Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Molecular Descriptors and QSSR Models in Asymmetric Catalysis

Author(s): Xinliang Yu*

Volume 19, Issue 8, 2022

Published on: 28 March, 2022

Page: [933 - 938] Pages: 6

DOI: 10.2174/1570193X19666220301145748

Price: $65

Abstract

The 2021 Nobel Prize in Chemistry was awarded to small molecule asymmetric organocatalysis. Quantitative structure−selectivity relationships (QSSR) based on linear free energy relationships are crucial to predicting enantioselectivity in asymmetric catalytic reactions and to gaining insight into the catalytic mechanism. Molecular descriptors describing steric effects and/or electronic effects are described in this review. Subsequently, QSSR models in enantioselective catalysis are analyzed and prospected.

Keywords: Asymmetric catalysis, electronic parameters, linear free-energy relationship, quantitative structure−selectivity relationship, steric parameters, molecular descriptions.

Graphical Abstract

[1]
Reid, J.P.; Simón, L.; Goodman, J.M. A practical guide for predicting the stereochemistry of bifunctional phosphoric acid catalyzed reactions of imines. Acc. Chem. Res., 2016, 49(5), 1029-1041.
[http://dx.doi.org/10.1021/acs.accounts.6b00052] [PMID: 27128106]
[2]
Zhu, L.; Yuan, H.; Zhang, J. Enantioselective synthesis of chiral tetrasubstituted allenes: Harnessing electrostatic and noncovalent interactions in a bifunctional activation model for N-triflylphosphoramide catalysis. Org. Chem. Front., 2021, 8(7), 1510-1519.
[http://dx.doi.org/10.1039/D0QO01250E]
[3]
Zahrt, A.F.; Athavale, S.V.; Denmark, S.E. Quantitative structure-selectivity relationships in enantioselective catalysis: Past, present, and future. Chem. Rev., 2020, 120(3), 1620-1689.
[http://dx.doi.org/10.1021/acs.chemrev.9b00425] [PMID: 31886649]
[4]
Santiago, C.B.; Guo, J-Y.; Sigman, M.S. Predictive and mechanistic multivariate linear regression models for reaction development. Chem. Sci. (Camb.), 2018, 9(9), 2398-2412.
[http://dx.doi.org/10.1039/C7SC04679K] [PMID: 29719711]
[5]
Zhang, L.; Li, X.; Luo, S.Z.; Cheng, J.P. Linear free-energy relationships in asymmetric catalysis. Sci. Sin. Chim., 2016, 46(6), 535-550.
[http://dx.doi.org/10.1360/N032015-00240]
[6]
Taft, R.W., Jr Linear free energy relationships from rates of esterification and hydrolysis of aliphatic and ortho-substituted benzoate esters. J. Am. Chem. Soc., 1952, 74(11), 2729-2732.
[http://dx.doi.org/10.1021/ja01131a010]
[7]
Wu, J.H.; Zhang, G.; Porter, N.A. Substrate steric effects in enantioselective Lewis acid promoted free radical reactions. Tetrahedron Lett., 1997, 38(12), 2067-2070.
[http://dx.doi.org/10.1016/S0040-4039(97)00295-5]
[8]
Charton, M. Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. J. Am. Chem. Soc., 1975, 97(6), 1552-1556.
[http://dx.doi.org/10.1021/ja00839a047]
[9]
Miller, J.J.; Sigman, M.S. Quantitatively correlating the effect of ligand-substituent size in asymmetric catalysis using linear free energy relationships. Angew. Chem. Int. Ed. Engl., 2008, 47(4), 771-774.
[http://dx.doi.org/10.1002/anie.200704257] [PMID: 18069711]
[10]
Mantilli, L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet, C. Improved catalysts for the iridium-catalyzed asymmetric isomerization of primary allylic alcohols based on Charton analysis. Chemistry, 2010, 16(42), 12736-12745.
[http://dx.doi.org/10.1002/chem.201001311] [PMID: 20845413]
[11]
Sigman, M.S.; Miller, J.J. Examination of the role of Taft-type steric parameters in asymmetric catalysis. J. Org. Chem., 2009, 74(20), 7633-7643.
[http://dx.doi.org/10.1021/jo901698t] [PMID: 19813764]
[12]
Verloop, A.; Hoogenstraten, W.; Tipker, A. Development and application of new steric parameters in drug design.Drug Design; Ariens, E.J., Ed.; Academic Press: New York, 1976, Vol. 7, pp. 165-207.
[http://dx.doi.org/10.1016/B978-0-12-060307-7.50010-9]
[13]
Harper, K.C.; Bess, E.N.; Sigman, M.S. Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. Nat. Chem., 2012, 4(5), 366-374.
[http://dx.doi.org/10.1038/nchem.1297] [PMID: 22522256]
[14]
Picazo, E.; Houk, K.N.; Garg, N.K. Computational predictions of substituted benzyne and indolyne regioselectivities. Tetrahedron Lett., 2015, 56(23), 3511-3514.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.022] [PMID: 26034336]
[15]
Jacobsen, E.N.; Zhang, W.; Güler, M.L. Electronic tuning of asymmetric catalysts. J. Am. Chem. Soc., 1991, 113(17), 6703-6704.
[http://dx.doi.org/10.1021/ja00017a069]
[16]
Palucki, M.; Finney, N.S.; Pospisil, P.J.; Güler, M.L.; Ishida, T.; Jacobsen, E.N. The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J. Am. Chem. Soc., 1998, 120(5), 948-954.
[http://dx.doi.org/10.1021/ja973468j]
[17]
Alamé, M.; Jahjah, M.; Pellet-Rostaing, S.; Lemaire, M.; Meille, V.; Bellefon, C.D. 2,2'-Bis-[bis(4-substituted-phenyl)phosphino]-1,1'-binaphthyl derivatives in Rh(I)-catalyzed hydrogenation of acetamidoacrylic acid derivatives: Electronic affects. J. Mol. Catal. Chem., 2007, 271(1-2), 18-24.
[http://dx.doi.org/10.1016/j.molcata.2007.02.027]
[18]
Jensen, K.H.; Webb, J.D.; Sigman, M.S. Advancing the mechanistic understanding of an enantioselective palladium-catalyzed alkene difunctionalization reaction. J. Am. Chem. Soc., 2010, 132(49), 17471-17482.
[http://dx.doi.org/10.1021/ja108106h] [PMID: 21082845]
[19]
Akhani, R.K.; Moore, M.I.; Pribyl, J.G.; Wiskur, S.L. Linear free-energy relationship and rate study on a silylation-based kinetic resolution: Mechanistic insights. J. Org. Chem., 2014, 79(6), 2384-2396.
[http://dx.doi.org/10.1021/jo402569h] [PMID: 24559422]
[20]
Mulzer, M.; Lamb, J.R.; Nelson, Z.; Coates, G.W. Carbonylative enantioselective meso-desymmetrization of cis-epoxides to trans-β-lactones: Effect of salen-ligand electronic variation on enantioselectivity. Chem. Commun. (Camb.), 2014, 50(69), 9842-9845.
[http://dx.doi.org/10.1039/C4CC04397A] [PMID: 25020119]
[21]
Gormisky, P.E.; White, M.C. Catalyst-controlled aliphatic C-H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc., 2013, 135(38), 14052-14055.
[http://dx.doi.org/10.1021/ja407388y] [PMID: 24020940]
[22]
Zhang, C.; Santiago, C.B.; Crawford, J.M.; Sigman, M.S. Enantioselective dehydrogenative heck arylations of trisubstituted alkenes with indoles to construct quaternary stereocenters. J. Am. Chem. Soc., 2015, 137(50), 15668-15671.
[http://dx.doi.org/10.1021/jacs.5b11335] [PMID: 26624236]
[23]
Mei, T-S.; Werner, E.W.; Burckle, A.J.; Sigman, M.S. Enantioselective redox-relay oxidative heck arylations of acyclic alkenyl alcohols using boronic acids. J. Am. Chem. Soc., 2013, 135(18), 6830-6833.
[http://dx.doi.org/10.1021/ja402916z] [PMID: 23607624]
[24]
Engl, P.S.; Santiago, C.B.; Gordon, C.P.; Liao, W.C.; Fedorov, A.; Copéret, C.; Sigman, M.S.; Togni, A. Exploiting and understanding the selectivity of Ru-N-heterocyclic carbene metathesis catalysts for the ethenolysis of cyclic olefins to α,ω-dienes. J. Am. Chem. Soc., 2017, 139(37), 13117-13125.
[http://dx.doi.org/10.1021/jacs.7b06947] [PMID: 28820588]
[25]
Milo, A.; Bess, E.N.; Sigman, M.S. Interrogating selectivity in catalysis using molecular vibrations. Nature, 2014, 507(7491), 210-214.
[http://dx.doi.org/10.1038/nature13019] [PMID: 24622199]
[26]
Zhang, C.; Santiago, C.B.; Kou, L.; Sigman, M.S. Alkenyl carbonyl derivatives in enantioselective redox relay Heck reactions: Accessing α,β-unsaturated systems. J. Am. Chem. Soc., 2015, 137(23), 7290-7293.
[http://dx.doi.org/10.1021/jacs.5b04289] [PMID: 26030059]
[27]
Bess, E.N.; Bischoff, A.J.; Sigman, M.S. Designer substrate library for quantitative, predictive modeling of reaction performance. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14698-14703.
[http://dx.doi.org/10.1073/pnas.1409522111] [PMID: 25267648]
[28]
Wheeler, S.E.; Seguin, T.J.; Guan, Y.; Doney, A.C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res., 2016, 49(5), 1061-1069.
[http://dx.doi.org/10.1021/acs.accounts.6b00096] [PMID: 27110641]
[29]
Neel, A.J.; Hilton, M.J.; Sigman, M.S.; Toste, F.D. Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543(7647), 637-646.
[http://dx.doi.org/10.1038/nature21701] [PMID: 28358089]
[30]
Orlandi, M.; Coelho, J.A.S.; Hilton, M.J.; Toste, F.D.; Sigman, M.S. Parametrization of non-covalent interactions for transition state interrogation applied to asymmetric catalysis. J. Am. Chem. Soc., 2017, 139(20), 6803-6806.
[http://dx.doi.org/10.1021/jacs.7b02311] [PMID: 28475315]
[31]
Knowles, R.R.; Jacobsen, E.N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proc. Natl. Acad. Sci. USA, 2010, 107(48), 20678-20685.
[http://dx.doi.org/10.1073/pnas.1006402107] [PMID: 20956302]
[32]
Yang, C.; Zhang, E-G.; Li, X.; Cheng, J-P. Asymmetric conjugate addition of benzofuran-2-ones to alkyl 2-phthalimidoacrylates: Modeling structure-stereoselectivity relationships with steric and electronic parameters. Angew. Chem. Int. Ed. Engl., 2016, 55(22), 6506-6510.
[http://dx.doi.org/10.1002/anie.201601028] [PMID: 27080558]
[33]
Neel, A.J.; Milo, A.; Sigman, M.S.; Toste, F.D. Enantiodivergent fluorination of allylic alcohols: Data set design reveals structural interplay between achiral directing group and chiral anion. J. Am. Chem. Soc., 2016, 138(11), 3863-3875.
[http://dx.doi.org/10.1021/jacs.6b00356] [PMID: 26967114]
[34]
Yang, C.; Wang, J.; Liu, Y.; Ni, X.; Li, X.; Cheng, J-P. Study on the catalytic behavior of bifunctional hydrogen-bonding catalysts guided by free energy relationship analysis of steric parameters. Chemistry, 2017, 23(23), 5488-5497.
[http://dx.doi.org/10.1002/chem.201605666] [PMID: 28244165]
[35]
Biswas, S.; Kubota, K.; Orlandi, M.; Turberg, M.; Miles, D.H.; Sigman, M.S.; Toste, F.D. Enantioselective synthesis of N,S-Acetals by an oxidative pummerer-type transformation using phase-transfer catalysis. Angew. Chem. Int. Ed. Engl., 2018, 57(2), 589-593.
[http://dx.doi.org/10.1002/anie.201711277] [PMID: 29171138]
[36]
Crawford, J.M.; Stone, E.A.; Metrano, A.J.; Miller, S.J.; Sigman, M.S. Parameterization and analysis of peptide-based catalysts for the atroposelective bromination of 3-arylquinazolin-4(3H)-ones. J. Am. Chem. Soc., 2018, 140(3), 868-871.
[http://dx.doi.org/10.1021/jacs.7b11303] [PMID: 29300461]
[37]
Coelho, J.A.S.; Matsumoto, A.; Orlandi, M.; Hilton, M.J.; Sigman, M.S.; Toste, F.D. Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. Chem. Sci. (Camb.), 2018, 9(35), 7153-7158.
[http://dx.doi.org/10.1039/C8SC02223B] [PMID: 30310638]
[38]
Metsänen, T.T.; Lexa, K.W.; Santiago, C.B.; Chung, C.K.; Xu, Y.; Liu, Z.; Humphrey, G.R.; Ruck, R.T.; Sherer, E.C.; Sigman, M.S. Combining traditional 2D and modern physical organic-derived descriptors to predict enhanced enantioselectivity for the key aza-Michael conjugate addition in the synthesis of Prevymis™ (letermovir). Chem. Sci. (Camb.), 2018, 9(34), 6922-6927.
[http://dx.doi.org/10.1039/C8SC02089B] [PMID: 30210766]
[39]
Li, S-L.; Yang, C.; Wu, Q.; Zheng, H-L.; Li, X.; Cheng, J-P. Atroposelective catalytic asymmetric allylic alkylation reaction for axially chiral anilides with achiral morita-baylis-hillman carbonates. J. Am. Chem. Soc., 2018, 140(40), 12836-12843.
[http://dx.doi.org/10.1021/jacs.8b06014] [PMID: 30226765]
[40]
Kwon, Y.; Li, J.; Reid, J.P.; Crawford, J.M.; Jacob, R.; Sigman, M.S.; Toste, F.D.; Miller, S.J. Disparate catalytic scaffolds for atroposelective cyclodehydration. J. Am. Chem. Soc., 2019, 141(16), 6698-6705.
[http://dx.doi.org/10.1021/jacs.9b01911] [PMID: 30920223]
[41]
Wang, Y.; Zhou, H.; Yang, K.; You, C.; Zhang, L.; Luo, S. Steric effect of protonated tertiary amine in primary-tertiary diamine catalysis: A double-layered sterimol model. Org. Lett., 2019, 21(2), 407-411.
[http://dx.doi.org/10.1021/acs.orglett.8b03584] [PMID: 30589267]
[42]
Reid, J.P.; Proctor, R.S.J.; Sigman, M.S.; Phipps, R.J. Predictive multivariate linear regression analysis guides successful catalytic enantioselective minisci reactions of diazines. J. Am. Chem. Soc., 2019, 141(48), 19178-19185.
[http://dx.doi.org/10.1021/jacs.9b11658] [PMID: 31710210]
[43]
Reid, J.P.; Sigman, M.S. Holistic prediction of enantioselectivity in asymmetric catalysis. Nature, 2019, 571(7765), 343-348.
[http://dx.doi.org/10.1038/s41586-019-1384-z] [PMID: 31316193]
[44]
Dhayalan, V.; Gadekar, S.C.; Alassad, Z.; Milo, A. Unravelling mechanistic features of organocatalysis with in situ modifications at the secondary sphere. Nat. Chem., 2019, 11(6), 543-551.
[http://dx.doi.org/10.1038/s41557-019-0258-1] [PMID: 31086303]
[45]
Saint-Denis, T.G.; Lam, N.Y.S.; Chekshin, N.; Richardson, P.F.; Chen, J.S.; Elleraas, J.; Hesp, K.D.; Schmitt, D.C.; Lian, Y.; Huh, C.W.; Yu, J-Q. Mechanistic study of enantioselective Pd-catalyzed C(sp3)-H activation of thioethers involving two distinct stereomodels. ACS Catal., 2021, 11(15), 9738-9753.
[http://dx.doi.org/10.1021/acscatal.1c02808]
[46]
Zahrt, A.F.; Rinehart, N.I.; Denmark, S.E.A. Conformer-dependent, quantitative quadrant model. Eur. J. Org. Chem., 2021, 2021(17), 2343-2354.
[http://dx.doi.org/10.1002/ejoc.202100027]
[47]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[48]
Yu, X. Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models. Ecotoxicol. Environ. Saf., 2020, 190, 110146.
[http://dx.doi.org/10.1016/j.ecoenv.2019.110146] [PMID: 31923753]
[49]
Roy, K.; Ambure, P.; Aher, R.B. How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom. Intell. Lab. Syst., 2017, 162, 44-54.
[http://dx.doi.org/10.1016/j.chemolab.2017.01.010]
[50]
Yu, X. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata. Aquat. Toxicol., 2020, 224, 105496.
[http://dx.doi.org/10.1016/j.aquatox.2020.105496] [PMID: 32408003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy