore; in silico study was also performed.

Conclusion: Current study identified a new class of urease inhibitors. All synthetic compounds 1-21 showed potent as well as good to moderate urease inhibitory activities except 3. SAR suggested that hydroxy-bearing analogs were identified exceptionally well. Molecular docking revealed many important interactions made by compounds with the active site of the urease enzyme.

Keywords: Bis-oxadiazole, urease inhibition, structure-activity relationship, molecular docking, oxidative cyclization, urease.

« Previous
Graphical Abstract

[1]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F.; Filgueiras, P. Synthetic ap-proaches and pharmacological activity of 1,3,4-oxadiazoles: a review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[2]
Sun, X.W.; Liang, H.T.; Zhang, Z.Y.; Wang, Q.; Wang, F. Synthesis and antibacterial activity of 4-aryl-1-(1-p-chlorophenyl-5-methyl-1,2,3-triazol-4-carbonyl) thiosemi-carbazides and their related heterocyclic derivatives. ChemInform, 1999, 38B(47), 679-683.
[http://dx.doi.org/10.1002/chin.199947152]
[3]
Maslat, A.O.; Abussaud, M.; Tashtoush, H.; Al-Talib, M. Synthesis, antibacterial, antifungal and genotoxic activity of bis-1,3,4-oxadiazole derivatives. Pol. J. Pharmacol., 2002, 54(1), 55-59.
[PMID: 12020044]
[4]
Somani, R.R.; Shirodkar, P.Y. Oxadiazole: A biologically important heterocycle. Pharma Chem., 2009, 1(1), 130-140.
[5]
Hazarika, J.; Kataky, J.C.S. Studies on biologically active heterocycles. Part IX. Synthesis of 3-[5-{(2-chlorophenyl)-1,3,4-oxa/thiadiazolo}-2-yl]-1-aryl/substituted aryl thiobarbi-turic acids as probable antiparkinsonian agents. Indian J. Heterocycl. Chem., 1998, 8(1), 83-84.
[6]
Palaska, E.; Şahin, G.; Kelicen, P.; Durlu, N.T.; Altinok, G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco, 2002, 57(2), 101-107.
[http://dx.doi.org/10.1016/S0014-827X(01)01176-4] [PMID: 11902651]
[7]
Goswami, B.; Kataky, J.; Baruah, J. Synthesis and biological activity of some new 3-substituted 5-(2,4-dichlorophenyl)-1,3,4-oxadiazole-2-thiones. Indian J. Chem. Sect., 1984, B23, 796-797.
[http://dx.doi.org/10.1002/chin.198449193]
[8]
Nizamudalin, K.M.; Shafqat, A. Oxadiazoles: A biologically important heterocycle. Indian J. Chem., 1990, 38, 76-82.
[9]
Varma, R.S.; Bajpai, V.; Kapil, A. 4-Heterocyclic aminome-thyl-2-(3'-nitro-4'-benzyloxy phenyl)-1,3,4-oxadiazoline-5-thiones and their antileishmanial activity. Indian J. Heterocycl. Chem., 1999, 8(4), 281-284.
[10]
Ohmoto, K.; Yamamoto, T.; Horiuchi, T.; Imanishi, H.; Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; Nakai, H.; Toda, M.; Cheronis, J.C.; Spruce, L.W.; Gyorkos, A.; Wieczorek, M. Design and synthesis of new orally active nonpeptidic inhibitors of human neutrophil elastase. J. Med. Chem., 2000, 43(26), 4927-4929.
[http://dx.doi.org/10.1021/jm0004087] [PMID: 11150162]
[11]
Ono, M.; Haratake, M.; Saji, H.; Nakayama, M. Development of novel β-amyloid probes based on 3,5-diphenyl-1,2,4-oxadiazole. Bioorg. Med. Chem., 2008, 16(14), 6867-6872.
[http://dx.doi.org/10.1016/j.bmc.2008.05.054] [PMID: 18550375]
[12]
McBriar, M.D.; Clader, J.W.; Chu, I.; Del Vecchio, R.A.; Fa-vreau, L.; Greenlee, W.J.; Hyde, L.A.; Nomeir, A.A.; Parker, E.M.; Pissarnitski, D.A.; Song, L.; Zhang, L.; Zhao, Z. Discovery of amide and heteroaryl isosteres as carbamate replacements in a series of orally active γ-secretase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(1), 215-219.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.092] [PMID: 17988864]
[13]
Patani, G.A.; LaVoie, E.J. Bioisosterism: a rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[14]
Warmus, J.S.; Flamme, C.; Zhang, L.Y.; Barrett, S.; Bridges, A.; Chen, H.; Gowan, R.; Kaufman, M.; Sebolt-Leopold, J.; Leopold, W.; Merriman, R.; Ohren, J.; Pavlovsky, A.; Przybranowski, S.; Tecle, H.; Valik, H.; Whitehead, C.; Zhang, E. 2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase). Bioorg. Med. Chem. Lett., 2008, 18(23), 6171-6174.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.015] [PMID: 18951019]
[15]
Mobley, H.L.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev., 1995, 59(3), 451-480.
[http://dx.doi.org/10.1128/mr.59.3.451-480.1995] [PMID: 7565414]
[16]
Vassiliou, S.; Grabowiecka, A.; Kosikowska, P.; Yiotakis, A.; Kafarski, P. Berlicki, Ł. Design, synthesis, and evaluation of novel organophosphorus inhibitors of bacterial ureases. J. Med. Chem., 2008, 51(18), 5736-5744.
[http://dx.doi.org/10.1021/jm800570q] [PMID: 18717581]
[17]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Ciurli, S.; Mangani, S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nick-els. Structure, 1999, 7(2), 205-216.
[http://dx.doi.org/10.1016/S0969-2126(99)80026-4] [PMID: 10368287]
[18]
Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol., 2001, 8(6), 505-509.
[http://dx.doi.org/10.1038/88563] [PMID: 11373617]
[19]
Gripenberg-Lerche, C.; Zhang, L.; Ahtonen, P.; Toivanen, P.; Skurnik, M. Construction of urease-negative mutants of Yersinia enterocolitica serotypes O:3 and o:8: role of urease in virulence and arthritogenicity. Infect. Immun., 2000, 68(2), 942-947.
[http://dx.doi.org/10.1128/IAI.68.2.942-947.2000] [PMID: 10639468]
[20]
Li, X.; Mobley, H.L. Vaccines for Proteus mirabilis in urinary tract infection. Int. J. Antimicrob. Agents, 2002, 19(6), 461-465.
[http://dx.doi.org/10.1016/S0924-8579(02)00102-4] [PMID: 12135833]
[21]
Faraci, W.S.; Yang, B.V.; O’Rourke, D.; Spencer, R.W. Inhibition of Helicobacter pylori urease by phenyl phosphorodiamidates: mechanism of action. Bioorg. Med. Chem., 1995, 3(5), 605-610.
[http://dx.doi.org/10.1016/0968-0896(95)00043-G] [PMID: 7648208]
[22]
Uesato, S.; Hashimoto, Y.; Nishino, M.; Nagaoka, Y.; Ku-wajima, H. N-substituted hydroxyureas as urease inhibitors. Chem. Pharm. Bull. (Tokyo), 2002, 50(9), 1280-1282.
[http://dx.doi.org/10.1248/cpb.50.1280] [PMID: 12237554]
[23]
Odake, S.; Morikawa, T.; Tsuchiya, M.; Imamura, L.; Koba-shi, K. Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives. Biol. Pharm. Bull., 1994, 17(10), 1329-1332.
[http://dx.doi.org/10.1248/bpb.17.1329] [PMID: 7874052]
[24]
Nagata, K.; Satoh, H.; Iwahi, T.; Shimoyama, T.; Tamura, T. Potent inhibitory action of the gastric proton pump inhibitor lansoprazole against urease activity of Helicobacter pylori: unique action selective for H. pylori cells. Antimicrob. Agents Chemother., 1993, 37(4), 769-774.
[http://dx.doi.org/10.1128/AAC.37.4.769] [PMID: 8494373]
[25]
Park, J.B.; Imamura, L.; Kobashi, K. Kinetic studies of Helicobacter pylori urease inhibition by a novel proton pump inhibitor, rabeprazole. Biol. Pharm. Bull., 1996, 19(2), 182-187.
[http://dx.doi.org/10.1248/bpb.19.182] [PMID: 8850302]
[26]
Kühler, T.C.; Fryklund, J.; Bergman, N.A.; Weilitz, J.; Lee, A.; Larsson, H. Structure-activity relationship of omeprazole and analogues as Helicobacter pylori urease inhibitors. J. Med. Chem., 1995, 38(25), 4906-4916.
[http://dx.doi.org/10.1021/jm00025a008] [PMID: 8523404]
[27]
Nazir, M.; Abbasi, M.A. Aziz-Ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Arif Lodhi, M.; Ali Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[28]
Ullah, H.; Rahim, F.; Taha, M.; Uddin, I.; Wadood, A.; Shah, S.A.A.; Farooq, R.K.; Nawaz, M.; Wahab, Z.; Khan, K.M. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorg. Chem., 2018, 78, 58-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.020] [PMID: 29533215]
[29]
Shah, S. Arshia; Kazmi, N.S.; Jabeen, A.; Faheem, A.; Dastagir, N.; Ahmed, T.; Khan, K.M.; Ahmed, S.; Raza, A.; Perveen, S. Diclofenac 1,3,4-oxadiazole derivatives: Biology-oriented drug synthesis (BIODS) in search of better non-steroidal, non-acid antiinflammatory agents. Med. Chem., 2018, 14(7), 674-687.
[http://dx.doi.org/10.2174/1573406414666180321141555] [PMID: 29564980]
[30]
Taha, M.; Ismail, N.H.; Imran, S.; Anouar, E.H.; Selvaraj, M.; Jamil, W.; Ali, M.; Kashif, S.M.; Rahim, F.; Khan, K.M.; Adenan, M.I. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. Eur. J. Med. Chem., 2017, 126, 1021-1033.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.019] [PMID: 28012342]
[31]
Taha, M.; Baharudin, M.S.; Ismail, N.H.; Selvaraj, M.; Salar, U.; Alkadi, K.A.A.; Khan, K.M. Synthesis and in silico stud-ies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors. Bioorg. Chem., 2017, 71, 86-96.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.015] [PMID: 28160943]
[32]
Akhtar, T.; Hameed, S.; Khan, K.M.; Khan, A.; Choudhary, M.I. Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-triazoles derived from mandelic acid. J. Enzyme Inhib. Med. Chem., 2010, 25(4), 572-576.
[http://dx.doi.org/10.3109/14756360903389864] [PMID: 20235688]
[33]
Ziyadanoğullari, B.; Topal, G.; Erdoğan, S.; Hamamci, C.; Hoşgoren, H. Effect of structural modifications of diaza-18-crown-6 on the extractability and selectivity of univalent met-al picrates. Talanta, 2001, 53(5), 1083-1087.
[http://dx.doi.org/10.1016/S0039-9140(00)00553-1] [PMID: 18968200]
[34]
Avaji, P.G.; Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Naga-raju, C. Synthesis, spectral characterization, in-vitro microbio-logical evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem., 2009, 44(9), 3552-3559.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.032] [PMID: 19419802]
[35]
Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.; Chang, J. I2-mediated oxidative C-O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem., 2013, 78(20), 10337-10343.
[http://dx.doi.org/10.1021/jo401751h] [PMID: 24059837]
[36]
Weatherburn, M.W. Phenol-hipochlorite reaction for determi-nation of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[http://dx.doi.org/10.1021/ac60252a045]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy