Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Biheterocyclic Coumarins: A Simple Yet Versatile Resource for Futuristic Design and Applications in Bio-molecular and Material Chemistry

Author(s): Ashish Anand*, Netravati Khanapurmath, Manohar V. Kulkarni* and Tayur N. Guru Row*

Volume 26, Issue 5, 2022

Published on: 21 April, 2022

Page: [444 - 506] Pages: 63

DOI: 10.2174/1385272826666220301124149

Price: $65

Abstract

Coumarin derivatives occur widely in nature and are a part of both traditional and modern advancements in synthesis and application. To date, thousands of coumarin derivatives have been synthesized in lab or isolated from plant and marine life. These are essentially 2- pyrone core fused with a benzene ring and belong to the family of aromatic oxygen heterocycles. Coumarin in conjugation with various other heterocyclic systems has provided a robust framework for tuning the properties associated with the parent structure. The frequency of reports has increased for these biheterocyclic systems from the mid twentieth century. Biheterocyclic coumarins have also attracted the attention of many organic and pharmaceutical chemists as these systems serve as useful synthetic intermediates in the synthesis of analogs of existing drugs. Their application in the design of effective organocatalysts and chemosensors has further extended their versatility. Coumarin biheterocyclic core is utilized in the rational design and tuning of complex molecular entities in molecular recognition, analytical and material chemistry. This review highlights the advancements in the synthesis and applications of coumarin-linked nitrogen, oxygen, and sulfur heterocycles. It also provides an account of five-, six-, and seven-membered heterocyclic rings linked to coumarin core. Critical physicochemical properties coupled with their application will make this review useful for synthetic chemists and drug discovery labs. A comprehensive spectrum of literature in this review will facilitate further development of biheterocycles along with their promising applications in the future.

Keywords: Coumarin, biheterocycles, 2H-chromen-2-one, heterocycles, biomolecular and material chemistry, dyes, pigments, molecular sensors.

Graphical Abstract

[1]
Brugnatelli, L.V. Sur un acide nouveau obtenu en traitant l’acide urique par acide nitrique. Ann. Chim. Phys., 1818, 8(2), 201-204.
[2]
Döbereiner, J.W. Ueber die medicinische und chemische anwendung und die vortheilhafte darstellung der ameisensäure. Ann. der Pharm., 1832, 3(2), 141-146.
[http://dx.doi.org/10.1002/jlac.18320030206]
[3]
Wöhler, F.; Liebig, J. Untersuchungen über die natur der harnsäure. Ann. der Pharm., 1838, 26(3), 241-336.
[http://dx.doi.org/10.1002/jlac.18380260302]
[4]
Perkin, W.H. XXIX.—On some new bromine derivatives of coumarin. J. Chem. Soc., 1870, 23(0), 368-371.
[http://dx.doi.org/10.1039/JS8702300368]
[5]
Linda, W. Carbonitrile derivative is a promising compound for the treatment of cancer and immunological diseases., Available from: https://cen.acs.org/acs-news/programs/CAS-reaches-150-millionth-substance/97/web/2019/05
[6]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[7]
Buntrock, R.E. Review of heterocyclic chemistry, 5th edition. J. Chem. Educ., 2012, 89, (11), 1349-1350.
[http://dx.doi.org/10.1021/ed300616t]
[8]
Sabir, S.; Alhazza, M.I.; Ibrahim, A.A. A review on heterocyclic moieties and their applications. Catal. Sustain. Energy, 2016, (1), 99-115.
[http://dx.doi.org/10.1515/cse-2015-0009]
[9]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[10]
Cossy, J.; Guérinot, A. Chapter five - Natural products containing oxygen heterocycles—synthetic advances between 1990 and 2015. In: Heterocyclic Chemistry in the 21st Century; Scriven, E.F.V.; Ramsden, C.A.B.T.-A., Eds.; Academic Press, 2016, 119, pp. 107-142.
[http://dx.doi.org/10.1016/bs.aihch.2016.03.002]
[11]
Kharchenko, V.G.; Pchelintseva, N.V.; Markova, L.I.; Fedotova, O.V. Oxygen-containing heterocyclic compounds from 1,5-diketones. Chem. Heterocycl. Compd., 2000, 36(9), 1007-1025.
[http://dx.doi.org/10.1023/A:1002730329179]
[12]
Vogel, A. Darstellung von benzoesäure aus der tonka-bohne und aus den meliloten - oder steinklee - blumen. Ann. Phys., 1820, 64(2), 161-166.
[http://dx.doi.org/10.1002/andp.18200640205]
[13]
Vogel, A. De la feve de tonka. J. Pharm. (Cairo), 1820, 6, 305-309.
[14]
Kulkarni, M.V.; Kulkarni, G.M.; Lin, C-H.; Sun, C-M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13(23), 2795-2818.
[http://dx.doi.org/10.2174/092986706778521968] [PMID: 17073630]
[15]
Whitlon, D.S.; Sadowski, J.A.; Suttie, J.W. Mechanism of coumarin action: Significance of vitamin K epoxide reductase inhibition. Biochemistry, 1978, 17(8), 1371-1377.
[http://dx.doi.org/10.1021/bi00601a003] [PMID: 646989]
[16]
Li, J.; Zhang, C-F.; Yang, S-H.; Yang, W-C.; Yang, G-F. A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application. Anal. Chem., 2014, 86(6), 3037-3042.
[http://dx.doi.org/10.1021/ac403885n] [PMID: 24506518]
[17]
Guilet, D.; Séraphin, D.; Rondeau, D.; Richomme, P.; Bruneton, J. Cytotoxic coumarins from Calophyllum dispar. Phytochemistry, 2001, 58(4), 571-575.
[http://dx.doi.org/10.1016/S0031-9422(01)00285-0] [PMID: 11576600]
[18]
Koelsch, C.F. Bromination of 3-acetocoumarin. J. Am. Chem. Soc., 1950, 72(7), 2993-2995.
[http://dx.doi.org/10.1021/ja01163a053]
[19]
Czerney, P.; Hartmann, H. 3-α-bromacetyl-cumarine als synthesebausteine für heterocyclisch substituierte cumarine. J. Prakt. Chem., 1983, 325(4), 551-560.
[http://dx.doi.org/10.1002/prac.19833250405]
[20]
Rao, V.R.; Rao, M.S.; Rao, T.V.P. A novel synthesis of thiazolyl, imidazthiazolyl, and thiadiazinyl-2H-1-benzopyran-2-ones. Collect. Czech. Chem. Commun., 1986, 51(10), 2214.
[http://dx.doi.org/10.1135/cccc19862214]
[21]
Nourmohammadian, F.; Norozy, S. Application of non-corrosive acids in three-component, one-pot synthesis of commercial coumarin dye. Prog. Color Color. Coat., 2010, 3, 102.
[22]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[23]
Jones, G.; Jimenez, J.A.C. Intramolecular photoinduced electron transfer for cations derived from azole-substituted coumarin dyes. Tetrahedron Lett., 1999, 40(49), 8551-8555.
[http://dx.doi.org/10.1016/S0040-4039(99)01827-4]
[24]
Zhu, X.; Lin, Q.; Chen, P.; Fu, Y-P.; Zhang, Y-M.; Wei, T-B. A novel pH sensor which could respond to multi-scale pH changes via different fluorescence emissions. New J. Chem., 2016, 40(5), 4562-4565.
[http://dx.doi.org/10.1039/C5NJ03114A]
[25]
Bhagwat, A.A.; Avhad, K.C.; Patil, D.S.; Sekar, N. Design and synthesis of coumarin-imidazole hybrid chromophores: Solvatochromism, acidochromism and nonlinear optical properties. Photochem. Photobiol., 2019, 95(3), 740-754.
[http://dx.doi.org/10.1111/php.13024] [PMID: 30267570]
[26]
Roubinet, B.; Chevalier, A.; Renard, P-Y.; Romieu, A. A synthetic route to 3-(heteroaryl)-7-hydroxycoumarins designed for biosensing applications. European J. Org. Chem., 2015, 2015(1), 166-182.
[http://dx.doi.org/10.1002/ejoc.201403215]
[27]
Ridley, H.F.; Spickett, R.G.W.; Timmis, G.M. A new synthesis of benzimidazoles and aza-analogs. J. Heterocycl. Chem., 1965, 2(4), 453-456.
[http://dx.doi.org/10.1002/jhet.5570020424]
[28]
Arienti, K.L.; Brunmark, A.; Axe, F.U.; McClure, K.; Lee, A.; Blevitt, J.; Neff, D.K.; Huang, L.; Crawford, S.; Pandit, C.R.; Karlsson, L.; Breitenbucher, J.G. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J. Med. Chem., 2005, 48(6), 1873-1885.
[http://dx.doi.org/10.1021/jm0495935] [PMID: 15771432]
[29]
Betti, M.; Castagnoli, G.; Panico, A.; Sanna Coccone, S.; Wiedenau, P. Development of a scalable route to the SMO receptor antagonist SEN794. Org. Process Res. Dev., 2012, 16(11), 1739-1745.
[http://dx.doi.org/10.1021/op300170q]
[30]
Aydiner, B.; Seferoglu, Z. Proton sensitive functional organic fluorescent dyes based on coumarin-imidazo[1,2-a]pyrimidine; syntheses, photophysical properties, and investigation of protonation ability. Eur. J. Org. Chem., 2018, 2018(43), 5921-5934.
[http://dx.doi.org/10.1002/ejoc.201800594]
[31]
Gudasi, K.B.; Goudar, T.R.; Kulkarni, M.V. Studies on lanthanide(iii) complexes with 2-(3-coumarinyl)imidazo[1, 2-a] pyridine. Indian J. Chem., 2004, 43A(7), 1459.
[32]
Kumbar, M.N.; Kamble, R.R.; Kamble, A.A.; Salian, S.R.; Kumari, S.; Nair, R.; Kalthur, G.; Adiga, S.K.; Prasad, D.J. Design and microwave assisted synthesis of couma-rin derivatives as PDE inhibitors. Int. J. Med. Chem., 2016, 2016, 9890630.
[http://dx.doi.org/10.1155/2016/9890630] [PMID: 26998358]
[33]
Hantzsch, A.; Weber, J.H. Ueber verbindungen des thiazols (pyridins der thiophenreihe). Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[34]
Williams, R.R.; Cline, J.K. Synthesis of vitamin B1. J. Am. Chem. Soc., 1936, 58(8), 1504-1505.
[http://dx.doi.org/10.1021/ja01299a505]
[35]
Popp, F.D.; McEwen, W.E. Polyphosphoric acids as a reagent in organic chemistry. Chem. Rev., 1958, 58(2), 321-401.
[http://dx.doi.org/10.1021/cr50020a004]
[36]
Vardhan, V.A.; Kumar, V.R.; Rao, V.R. Condensation of 3-methyl / ethyl-5-mercapto-S-triazolo with 3-acetylcoumarin and its derivatives. Indian J. Chem., 1999, 38B(1), 18.
[37]
Mohareb, R.M.; Shams, H.Z.; Aziz, S.I. Novel synthesis of coumarin-3-yl-1,3-thiazole, 2-(coumarin- 3-carbonyl)-thieno[2,3-b]pyridine and 2-(coumarin-3-carbonyl)- thiophene derivatives. J. Chem. Res., 1992, 154, 1132.
[http://dx.doi.org/10.1002/chin.199238159]
[38]
Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives. Chem. Cent. J., 2012, 6(1), 32.
[http://dx.doi.org/10.1186/1752-153X-6-32] [PMID: 22510146]
[39]
Zhuravel, I.O.; Kovalenko, S.M.; Vlasov, S.V.; Chernykh, V.P. Solution-phase synthesis of a combinatorial library of 3-[4-(coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acid amides. Molecules, 2005, 10(2), 444-456.
[http://dx.doi.org/10.3390/10020444] [PMID: 18007316]
[40]
Veerabhadraiah, U.; Rao, V.R.; Rao, T.V.P. Reaction of mercaptoacetic acid and chloroacetyl chloride with benzalamino thiazolyl coumarins. Collect. Czech. Chem. Commun., 1990, 55, 535-539.
[http://dx.doi.org/10.1135/cccc19900535]
[41]
Pavurala, S.; Vedula, R.R. Synthesis of 3-(2-(4,5-dihydro-3,5-diphenylpyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-one derivatives via multicomponent approach. Synth. Commun., 2014, 44(5), 583-588.
[http://dx.doi.org/10.1080/00397911.2013.796522]
[42]
Rao, V.R.; Rao, T.V.P. A facile one pot synthesis of pyrazolothiazoles. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1994, 33B, 470.
[43]
Ramagiri, R.K.; Vedula, R.R. Synthesis of 3-(2-(4-chlorophenylimino)-3-(4-chlorophenyl)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one via multicomponent approach. Synth. Commun., 2014, 44(9), 1301-1306.
[http://dx.doi.org/10.1080/00397911.2013.854915]
[44]
Kumar, V.R.; Rao, V.R. Synthesis of 3-(1,2,3-thiadiazol-4-yl) and 3-(6-hydroxythiazolo [3,2-a] benzimidazol-3-yl) coumarins. Phosphorus Sulfur Silicon Relat. Elem., 1997, 130(1), 185-191.
[http://dx.doi.org/10.1080/10426509708033708]
[45]
Rao, V.R.; Reddy, M.M. A facile one step synthesis of 3-(2-hydroxy benzalhydrazino-4-thiazolyl)coumarins under solvent free conditions and their biological activity. Indian J. Heterocycl. Chem., 2003, 13B, 69.
[46]
Rao, V.R.; Rao, G.M.; Kumar, V.R.; Vardhan, V.A. Synthesis of some new types of thiazolyl coumarins. Phosphorus Sulfur Silicon Relat. Elem., 1996, 113(1-4), 47-51.
[http://dx.doi.org/10.1080/10426509608046376]
[47]
Penta, S.; Vedula, R.R. An efficient improved one-pot synthesis of thiazolo[2,3-c][1,2,4]triazol-5-yl)-2H-chromen-2-one derivatives via multi-component approach. Indian J. Chem. - Sect. B Org. Med. Chem., 2014, 53B, 115.
[48]
Gouda, M.A.; Berghot, M.A.; Baz, E.A.; Hamama, W.S. Synthesis, Antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety. Med. Chem. Res., 2012, 21(7), 1062-1070.
[http://dx.doi.org/10.1007/s00044-011-9610-8]
[49]
Min, M.; Kim, B.; Hong, S. Direct C-H cross-coupling approach to heteroaryl coumarins. Org. Biomol. Chem., 2012, 10(13), 2692-2698.
[http://dx.doi.org/10.1039/c2ob07137a] [PMID: 22354061]
[50]
Kulyk, K.; Ishchenko, V.; Palyanytsya, B.; Khylya, V.; Borysenko, M.; Kulyk, T. A TPD-MS study of the interaction of coumarins and their heterocyclic derivatives with a surface of fumed silica and nanosized oxides CeO2/SiO2, TiO2/SiO2, Al2O3/SiO2. J. Mass Spectrom., 2010, 45(7), 750-761.
[http://dx.doi.org/10.1002/jms.1765] [PMID: 20533505]
[51]
Srimanth, K.; Rao, V.R. Synthesis of some new type of thiazolyl coumarins. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1999, 38B, 473.
[52]
Vardhan, V.A.; Rao, V.R. Photohalogenation of 3-acetylcoumarins: Facile synthesis of 3-(2-amino-4-thiazolyl)coumarins and their conversion into 3-(2,5-dimethylpyrrol-1-yl)thiazol-4-yl)coumarins. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1997, 36B, 1085.
[53]
Park, S.; Kim, H-J. Highly selective chemodosimeter for cyanide based on a doubly activated michael acceptor type of coumarin thiazole fluorophore. Sens. Actuators B Chem., 2012, 161(1), 317-321.
[http://dx.doi.org/10.1016/j.snb.2011.10.038]
[54]
Şahin, Ö.; Özdemir, Ü.Ö.; Seferoğlu, N.; Aydıner, B.; Sarı, M.; Tunç, T.; Seferoğlu, Z. A highly selective and sensitive chemosensor derived coumarin- thiazole for colorimetric and fluorimetric detection of CN− ion in DMSO and aqueous solution: synthesis, sensing ability, Pd(II)/Pt(II) complexes and theoretical studies. Tetrahedron, 2016, 72(39), 5843-5852.
[http://dx.doi.org/10.1016/j.tet.2016.08.004]
[55]
Jiao, S.; Wang, X.; Sun, Y.; Zhang, L.; Sun, W.; Sun, Y.; Wang, X.; Ma, P.; Song, D. A novel fluorescein-coumarin-based fluorescent probe for fluoride ions and its appli-cations in imaging of living cells and zebrafish in vivo. Sens. Actuators B Chem., 2018, 262, 188-194.
[http://dx.doi.org/10.1016/j.snb.2018.01.186]
[56]
Razi, S.S.; Srivastava, P.; Ali, R.; Gupta, R.C.; Dwivedi, S.K.; Misra, A. A coumarin-derived useful scaffold exhibiting Cu2+ induced fluorescence quenching and fluoride sensing (on-off-on) via copper displacement approach. Sens. Actuators B Chem., 2015, 209, 162-171.
[http://dx.doi.org/10.1016/j.snb.2014.11.082]
[57]
Padhan, S.K.; Podh, M.B.; Sahu, P.K.; Sahu, S.N. Optical discrimination of fluoride and cyanide ions by coumarin-salicylidene based chromofluorescent probes in organ-ic and aqueous medium. Sens. Actuators B Chem., 2018, 255, 1376-1390.
[http://dx.doi.org/10.1016/j.snb.2017.08.133]
[58]
Li, J.; Zeng, Y.; Hu, Q.; Yu, X.; Guo, J.; Pan, Z. A fluorescence “turn-on” chemodosimeter for Cu2+ in aqueous solution based on the ion promoted oxidation. Dalton Trans., 2012, 41(13), 3623-3626.
[http://dx.doi.org/10.1039/c2dt12497a] [PMID: 22358460]
[59]
Tan, W.; Leng, T.; Lai, G.; Li, Z.; Wang, K.; Shen, Y.; Wang, C. A novel coumarin-based fluorescence enhancement and colorimetric probe for Cu2+ via selective hydroly-sis reaction. J. Photochem. Photobiol. Chem., 2016, 324, 81-86.
[http://dx.doi.org/10.1016/j.jphotochem.2016.03.014]
[60]
Mubarok, A.Z.; Lin, S-T.; Mani, V.; Huang, C-H.; Huang, S-T. Design of controlled multi-probe coupled assay via bioinspired signal amplification approach for mercury detection. RSC Adv., 2016, 6(63), 58485-58492.
[http://dx.doi.org/10.1039/C6RA11735J]
[61]
Yang, L.; Wang, C.; Chang, G.; Ren, X. Facile synthesis of new coumarin-based colorimetric and fluorescent chemosensors: highly efficient and selective detection of Pd2+ in aqueous solutions. Sens. Actuators B Chem., 2017, 240, 212-219.
[http://dx.doi.org/10.1016/j.snb.2016.08.132]
[62]
Ezeh, V.C.; Harrop, T.C. A sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media. Inorg. Chem., 2012, 51(3), 1213-1215.
[http://dx.doi.org/10.1021/ic2023715] [PMID: 22260373]
[63]
Ezeh, V.C.; Harrop, T.C. Synthesis and properties of arsenic(III)-reactive coumarin-appended benzothiazolines: A new approach for inorganic arsenic detection. Inorg. Chem., 2013, 52(5), 2323-2334.
[http://dx.doi.org/10.1021/ic301730z] [PMID: 23421428]
[64]
Cui, J.; Zhang, T.; Sun, Y-Q.; Li, D-P.; Liu, J-T.; Zhao, B-X. A highly sensitive and selective fluorescent probe for H2S detection with large fluorescence enhancement. Sens. Actuators B Chem., 2016, 232, 705-711.
[http://dx.doi.org/10.1016/j.snb.2016.04.025]
[65]
Manibalan, K.; Chen, S-M.; Mani, V.; Huang, T-T.; Huang, S-T. A sensitive ratiometric long-wavelength fluorescent probe for selective determination of cyste-ine/homocysteine. J. Fluoresc., 2016, 26(4), 1489-1495.
[http://dx.doi.org/10.1007/s10895-016-1844-x] [PMID: 27290640]
[66]
Yang, J.; Yu, Y.; Wang, B.; Jiang, Y. A sensitive fluorescent probe based on coumarin for detection of cysteine in living cells. J. Photochem. Photobiol. Chem., 2017, 338.
[http://dx.doi.org/10.1016/j.jphotochem.2017.02.008]
[67]
Kendall, J.D.; Duflin, G.F.; Waddington, H.R.J. British Patent. 1961, 862, 825.
[68]
Ishikawa, S. Jpn. Kokai Tokkya Koho JP, 1987, 6197, 650.
[69]
Mashraqui, S.H. Mistry, H.; Sundaram, S. π-Aryl/heteroaryl conjugated coumarin-thiazoles: synthesis, optical spectral and nonlinear optic properties. J. Heterocycl. Chem., 2006, 43(4), 917-923.
[http://dx.doi.org/10.1002/jhet.5570430416]
[70]
Mariappan, A.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. A facile one pot synthesis of thiazolo[3,2-a]benzimidazole and pyran fused polyheterocyclic scaf-folds. Org. Biomol. Chem., 2019, 17(17), 4196-4199.
[http://dx.doi.org/10.1039/C9OB00300B] [PMID: 30931471]
[71]
El’chaninov, M.M.; Aleksandrov, A.A. Fusion of 2-(furan-2-yl)thiazole to 1-methyl-1h-benzimidazole. Russ. J. Org. Chem., 2017, 53(4), 547-549.
[http://dx.doi.org/10.1134/S1070428017040078]
[72]
Kulkarni, M.V.; Patil, V.D.; Biradar, V.N.; Nanjappa, S. Synthesis and bioligical properties of some 3-heterocyclic substituted coumarins. Arch. Pharm. (Weinheim), 1981, 314(5), 435-439.
[http://dx.doi.org/10.1002/ardp.19813140511] [PMID: 7247652]
[73]
Ravinder, P.; Rao, V.R.; Rao, T.V.P. Synthesis of new type of pyrazolothiazoles. Collect. Czech. Chem. Commun., 1988, 53(2), 336.
[http://dx.doi.org/10.1135/cccc19880336]
[74]
Anusevicius, K.; Jonuškiene I.; Sapijanskaite B.; Kantminiene K.; Mickevicius, V. Synthesis and antibacterial activity of new N-substituted 7-amino-4-methyl-2H-chromen-2-ones. Res. Chem. Intermed., 2016, 42(9), 6975-6990.
[http://dx.doi.org/10.1007/s11164-016-2510-2]
[75]
Chunduru, V.S.R.; Rao, R.V. One pot synthesis of 3-[2-(arylamino)thiazol-4-yl]coumarins in a three-component synthesis and a catalyst and solvent-free synthesis on grinding. J. Chem. Res., 2010, 34(1), 50-53.
[http://dx.doi.org/10.3184/030823410X12627991159610]
[76]
Kini, D.; Ghate, M. Synthesis and oral hypoglycemic activity of 3-[5′- methyl-2′-aryl-3′-(thiazol-2˝-yl amino) thiazolidin-4′-one]coumarin derivatives. J. Chem., 2011, 8, 258680.
[http://dx.doi.org/10.1155/2011/258680]
[77]
Siddiqui, N.; Arshad, M.F.; Khan, S.A. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol. Pharm., 2009, 66(2), 161-167.
[PMID: 19719050]
[78]
Bhusal, R.P.; Cho, P.Y.; Kim, S.A.; Park, H.; Kim, H.S. Synthesis of green emitting coumarin bioconjugate for the selective determination of flu antigen. Bull. Korean Chem. Soc., 2011, 32, 1461.
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1461]
[79]
Aggarwal, R.; Kumar, S.; Kaushik, P.; Kaushik, D.; Gupta, G.K. Synthesis and pharmacological evaluation of some novel 2-(5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-yl)-4-(coumarin-3-yl)thiazoles. Eur. J. Med. Chem., 2013, 62, 508-514.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.046] [PMID: 23416192]
[80]
Soto-Ortega, D.D.; Murphy, B.P.; Gonzalez-Velasquez, F.J.; Wilson, K.A.; Xie, F.; Wang, Q.; Moss, M.A. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., 2011, 19(8), 2596-2602.
[http://dx.doi.org/10.1016/j.bmc.2011.03.010] [PMID: 21458277]
[81]
Arshad, A.; Osman, H.; Bagley, M.C.; Lam, C.K.; Mohamad, S.; Zahariluddin, A.S.M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem., 2011, 46(9), 3788-3794.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.044] [PMID: 21712145]
[82]
Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, R.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2007, 42(10), 1272-1276.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.023] [PMID: 17337096]
[83]
Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Bizzarri, B. Synthesis and biological evaluation of novel conjugated coumarin-thiazole systems. J. Heterocycl. Chem., 2009, 46(3), 575-578.
[http://dx.doi.org/10.1002/jhet.110]
[84]
Vaarla, K.; Kesharwani, R.K.; Santosh, K.; Vedula, R.R.; Kotamraju, S.; Toopurani, M.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett., 2015, 25(24), 5797-5803.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.042] [PMID: 26542964]
[85]
Hamama, W.S.; Berghot, M.A.; Baz, E.A.; Gouda, M.A. Synthesis and antioxidant evaluation of some new 3-substituted coumarins. Arch. Pharm. (Weinheim), 2011, 344(11), 710-718.
[http://dx.doi.org/10.1002/ardp.201000263] [PMID: 21954015]
[86]
Gali, R.; Banothu, J.; Bavantula, R. One-pot multicomponent synthesis of novel substituted imidazo[1,2-a]pyridine incorporated thiazolyl coumarins and their antimi-crobial activity. J. Heterocycl. Chem., 2015, 52(3), 641-646.
[http://dx.doi.org/10.1002/jhet.2116]
[87]
Shaikh, S.K.; Sannaikar, M.S.; Kumbar, M.; Bayannavar, P.; Kamble, R.; Inamdar, S.; Joshi, S. Microwave-expedited green synthesis, photophysical, computational stud-ies of coumarin-3-yl-thiazol-3-yl-1,2,4-triazolin-3-ones and their anticancer activity. ChemistrySelect, 2018, 3, 4448-4462.
[http://dx.doi.org/10.1002/slct.201702596]
[88]
Vaarla, K.; Karnewar, S.; Panuganti, D.; Peddi, S.R.; Vedula, R.R.; Manga, V.; Kotamraju, S. 3-(2-(5-Amino-3-aryl-1h-pyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-ones as potential anticancer agents: Synthesis, anticancer activity evaluation and molecular docking studies. ChemistrySelect, 2019, 4(14), 4324-4330.
[http://dx.doi.org/10.1002/slct.201900077]
[89]
Desai, J.T.; Desai, C.K.; Desai, K.R. A convenient, rapid and eco-friendly synthesis of isoxazoline heterocyclic moiety containing bridge at 2°-amine as potential phar-macological agent. J. Iran. Chem. Soc., 2008, 5(1), 67-73.
[http://dx.doi.org/10.1007/BF03245817]
[90]
Panigrahi, A.K.; Raut, M.K. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32, 285-297.
[http://dx.doi.org/10.1080/14756366.2016.1250753]
[91]
Hanmantgad, S.S.; Kulkarni, M.V.; Patil, V.D. Biomimetic thiazolyl coumarins. Natl. Acad. Sci. Lett., 1984, 7(3), 77.
[92]
Venugopala, K.; Jayashree, B. Synthesis of carboxamides of 2′-amino-4′-(6-bromo-3-coumarinyl) thiazole as analgesic and antiinflammatory agents. Indian J. Heterocycl. Chem., 2003, 12, 307-310.
[93]
Jayashree, B.D.A.; Venugopala, K. Synthesis and characterization of schiff bases of 2′-amino-4′-(6-chloro-3-coumarinyl)thiazole as potential NSAIDs. Asian J. Chem., 2005, 17, 2093-2097.
[94]
Hu, Y.; Li, C-Y.; Wang, X-M.; Yang, Y-H.; Zhu, H-L. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[95]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[96]
Serban, G.; Stanasel, O.; Serban, E.; Bota, S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des. Devel. Ther., 2018, 12, 1545-1566.
[http://dx.doi.org/10.2147/DDDT.S155958] [PMID: 29910602]
[97]
Sharma, B.; Verma, A.; Prajapati, S.; Sharma, U.K. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles. Int. J. Med. Chem., 2013, 2013, 348948.
[http://dx.doi.org/10.1155/2013/348948] [PMID: 25405032]
[98]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[99]
Sowellum, S.Z.A.; Khodeir, M.N.M.; El-Amin, S.M.; Elagamey, A.A. Novel synthesis of thiadiazolo(2,3-a)pyridine derivatives. Pharmazie, 1988, 43(8), 533.
[http://dx.doi.org/10.1002/chin.198906091]
[100]
Claussen, O.; Beck, G.; Seng, F. Ger. Offen., 1994, 4(240), 168.
[101]
Sharma, A.; Satish, G.; Penta, S. A facile synthesis of aryl-substituted hydrazono-pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4][thiadiazol]-coumarin derivatives. J. Heterocycl. Chem., 2016, 53(4), 1086-1090.
[http://dx.doi.org/10.1002/jhet.2362]
[102]
Knorr, L. Einwirkung von acetessigester auf phenylhydrazin. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2597-2599.
[http://dx.doi.org/10.1002/cber.188301602194]
[103]
Pechmann, H. Pyrazol aus acetylen und diazomethan. Berichte der Dtsch. Chem. Gesellschaft, 1898, 31(3), 2950-2951.
[http://dx.doi.org/10.1002/cber.188301602194]
[104]
Brian, P.W.; Petty, J.H.; Richmond, P.T. Extended dormancy of deciduous woody plants treated in autumn with gibberellic acid. Nature, 1959, 184, 69.
[http://dx.doi.org/10.1038/184069a0] [PMID: 13804343]
[105]
Ansari, A.; Ali, A.; Asif, M. Shamsuzzaman. Review: biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[106]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[107]
Ibrahim, T.; Zdravco, G. Anodic oxidation of 1,5-diphenyl -dihydropyrazole. Glas. Hem. Drus. Beogr., 1982, 47, 339.
[108]
Patel, M.A.; Brahmbhatt, D.I. Synthesis of some oxazolyl - pyrazolyl; 1,4-dihydropyridinyl-pyrazolyl and 1,2,3,4-tetrahydro pyrimidinyl-pyrazolyl coumarins. J. Heterocycl. Chem., 2008, 45(4), 1051-1055.
[http://dx.doi.org/10.1002/jhet.5570450416]
[109]
Abdelhafez, O.M.; Amin, K.M.; Batran, R.Z.; Maher, T.J.; Nada, S.A.; Sethumadhavan, S. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., 2010, 18(10), 3371-3378.
[http://dx.doi.org/10.1016/j.bmc.2010.04.009] [PMID: 20435480]
[110]
Singh, S.K.; Kumar, N.; Malhotra, S.; Bisht, K.S.; Parmar, V.S.; Errington, W. 3-[3-(4-Bromophenyl)-1-phenylpyrazol-5-yl]-2H-1-benzopyran-2-one. Acta Crystallogr. A, 1995, C51(11), 2406.
[111]
Taydakov, I.V.; Akkuzina, A.A.; Avetisov, R.I.; Khomyakov, A.V.; Saifutyarov, R.R.; Avetissov, I.C. Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J. Lumin., 2016, 177, 31-39.
[http://dx.doi.org/10.1016/j.jlumin.2016.04.017]
[112]
Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Arof, A.K. Influence of pyrazole on the photovoltaic performance of dye-sensitized solar cell with polyvinylidene fluoride polymer electrolytes. Ionics (Kiel), 2016, 22(3), 425-433.
[http://dx.doi.org/10.1007/s11581-015-1564-2]
[113]
Gondek, E. Photovoltaic solar cells based on pyrazole derivative. Mater. Lett., 2013, 112, 94-96.
[http://dx.doi.org/10.1016/j.matlet.2013.08.128]
[114]
Rizk, H.F.; El-Badawi, M.A.; Ibrahim, S.A.; El-Borai, M.A. Synthesis of some novel heterocyclic dyes derived from pyrazole derivatives. Arab. J. Chem., 2011, 4(1), 37-44.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.012]
[115]
Hirsch, B.; Hoefgen, E. Ger. Pat. DD226890, 1985.
[116]
Peter, C.; Horst, H.E. Ger. Pat. DD153122, 1984.
[117]
Juergen, R.H.; Horst, H.E. Ger. Pat. DD287719, 1992.
[118]
Alkis M.; Pekyilmaz, D.; Yalçin, E.; Aydiner, B.; Dede, Y.; Seferoglu, Z. H-Bond stabilization of a tautomeric coumarin-pyrazole-pyridine triad generates a PET driven, reversible and reusable fluorescent chemosensor for anion detection. Dyes Pigments, 2017, 141, 493-500.
[http://dx.doi.org/10.1016/j.dyepig.2017.03.011]
[119]
Babür, B. Seferoglu, N.; Seferoglu, Z. A Ratiometric fluorescence chemosensor based on a coumarin-pyrazolone hybrid: the synthesis and an investigation of the photo-physical, tautomeric and anion binding properties by spectroscopic techniques and DFT calculations. Tetrahedron Lett., 2015, 56(17), 2149-2154.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.014]
[120]
Babür, B. Seferoglu, N.; Öcal, M.; Sonugur, G.; Akbulut, H.; Seferoglu, Z. A novel fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol detection. Tetrahedron, 2016, 72(30), 4498-4502.
[http://dx.doi.org/10.1016/j.tet.2016.06.008]
[121]
Dai, X.; Zhang, T.; Liu, Y-Z.; Yan, T.; Li, Y.; Miao, J-Y.; Zhao, B-X. A ratiometric fluorescent probe for cysteine and its application in living cells. Sens. Actuators B Chem., 2015, 207, 872-877.
[http://dx.doi.org/10.1016/j.snb.2014.10.082]
[122]
Traven, V.F.; Cheptsov, D.A.; Mamirgova, Z.Z.; Solovjova, N.P.; Martynenko, V.M.; Dolotov, S.M.; Krayushkin, M.M.; Ivanov, I.V. Photolysis of 3-(1-acyl-5-aryl-3-pyrazolinyl)coumarins-Effective Fluorescence Decay. Photochem. Photobiol., 2020, 96(4), 798-804.
[http://dx.doi.org/10.1111/php.13211] [PMID: 31900923]
[123]
Kumbar, M.N.; Sannaikar, M.S.; Shaikh, S.K.J.; Kamble, A.A.; Wari, M.N.; Inamdar, S.R.; Qiao, Q.; Revanna, B.N.; Madegowda, M.; Dasappa, J.P.; Kamble, R.R. Synthe-sis, photophysical and computational study of novel coumarin-based organic dyes. Photochem. Photobiol., 2018, 94(2), 261-276.
[http://dx.doi.org/10.1111/php.12852] [PMID: 29105763]
[124]
Jain, A.; Gupta, R.; Agarwal, M. Instantaneous and selective bare eye detection of inorganic fluoride ion by coumarin-pyrazole-based receptors. J. Heterocycl. Chem., 2017, 54(5), 2808-2816.
[http://dx.doi.org/10.1002/jhet.2884]
[125]
Xu, Z.; Gao, C.; Ren, Q-C.; Song, X-F.; Feng, L-S.; Lv, Z-S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[126]
Jadhav, S.B.; Fatema, S.; Sanap, G.; Farooqui, M. Antitubercular activity and synergistic study of novel pyrazole derivatives. J. Heterocycl. Chem., 2018, 55(7), 1634-1644.
[http://dx.doi.org/10.1002/jhet.3198]
[127]
Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[128]
Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of pyrazole derivatives possessing anticancer activity: Current status. Synth. Commun., 2014, 44(11), 1521-1578.
[http://dx.doi.org/10.1080/00397911.2013.828757]
[129]
Mohamed, A.M.; El-Sayed, W.A.; Alsharari, M.A.; Al-Qalawi, H.R.M.; Germoush, M.O. Anticancer activities of some newly synthesized pyrazole and pyrimidine deriv-atives. Arch. Pharm. Res., 2013, 36(9), 1055-1065.
[http://dx.doi.org/10.1007/s12272-013-0163-x] [PMID: 23737106]
[130]
El-Deen, I.M. Use of 3-(2′-formyl-1′-chlorovinyl)coumarin in the syntheses of pyrazol, salicylaldazine and pyrimidine derivatives. Chin. J. Chem., 1999, 17(4), 391-397.
[http://dx.doi.org/10.1002/cjoc.19990170412]
[131]
Akhlaq, W.; Khan, S.A. Indian J. Heterocycl. Chem., 2001, 11(1), 59.
[132]
Ibrahim, T.; Vladimir, R. J. Serb. Chem. Soc., 1987, 52, 3.
[133]
Desai, J.; Nair, K.B.; Misra, A.N. Indian J. Heterocycl. Chem., 2001, 10, 261.
[134]
Trkovnik, M.; Kules, M.; Lacan, M.; Bobarevic, B. Synthesis of heterocyclic compounds with 3-acetoacetyl-4-hydroxy-coumarin. Z.Naturforsch Tl. B., 1974, 29, 580.
[135]
Raza, A.; Saeed, A.; Ibrar, A.; Muddassar, M.; Khan, A.A.; Iqbal, J. Pharmacological evaluation and docking studies of 3-thiadiazolyl- and thioxo-1,2,4-triazolylcoumarin derivatives as cholinesterase inhibitors. ISRN Pharmacol., 2012, 2012, 707932.
[http://dx.doi.org/10.5402/2012/707932] [PMID: 22966467]
[136]
Kenchappa, R.; Bodke, Y.D.; Chandrashekar, A.; Aruna Sindhe, M.; Peethambar, S.K. Synthesis of coumarin derivatives containing pyrazole and indenone rings as potent antioxidant and antihyperglycemic agents. Arab. J. Chem., 2017, 10, S3895-S3906.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.029]
[137]
Whitt, J.; Duke, C.; Sumlin, A.; Chambers, S.A.; Alnufaie, R.; Gilmore, D.; Fite, T.; Basnakian, A.G.; Alam, M.A. Synthesis of hydrazone derivatives of 4-[4-formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as potent growth inhibitors of antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules, 2019, 24(11), E2051.
[http://dx.doi.org/10.3390/molecules24112051] [PMID: 31146470]
[138]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[139]
Naik, C.G.; Malik, G.M.; Parekh, H.M. Novel coumarin derivatives: Synthesis, characterization and antimicrobial activity. S. Afr. J. Chem., 2019, 72, 248-252.
[http://dx.doi.org/10.17159/0379-4350/2019/v72a32]
[140]
Mulwad, V.V.; Shirodkar, J.M. Synthesis, anti-fungal and anti-bacterial screening of 3-phenyl-1,4,5-trihydro-pyrazol and 2, 4-dihydro[1,2,4]-triazol-3-one derivatives of 4-hydroxy-2-oxo-2H-1-benzopyran. J. Heterocycl. Chem., 2003, 40(2), 377-381.
[http://dx.doi.org/10.1002/jhet.5570400231]
[141]
Vijaya Laxmi, S.; Suresh Kuarm, B.; Rajitha, B. Synthesis and antimicrobial activity of coumarin pyrazole pyrimidine 2,4,6(1H,3H,5H)triones and thioxopyrimidine 4,6 (1H,5H)diones. Med. Chem. Res., 2013, 22(2), 768-774.
[http://dx.doi.org/10.1007/s00044-012-0078-y]
[142]
Batran, R.Z.; Dawood, D.H.; El-Seginy, S.A.; Ali, M.M.; Maher, T.J.; Gugnani, K.S.; Rondon-Ortiz, A.N. New coumarin derivatives as anti-breast and anti-cervical cancer agents targeting VEGFR-2 and P38alpha MAPK. Arch. Pharm. (Weinheim), 2017, 350(9)
[http://dx.doi.org/10.1002/ardp.201700064] [PMID: 28787092]
[143]
Isobe, H.; Fujino, T.; Yamazaki, N.; Guillot-Nieckowski, M.; Nakamura, E. Triazole-linked analogue of deoxyribonucleic acid ((TL)DNA): design, synthesis, and dou-ble-strand formation with natural DNA. Org. Lett., 2008, 10(17), 3729-3732.
[http://dx.doi.org/10.1021/ol801230k] [PMID: 18656947]
[144]
Michael, A. Ueber die einwirkung von diazobenzolimid auf acetylendicarbonsäuremethylester. J. Prakt. Chem., 1893, 48(1), 94-95.
[http://dx.doi.org/10.1002/prac.18930480114]
[145]
Huisgen, R. Proceedings of the Chemical Society. October 1961. Proc. Chem. Soc, 1961, p. 357-396.
[http://dx.doi.org/10.1039/ps9610000357]
[146]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[147]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and termi-nal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[148]
Torres, I.; Carrillo, J.R.; Díaz-Ortiz, A.; Martín, R.; Gómez, M.V.; Stegemann, L.; Strassert, C.A.; Orduna, J.; Buendía, J.; Greciano, E.E.; Valera, J.S.; Matesanz, E.; Sánchez, L.; Prieto, P. Self-assembly of t-shape 2h-benzo[d][1,2,3]-triazoles. optical waveguide and photophysical properties. RSC Adv, 2016, 6(43), 36544-36553.
[http://dx.doi.org/10.1039/C6RA02473D]
[149]
Katan, C.; Savel, P.; Wong, B.M.; Roisnel, T.; Dorcet, V.; Fillaut, J-L.; Jacquemin, D. Absorption and fluorescence signatures of 1,2,3-triazole based regioisomers: Chal-lenging compounds for TD-DFT. Phys. Chem. Chem. Phys., 2014, 16(19), 9064-9073.
[http://dx.doi.org/10.1039/C4CP00478G] [PMID: 24695804]
[150]
Lim, B.; Lee, J. A Peptoid-based fluorescent sensor for cyanide detection. Molecules, 2016, 21(3), 339.
[http://dx.doi.org/10.3390/molecules21030339] [PMID: 26978334]
[151]
Shu, T.; Yang, Z.; Cen, Z.; Deng, X.; Deng, Y.; Dong, C.; Yu, Y. A novel ratiometric fluorescent probe based on a BODIPY derivative for Cu2+ detection in aqueous solu-tion. Anal. Methods, 2018, 10(48), 5755-5762.
[http://dx.doi.org/10.1039/C8AY01760C]
[152]
Shi, D-T.; Wei, X-L.; Sheng, Y.; Zang, Y.; He, X-P.; Xie, J.; Liu, G.; Tang, Y.; Li, J.; Chen, G-R. Substitution pattern reverses the fluorescence response of coumarin glycoligands upon coordination with silver (I). Sci. Rep., 2014, 4, 4252.
[http://dx.doi.org/10.1038/srep04252] [PMID: 24584644]
[153]
Zhou, Y.; Liu, K.; Li, J-Y.; Fang, Y.; Zhao, T-C.; Yao, C. Visualization of nitroxyl in living cells by a chelated copper(II) coumarin complex. Org. Lett., 2011, 13(6), 1290-1293.
[http://dx.doi.org/10.1021/ol103077q] [PMID: 21322578]
[154]
Zhou, Z.; Fahrni, C.J. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: Modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inver-sion. J. Am. Chem. Soc., 2004, 126(29), 8862-8863.
[http://dx.doi.org/10.1021/ja049684r] [PMID: 15264794]
[155]
Varazo, K.; Le Droumaguet, C.; Fullard, K.; Wang, Q. Metal ion detection using a fluorogenic ‘click’ reaction. Tetrahedron Lett., 2009, 50(50), 7032-7034.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.166]
[156]
Sivakumar, K.; Xie, F.; Cash, B.M.; Long, S.; Barnhill, H.N.; Wang, Q. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett., 2004, 6(24), 4603-4606.
[http://dx.doi.org/10.1021/ol047955x] [PMID: 15548086]
[157]
Morris, J.C.; McMurtrie, J.C.; Bottle, S.E.; Fairfull-Smith, K.E. Generation of profluorescent isoindoline nitroxides using click chemistry. J. Org. Chem., 2011, 76(12), 4964-4972.
[http://dx.doi.org/10.1021/jo200613r] [PMID: 21545177]
[158]
Raju, B.B.; Varadarajan, T.S. Photophysical properties and energy transfer dye laser characteristics of 7-diethylamino-3-heteroaryl coumarin in solution. Laser Chem., 1995, 16, 51920.
[http://dx.doi.org/10.1155/1995/51920]
[159]
Anand, A.; Kulkarni, M.V.; Joshi, S.D.; Dixit, S.R. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked couma-rinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4709-4713.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.045] [PMID: 27595420]
[160]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.019] [PMID: 26491982]
[161]
Prasher, P.; Sharma, M. Tailored therapeutics based on 1,2,3-1H-triazoles: A mini review. MedChemComm, 2019, 10(8), 1302-1328.
[http://dx.doi.org/10.1039/C9MD00218A] [PMID: 31534652]
[162]
Peterson, L.B.; Blagg, B.S.J. Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorg. Med. Chem. Lett., 2010, 20(13), 3957-3960.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.140] [PMID: 20570149]
[163]
Stefani, H.A.; Gueogjan, K.; Manarin, F.; Farsky, S.H.P.; Zukerman-Schpector, J.; Caracelli, I.; Pizano Rodrigues, S.R.; Muscará, M.N.; Teixeira, S.A.; Santin, J.R.; Macha-do, I.D.; Bolonheis, S.M.; Curi, R.; Vinolo, M.A. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: Effect on induci-ble nitric oxide synthase. Eur. J. Med. Chem., 2012, 58, 117-127.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.010] [PMID: 23123728]
[164]
Stephanopoulos, N.; Francis, M.B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol., 2011, 7(12), 876-884.
[http://dx.doi.org/10.1038/nchembio.720] [PMID: 22086289]
[165]
Kalia, J.; Raines, R.T. Advances in bioconjugation. Curr. Org. Chem., 2010, 14(2), 138-147.
[http://dx.doi.org/10.2174/138527210790069839] [PMID: 20622973]
[166]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[167]
Zeng, Q.; Li, T.; Cash, B.; Li, S.; Xie, F.; Wang, Q. Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chem. Commun. (Camb.), 2007, (14), 1453-1455.
[http://dx.doi.org/10.1039/b617534a] [PMID: 17389990]
[168]
Chen, X.; Muthoosamy, K.; Pfisterer, A.; Neumann, B.; Weil, T. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjug. Chem., 2012, 23(3), 500-508.
[http://dx.doi.org/10.1021/bc200556n] [PMID: 22339664]
[169]
Hommersom, C.A.; Matt, B.; van der Ham, A.; Cornelissen, J.J.L.M.; Katsonis, N. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry. Org. Biomol. Chem., 2014, 12(24), 4065-4069.
[http://dx.doi.org/10.1039/C4OB00505H] [PMID: 24817149]
[170]
Ferreira, S.Z.; Carneiro, H.C.; Lara, H.A.; Alves, R.B.; Resende, J.M.; Oliveira, H.M.; Silva, L.M.; Santos, D.A.; Freitas, R.P. Synthesis of a New Peptide-Coumarin Conju-gate: A potential agent against cryptococcosis. ACS Med. Chem. Lett., 2015, 6(3), 271-275.
[http://dx.doi.org/10.1021/ml500393q] [PMID: 25815145]
[171]
Jeankumar, V.U.; Reshma, R.S.; Janupally, R.; Saxena, S.; Sridevi, J.P.; Medapi, B.; Kulkarni, P.; Yogeeswari, P.; Sriram, D. Enabling the (3 + 2) cycloaddition reaction in assembling newer anti-tubercular lead acting through the inhibition of the gyrase ATPase domain: Lead optimization and structure activity profiling. Org. Biomol. Chem., 2015, 13(8), 2423-2431.
[http://dx.doi.org/10.1039/C4OB02049A] [PMID: 25569565]
[172]
Maiti, S.; Park, N.; Han, J.H.; Jeon, H.M.; Lee, J.H.; Bhuniya, S.; Kang, C.; Kim, J.S. Gemcitabine-coumarin-biotin conjugates: A target specific theranostic anticancer prodrug. J. Am. Chem. Soc., 2013, 135(11), 4567-4572.
[http://dx.doi.org/10.1021/ja401350x] [PMID: 23461361]
[173]
Al-Masoudi, I.A.; Al-Soud, Y.A.; Al-Salihi, N.J.; Al-Masoudi, N.A. 1,2,4-Triazoles: Synthetic approaches and pharmacological importance. Chem. Heterocycl. Compd., 2006, 42(11), 1377-1403.
[http://dx.doi.org/10.1007/s10593-006-0255-3]
[174]
Holm, S.C.; Straub, B.F. Synthesis of N-Substituted 1,2,4-triazoles. A review. Org. Prep. Proced. Int., 2011, 43(4), 319-347.
[http://dx.doi.org/10.1080/00304948.2011.593999]
[175]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[176]
Potts, K.T. The chemistry of 1,2,4-triazoles. Chem. Rev., 1961, 61(2), 87-127.
[http://dx.doi.org/10.1021/cr60210a001]
[177]
Bhat, M.A.; Siddiqui, N.; Khan, S.A.; Mohamed, M.I. Synthesis of triazolothiazolidinone derivatives of coumarin with antimicrobial activity. Acta Pol. Pharm., 2009, 66(6), 625-632.
[PMID: 20050526]
[178]
Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727]
[179]
Verma, N.; Verma, B.S.; Chawla, V.; Malik, O.P.; Indian, J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1996, 35B, 688-691.
[180]
Berner, S.; Mühlegger, K.; Seliger, H. Studies on the role of tetrazole in the activation of phosphoramidites. Nucleic Acids Res., 1989, 17(3), 853-864.
[http://dx.doi.org/10.1093/nar/17.3.853] [PMID: 2922273]
[181]
Fischer, N.; Karaghiosoff, K.; Klapötke, T.M.; Stierstorfer, J. New energetic materials featuring tetrazoles and nitramines - synthesis, characterization and properties. Z. Anorg. Allg. Chem., 2010, 636(5), 735-749.
[http://dx.doi.org/10.1002/zaac.200900521]
[182]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[183]
Xiong, Q.; Dong, S.; Chen, Y.; Liu, X.; Feng, X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat. Commun., 2019, 10(1), 2116.
[http://dx.doi.org/10.1038/s41467-019-09904-5] [PMID: 31073191]
[184]
Kuriyama, K.; Nakano, J.; Itikawa, K.; Ito, K.; Suzuki, Y.; Ishizuki, I. Eur. Pat. Appl. EP 0011839, 1980.
[185]
Kuriyama, K.; Hiyama, Y.; Ito, K.; Yoshinaka, I.; Bito, Y. The protective effect of a new antiallergic agent, KP-136 on mast cell activation: A comparison with disodium cromoglycate. Agents Actions, 1988, 25(3-4), 321-325.
[http://dx.doi.org/10.1007/BF01965038] [PMID: 3146215]
[186]
Tisseh, Z.N.; Dabiri, M.; Bazgir, A. An efficient synthesis of 3-(1h-tetrazol-5-yl)coumarins (=3-(1h-tetrazol-5-yl)-2h-1-benzopyran-2-ones) via domino knoevenagel condensation, pinner reaction, and 1,3-dipolar cycloaddition in water. Helv. Chim. Acta, 2012, 95(9), 1600-1604.
[http://dx.doi.org/10.1002/hlca.201200031]
[187]
Zhu, J.; Mo, J.; Lin, H.Z.; Chen, Y.; Sun, H.P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem., 2018, 26(12), 3065-3075.
[http://dx.doi.org/10.1016/j.bmc.2018.05.013] [PMID: 29853341]
[188]
Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: A patent review (2006-2017). Expert Opin. Ther. Pat., 2018, 28(11), 783-812.
[http://dx.doi.org/10.1080/13543776.2018.1526280] [PMID: 30239247]
[189]
Zhang, H-Z.; Zhao, Z-L.; Zhou, C-H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[190]
Sattar, R.; Mukhtar, R.; Atif, M.; Hasnain, M.; Irfan, A. synthetic transformations and biological screening of benzoxazole derivatives: A review. J. Heterocycl. Chem., 2020, 57(5), 2079-2107.
[http://dx.doi.org/10.1002/jhet.3944]
[191]
Kakkar, S.; Tahlan, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Benzoxazole derivatives: Design, synthesis and biological evaluation. Chem. Cent. J., 2018, 12(1), 92.
[http://dx.doi.org/10.1186/s13065-018-0459-5] [PMID: 30101384]
[192]
Grigoryeva, O.A.; Fedotova, O.V.; Shkel, A.A. Interaction of 3-acetoacetyl-2H-chromen-2-one with azanucleophilic reagents. Chem. Heterocycl. Compd., 2011, 46(12), 1509-1513.
[http://dx.doi.org/10.1007/s10593-011-0700-9]
[193]
El-Deen, I.M.; Al-Wakeel, E-S.I.; El-Mawla, A.G. Syntheses of some 3-[1′(1′ H)-substituent-pyrazol-5′-yl]benzo[5,6]coumarins. Chin. J. Chem., 2002, 20(7), 670-675.
[http://dx.doi.org/10.1002/cjoc.20020200709]
[194]
Sun, J.; Zheng, M.; Jia, J.; Wang, W.; Cui, Y.; Gao, J. New coumarin-benzoxazole derivatives: synthesis, photophysical and NLO properties. Dyes Pigments, 2019, 164, 287-295.
[http://dx.doi.org/10.1016/j.dyepig.2019.01.010]
[195]
Madhav, J.V.; Kumar, V.N.; Rajitha, B. Sulfamic acid-catalyzed one‐pot synthesis of 3‐(4,6‐dimethyl‐oxazolo[4,5‐c]quinolin‐2‐yl)‐chromen‐2‐ones using the conventional method and microwave irradiation. Synth. Commun., 2008, 38(11), 1799-1807.
[http://dx.doi.org/10.1080/00397910801991093]
[196]
Fershtat, L.L.; Makhova, N.N. 1,2,5-oxadiazole-based high-energy-density materials: synthesis and performance. ChemPlusChem, 2020, 85(1), 13-42.
[http://dx.doi.org/10.1002/cplu.201900542]
[197]
Vaidya, A.; Jain, S.; Jain, P.; Jain, P.; Tiwari, N.; Jain, R.; Jain, R.; Jain, A.K.; Agrawal, R.K. Synthesis and biological activities of oxadiazole derivatives: A review. Mini Rev. Med. Chem., 2016, 16(10), 825-845.
[http://dx.doi.org/10.2174/1389557516666160211120835] [PMID: 26864552]
[198]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[199]
Kenn, R.S.; Mashelkar, U.C.; Rane, D.M. Synthesis of 2-coumarinyl and spiroindolyl-5-phenyl-1,3,4-oxadiazoles. J. Chin. Chem. Soc. (Taipei), 2006, 53(2), 367-373.
[http://dx.doi.org/10.1002/jccs.200600046]
[200]
Detistov, O.S.; Orlov, V.D.; Zhuravel’, I.O. Isomeric 3-isoxadiazolylcoumarins and their derivatives. J. Heterocycl. Chem., 2012, 49(4), 883-892.
[http://dx.doi.org/10.1002/jhet.893]
[201]
Saha, S.K.; Paul, M.K. Mesomorphic and photophysical behaviour of 1,3,4-oxadiazole based hockey stick reactive mesogens. Liq. Cryst., 2019, 46(3), 386-396.
[http://dx.doi.org/10.1080/02678292.2018.1502372]
[202]
Tonge, C.M.; Paisley, N.R.; Polgar, A.M.; Lix, K.; Algar, W.R.; Hudson, Z.M. Color-tunable thermally activated delayed fluorescence in oxadiazole-based acrylic copoly-mers: photophysical properties and applications in ratiometric oxygen sensing. ACS Appl. Mater. Interfaces, 2020, 12(5), 6525-6535.
[http://dx.doi.org/10.1021/acsami.9b22464] [PMID: 31989816]
[203]
El-Sedik, M.; Aysha, T.; Youssef, Y. Synthesis, photophysical properties, and application of optical brighteners based on stilbene-oxadiazole derivatives. Color. Technol., 2017, 133(2), 122-127.
[http://dx.doi.org/10.1111/cote.12258]
[204]
Zhou, L.; Lin, Q.; Liu, S.; Tan, Y.; Sun, H. Molecular engineering of D-A-d-based non-linearity fluorescent probe for quick detection of thiophenol in living cells and tissues. Sens. Actuators B Chem., 2017, 244, 958-964.
[http://dx.doi.org/10.1016/j.snb.2017.01.079]
[205]
Doroshenko, A.O.; Posokhov, E.A.; Sytnik, K.M.; Kovalenko, S.N. Intramolecular phototransfer of protons and the quenching of fluorescence of derivatives of 2-(coumarinyl-3)-5-(ortho-hydroxyphenyl)-1,3,4-oxadiazole. Chem. Heterocycl. Compd., 2001, 37(5), 633-644.
[http://dx.doi.org/10.1023/A:1011621025169]
[206]
Rajesha, G.; Kiran Kumar, H.C.; Bhojya Naik, H.S.; Mahadevan, K.M. Synthesis of new benzocoumaryl oxadiazolyls as strong blue-green fluorescent brighteners. S. Afr. J. Chem., 2011, 64, 88-94.
[207]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[208]
Chawla, G. 1,2,4-Oxadiazole as a privileged scaffold for anti-inflammatory and analgesic activities: A review. Mini Rev. Med. Chem., 2018, 18(18), 1536-1547.
[http://dx.doi.org/10.2174/1389557518666180524112050] [PMID: 29792145]
[209]
Mathew, G.; Krishnan, R.; Antony, M.; Suseelan, M.S. Synthesis, spectral characterization and biocidal studies of copper(II) complexes of chromen-2-one-3-carboxy hydrazide and 2-(chromen-3′-onyl)-5-(aryl)-1,3,4-oxadiazole derivatives. E-J. Chem., 2011, 8, 240196.
[http://dx.doi.org/10.1155/2011/240196]
[210]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-n-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med. Chem. Res., 2013, 22(1), 195-210.
[http://dx.doi.org/10.1007/s00044-012-0026-x]
[211]
Mulwad, V.V.; Chaskar, A.C. Synthesis and antibacterial activity of new oxadiazolo [1,3,5]-triazine, 1,2,4 triazolo and thiadiazole 1,3,4 oxadiazole derivatives. Indian J. Chem. - Sect. B Org. Med. Chem., 2006, 45B, 1710-1715.
[212]
Baeyer, A. Ueber die reduction aromatischer verbindungen mittelst zinkstaub. Justus Liebigs Ann. Chem., 1866, 140(3), 295-296.
[http://dx.doi.org/10.1002/jlac.18661400306]
[213]
Baeyer, A.; Emmerling, A. Synthese des indols. Ber. Dtsch. Chem. Ges., 1869, 2(1), 679-682.
[http://dx.doi.org/10.1002/cber.186900201268]
[214]
Fischer, E.; Jourdan, F. Ueber die hydrazine der brenztraubensäure. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2241-2245.
[http://dx.doi.org/10.1002/cber.188301602141]
[215]
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles. Tetrahedron Lett., 1989, 30(16), 2129-2132.
[http://dx.doi.org/10.1016/S0040-4039(01)93730-X]
[216]
Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270] [PMID: 16836303]
[217]
Sinnur, K.H.; Siddappa, S.; Hiremath, S.P.; Purohit, M.G. Synthesis of substituted 2-(1′3′4′-oxadiazol-2′-yl)indole. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1986, 25B(9), 894.
[http://dx.doi.org/10.1002/chin.198647187]
[218]
Naidu, P.S.; Kolita, S.; Sharma, M.; Bhuyan, P.J. Reductive alkylation of α-keto imines catalyzed by PTSA/FeCl3: Synthesis of indoles and 2,3′-biindoles. J. Org. Chem., 2015, 80(12), 6381-6390.
[http://dx.doi.org/10.1021/acs.joc.5b00533] [PMID: 26014372]
[219]
Xie, J.B.; Luo, J.; Winn, T.R.; Cordes, D.B.; Li, G. Group-assisted purification (GAP) chemistry for the synthesis of Velcade via asymmetric borylation of N-phosphinylimines. Beilstein J. Org. Chem., 2014, 10, 746-751.
[http://dx.doi.org/10.3762/bjoc.10.69] [PMID: 24778728]
[220]
Wang, H.; Liu, X.; Feng, X.; Huang, Z.; Shi, D. GAP chemistry for pyrrolyl coumarin derivatives: A highly efficient one-pot synthesis under catalyst-free conditions. Green Chem., 2013, 15(12), 3307-3311.
[http://dx.doi.org/10.1039/c3gc41799a]
[221]
Pal, G.; Paul, S.; Das, A.R. Alum-catalyzed synthesis of 3-(1H-pyrrol-2-yl)-2H-chromen-2-ones: A water-PEG 400 binary solvent mediated, one-pot, three-component protocol. Synthesis (Stuttg), 2013, 45(09), 1191-1200.
[http://dx.doi.org/10.1055/s-0032-1318494]
[222]
Shastri, L.; Kalegowda, S.; Kulkarni, M. The synthesis of pyrrole bis-coumarins, new structures for fluorescent probes. Tetrahedron Lett., 2007, 48(40), 7215-7217.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.189]
[223]
Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.S.R.; Das, S. Some new indole-coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg. Chem., 2015, 63, 101-109.
[http://dx.doi.org/10.1016/j.bioorg.2015.10.001] [PMID: 26469742]
[224]
Delogu, G.; Picciau, C.; Ferino, G.; Quezada, E.; Podda, G.; Uriarte, E.; Viña, D. Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. Eur. J. Med. Chem., 2011, 46(4), 1147-1152.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.033] [PMID: 21316817]
[225]
Iroegbu, A.O.; Sadiku, E.R.; Ray, S.S.; Hamam, Y. Sustainable chemicals: A brief survey of the furans. Chem. Africa, 2020, 3, 481-496.
[http://dx.doi.org/10.1007/s42250-020-00123-w]
[226]
Monier, M.; El-Mekabaty, A.; Elattar, K.M. Five-membered ring systems with one heteroatom: synthetic routes, chemical reactivity, and biological properties of furan-carboxamide analogues. Synth. Commun., 2018, 48(8), 839-875.
[http://dx.doi.org/10.1080/00397911.2017.1421227]
[227]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S.; Gouda, M.A. Synthesis of benzofuran derivatives via different methods. Synth. Commun., 2014, 44(16), 2285-2312.
[http://dx.doi.org/10.1080/00397911.2014.894528]
[228]
Miao, Y.; Hu, Y.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Advances, 2019, 9(47), 27510-27540.
[http://dx.doi.org/10.1039/C9RA04917G]
[229]
Sreenivasalu, B.; Murthy, S.V.; Subba, N.V. Synthesis of 3-(2-furyl)-coumarins. Proc. Indiana Acad. Sci., 1973, 78(4), 159.
[230]
Liu, J.; Zhang, X.; Shi, L.; Liu, M.; Yue, Y.; Li, F.; Zhuo, K. Base-promoted synthesis of coumarins from salicylaldehydes and aryl-substituted 1,1-dibromo-1-alkenes under transition-metal-free conditions. Chem. Commun. (Camb.), 2014, 50(69), 9887-9890.
[http://dx.doi.org/10.1039/C4CC04377D] [PMID: 25027244]
[231]
Wang, C.; Mi, X.; Li, Q.; Li, Y.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Copper-catalyzed cross-dehydrogenative-coulping (CDC) of coumarins with cyclic ethers and cycloalkane. Tetrahedron, 2015, 71(38), 6689-6693.
[http://dx.doi.org/10.1016/j.tet.2015.07.052]
[232]
Kumar Mitra, A.; De, A.; Karchaudhuri, N.; Mitra, J. Palladium-catalysed synthesis of 3-substituted coumarins. J. Chem. Res. Synop., 1998, (12), 766-767.
[http://dx.doi.org/10.1039/a707935d]
[233]
Dian, L.; Zhao, H.; Zhang-Negrerie, D.; Du, Y. Cobalt-catalyzed twofold direct C(sp2)-C(sp3) bond coupling: Regioselective C-3 alkylation of coumarins with (cy-clo)alkyl ethers. Adv. Synth. Catal., 2016, 358(15), 2422-2426.
[http://dx.doi.org/10.1002/adsc.201600349]
[234]
Shen, S-C.; Sun, X-W.; Lin, G. A Convenient and efficient synthesis of coumarin-containing phthalides and derivatives. Synthesis (Stuttg), 2013, 45(09), 1181-1190.
[http://dx.doi.org/10.1055/s-0032-1316871]
[235]
Nevagi, R.J.; Dighe, S.N.; Dighe, S.N. Biological and medicinal significance of benzofuran. Eur. J. Med. Chem., 2015, 97, 561-581.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.085] [PMID: 26015069]
[236]
Chougala, B.M.; Shastri, S.L.; Holiyachi, M.; Shastri, L.A.; More, S.S.; Ramesh, K.V. Synthesis, anti-microbial and anti-cancer evaluation study of 3-(3-benzofuranyl)-coumarin derivatives. Med. Chem. Res., 2015, 24(12), 4128-4138.
[http://dx.doi.org/10.1007/s00044-015-1449-y]
[237]
Galvani, G.; Vardhan Reddy, K.H.; Beauvineau, C.; Ghermani, N.; Mahuteau-Betzer, F.; Alami, M.; Messaoudi, S. Conversion of 3-bromo-2h-coumarins to 3-(benzofuran-2-yl)-2H-coumarins under palladium catalysis: synthesis and photophysical properties study. Org. Lett., 2017, 19(4), 910-913.
[http://dx.doi.org/10.1021/acs.orglett.7b00069] [PMID: 28177639]
[238]
Meyer, V. Ueber den begleiter des benzols im steinkohlentheer. Ber. Dtsch. Chem. Ges., 1883, 16(1), 1465-1478.
[http://dx.doi.org/10.1002/cber.188301601324]
[239]
Voosen, P. NASA Curiosity rover hits organic pay dirt on mars. Science, 2018, 360(6393), 1054-1055.
[http://dx.doi.org/10.1126/science.360.6393.1054]
[240]
Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 137.
[http://dx.doi.org/10.1186/s13065-018-0511-5] [PMID: 30564984]
[241]
Elkanzi, N.A.A. Short Review on the Synthesis of thiophene, pyrazole, and thiazole derivatives. J. Chin. Chem. Soc. (Taipei), 2018, 65(2), 189-204.
[http://dx.doi.org/10.1002/jccs.201700207]
[242]
Dang, T.T.; Bonneau, M.; Gareth Williams, J.A.; Le Bozec, H.; Doucet, H.; Guerchais, V. Pd-catalyzed functionalization of the thenoyltrifluoroacetone coligands by aromatic dyes in bis(cyclometallated) Ir(III) complexes: from phosphorescence to fluorescence? Eur. J. Inorg. Chem., 2015, 2015(18), 2956-2964.
[http://dx.doi.org/10.1002/ejic.201500227]
[243]
Chemchem, M.; Yahaya, I. Aydiner, B.; Seferoglu, N.; Doluca, O.; Merabet, N.; Seferoglu, Z. A novel and synthetically facile coumarin-thiophene-derived schiff base for selective fluorescent detection of cyanide anions in aqueous solution: synthesis, anion interactions, theoretical study and dna-binding properties. Tetrahedron, 2018, 74(48), 6897-6906.
[http://dx.doi.org/10.1016/j.tet.2018.10.008]
[244]
Yanar, U.; Babür, B. Pekyilmaz, D.; Yahaya, I.; Aydiner, B.; Dede, Y.; Seferoglu, Z. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions. J. Mol. Struct., 2016, 1108, 269-277.
[http://dx.doi.org/10.1016/j.molstruc.2015.11.081]
[245]
Rau, R.; Brack, A. Chem. Abstr., 1963, 58, 11506.
[246]
Kotchapadist, P.; Prachumrak, N.; Sunonnam, T.; Namuangruk, S.; Sudyoadsuk, T.; Keawin, T.; Jungsuttiwong, S.; Promarak, V. Synthesis, characterisation, and electro-luminescence properties of N-coumarin derivatives containing peripheral triphenylamine. Eur. J. Org. Chem., 2015, 2015(3), 496-505.
[http://dx.doi.org/10.1002/ejoc.201402680]
[247]
Bochkov, A.Y.; Krayushkin, M.M.; Yarovenko, V.N.; Barachevsky, V.A.; Beletskaya, I.P.; Traven, V.F. Synthesis of 3-(5-methylthiophen-2-yl)coumarins and their photochromic dihetarylethene derivatives. J. Heterocycl. Chem., 2013, 50(4), 891-898.
[http://dx.doi.org/10.1002/jhet.931]
[248]
Wei, L.; Chen, L.; Le Bideau, F.; Retailleau, P.; Dumas, F. Straightforward access to densely substituted chiral succinimides through enantioselective organocatalyzed michael addition of α-alkyl-cyclic ketones to maleimides. Org. Chem. Front., 2020, 7, 1224-1229.
[http://dx.doi.org/10.1039/C9QO01463B]
[249]
Renault, K.; Fredy, J.W.; Renard, P-Y.; Sabot, C. Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjug. Chem., 2018, 29(8), 2497-2513.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00252] [PMID: 29954169]
[250]
Shi, Q.; Zhang, Y.; Huang, Z.; Zhou, N.; Zhang, Z.; Zhu, X. Precise sequence regulation through maleimide chemistry. Polym. J., 2020, 52(1), 21-31.
[http://dx.doi.org/10.1038/s41428-019-0263-7]
[251]
Konstantinidou, M.; Kurpiewska, K. Kalinowska-Tiuscik, J.; Dömling, A. Glutarimide alkaloids through multicomponent reaction chemistry. Eur. J. Org. Chem., 2018, 2018(47), 6714-6719.
[http://dx.doi.org/10.1002/ejoc.201801276]
[252]
Hendsbee, A.D.; McAfee, S.M.; Sun, J-P.; McCormick, T.M.; Hill, I.G.; Welch, G.C. Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(34), 8904-8915.
[http://dx.doi.org/10.1039/C5TC01877C]
[253]
Wu, G.; Tang, X.; Ji, W.; Lai, K.W.C.; Tong, Q. A turn-on fluorescent probe based on coumarin-anhydride for highly sensitive detection of hydrazine in the aqueous solution and gas states. Methods Appl. Fluoresc., 2017, 5(1), 015001.
[http://dx.doi.org/10.1088/2050-6120/aa5387] [PMID: 28112102]
[254]
Chen, Z.; Sun, Q.; Yao, Y.; Fan, X.; Zhang, W.; Qian, J. Highly sensitive detection of cysteine over glutathione and homo-cysteine: New insight into the Michael addi-tion of mercapto group to maleimide. Biosens. Bioelectron., 2017, 91, 553-559.
[http://dx.doi.org/10.1016/j.bios.2017.01.013] [PMID: 28088110]
[255]
Tong, H.; Zhao, J.; Li, X.; Zhang, Y.; Ma, S.; Lou, K.; Wang, W. Orchestration of dual cyclization processes and dual quenching mechanisms for enhanced selectivity and drastic fluorescence turn-on detection of cysteine. Chem. Commun. (Camb.), 2017, 53(25), 3583-3586.
[http://dx.doi.org/10.1039/C6CC09336A] [PMID: 28289738]
[256]
Donnelly, D.P.; Dowgiallo, M.G.; Salisbury, J.P.; Aluri, K.C.; Iyengar, S.; Chaudhari, M.; Mathew, M.; Miele, I.; Auclair, J.R.; Lopez, S.A.; Manetsch, R.; Agar, J.N. Cyclic thiosulfinates and cyclic disulfides selectively cross-link thiols while avoiding modification of lone thiols. J. Am. Chem. Soc., 2018, 140(24), 7377-7380.
[http://dx.doi.org/10.1021/jacs.8b01136] [PMID: 29851341]
[257]
Burns, J.A.; Whitesides, G.M. Predicting the stability of cyclic disulfides by molecular modeling: effective concentrations in thiol-disulfide interchange and the design of strongly reducing dithiols. J. Am. Chem. Soc., 1990, 112(17), 6296-6303.
[http://dx.doi.org/10.1021/ja00173a017]
[258]
Houk, J.; Whitesides, G.M. Characterization and stability of cyclic disulfides and cyclic dimeric bis(disulfides). Tetrahedron, 1989, 45(1), 91-102.
[http://dx.doi.org/10.1016/0040-4020(89)80036-5]
[259]
Perst, H.; Klenke, C. Science of Synthesis; Thieme Chemistry, 2002, p. 11.
[260]
Ghosh, A.C.; Weisz, K.; Schulzke, C. Selective capture of Ni2+ ions by naphthalene- and coumarin-substituted dithiolenes. Eur. J. Inorg. Chem., 2016, 2016(2), 208-218.
[http://dx.doi.org/10.1002/ejic.201500847]
[261]
Song, C.; Yang, W.; Zhou, N.; Qian, R.; Zhang, Y.; Lou, K.; Wang, R.; Wang, W. Fluorescent theranostic agents for Hg(2+) detection and detoxification treatment. Chem. Commun. (Camb.), 2015, 51(21), 4443-4446.
[http://dx.doi.org/10.1039/C5CC00295H] [PMID: 25679061]
[262]
Barnes, R.A.; Frederick Brody, P.R.R. Pyridine And Its Derivatives, 1st ed.; Weissberger, Arnold, E.K., Ed.; Interscience Publishers, Inc.: New York, 1960.
[263]
Anderson, T. XIV.—On the products of the destructive distillation of animal substances. Part II. Trans. R. Soc. Edinb., 1853, 20(2), 247-260.
[http://dx.doi.org/10.1017/S0080456800033160]
[264]
Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. Pyridine and pyridine derivatives; Ullmann’s Encyclopedia of Industrial Chemis-try, 2000.
[http://dx.doi.org/10.1002/14356007.a22_399]
[265]
Pyridine. Reactions of Phenols with Polyfunctional Compounds. J. Synth. Org. Chem., 1968, 26(9), 782-795.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.26.782]
[266]
Pacheco, H. Bull. Soc. Chim., 1960, 95
[267]
Moffett, R.B. Central nervous system depressants. vii. pyridyl coumarins. J. Med. Chem., 1964, 7, 446-449.
[http://dx.doi.org/10.1021/jm00334a010] [PMID: 14221122]
[268]
Kozlov, N.S.; Zuva, N.D. Khim. Khim. Tekhnol., 1970, 13, 544.
[269]
Brahmbhatt, D.I.; Raolji, G.B.; Pandya, S.U.; Pandya, U.R. A facile synthesis of some 3-(2-pyridyl)-coumarin. Indian J. Chem., 1999, 38B, 212.
[270]
Reddy, K.R.; Mogilasish, K.; Sreenivasalu, B. J. Indian Chem. Soc., 1987, 64, 709.
[271]
Mohareb, R.M.; Shams, H.Z.; Elnagdi, M.H. Studies with polyfunctionally substituted pyridazines: Synthesis of new 4-coumarin-3-ylpyridazines. Gazz. Chim. Ital., 1992, 122(1), 41.
[272]
El-Gohary, N.M.; El-Kazak, A.M.; Ibrahim, M.A. An efficient synthesis of novel heterocyclic systems incorporating coumarin moiety. J. Heterocycl. Chem., 2020, 57(2), 716-723.
[http://dx.doi.org/10.1002/jhet.3811]
[273]
Thakrar, S.; Bavishi, A.; Radadiya, A.; Vala, H.; Parekh, S.; Bhavsar, D.; Chaniyara, R.; Shah, A. An efficient microwave-assisted synthesis and antimicrobial activity of novel 2-amino 3-cyano pyridine derivatives using two reusable solid acids as catalysts. J. Heterocycl. Chem., 2014, 51(3), 555-561.
[http://dx.doi.org/10.1002/jhet.1641]
[274]
Vanjari, R.; Dutta, S.; Gogoi, M.P.; Gandon, V.; Sahoo, A.K. Gold-catalyzed syn-1,2-difunctionalization of ynamides via nitrile activation. Org. Lett., 2018, 20(24), 8077-8081.
[http://dx.doi.org/10.1021/acs.orglett.8b03830] [PMID: 30540197]
[275]
Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N-formylsaccharin as a CO surro-gate. New J. Chem., 2018, 42(19), 16281-16286.
[http://dx.doi.org/10.1039/C8NJ03173H]
[276]
Yoshida, H.; Ito, Y.; Ohshita, J. Three-component coupling using arynes and DMF: straightforward access to coumarins via ortho-quinone methides. Chem. Commun. (Camb.), 2011, 47(30), 8512-8514.
[http://dx.doi.org/10.1039/c1cc11955a] [PMID: 21607267]
[277]
Wang, L.; Gong, X.; Bing, Q.; Wang, G. A new oxadiazole-based dual-mode chemosensor: colorimetric detection of Co2+ and fluorometric detection of Cu2+ with high selectivity and sensitivity. Microchem. J., 2018, 142, 279-287.
[http://dx.doi.org/10.1016/j.microc.2018.07.008]
[278]
Garcia-Amorós, J.; Gómez, E.; Vallés, E.; Velasco, D. Photo-controllable electronic switches based on azopyridine derivatives. Chem. Commun. (Camb.), 2012, 48(72), 9080-9082.
[http://dx.doi.org/10.1039/c2cc34457b] [PMID: 22854845]
[279]
Chou, Y-H.; Chiu, Y-C.; Lee, W-Y.; Chen, W-C. Non-volatile organic transistor memory devices using the poly(4-vinylpyridine)-based supramolecular electrets. Chem. Commun. (Camb.), 2015, 51(13), 2562-2564.
[http://dx.doi.org/10.1039/C4CC09667C] [PMID: 25567112]
[280]
Chen, H.; Wu, L.; Xiao, X.; Wang, H.; Jiang, J.; Wang, L.; Xu, Q.; Lu, J. Synthesis of poly(pyridine-imide)s and their electronic memory performances. Sci. China Chem., 2017, 60(2), 237-242.
[http://dx.doi.org/10.1007/s11426-016-0369-y]
[281]
Zhao, R.R.; Xu, Q.L.; Yang, Y.; Cao, J.; Zhou, Y.; Xu, R.; Zhang, J.F. A coumarin-based terpyridine-zinc complex for sensing pyrophosphate and its application in in vivo imaging. Tetrahedron Lett., 2016, 57(46), 5022-5025.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.081]
[282]
Raju, B.B.; Eliasson, B. Excited state properties of pre-twisted 7-diethylamino coumarinyl benzopyrano pyridine: An experimental and AMI study. J. Photochem. Photobiol. Chem., 1998, 116(2), 135-142.
[http://dx.doi.org/10.1016/S1010-6030(98)00278-0]
[283]
Raju, B.B.; Costa, S.M.B. Excited-state behavior of 7-diethylaminocoumarin dyes in AOT reversed micelles: Size effects. J. Phys. Chem. B, 1999, 103(21), 4309-4317.
[http://dx.doi.org/10.1021/jp984527y]
[284]
Raju, B.B.; Costa, S.M.B. The role of molecular size in the excited state behavior of aminocoumarin dyes in restricted media--2: study of BC I in AOT-formamide reversed micelles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2000, 56A(9), 1703-1710.
[http://dx.doi.org/10.1016/S1386-1425(00)00233-X] [PMID: 10952132]
[285]
Bangar Raju, B. Photophysical properties of ground-state twisted bicoumarins. J. Phys. Chem. A, 1997, 101(6), 981-987.
[http://dx.doi.org/10.1021/jp961619j]
[286]
El-Naggar, M.; Almahli, H.; Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A. Pyridine-ureas as potential anticancer agents: synthesis and in vitro biological evaluation. Molecules, 2018, 23(6), E1459.
[http://dx.doi.org/10.3390/molecules23061459] [PMID: 29914120]
[287]
Chung, S-T.; Huang, W-H.; Huang, C-K.; Liu, F-C.; Huang, R-Y.; Wu, C-C.; Lee, A-R. Synthesis and anti-inflammatory activities of 4H-chromene and chromeno[2,3-b]pyridine derivatives. Res. Chem. Intermed., 2016, 42(2), 1195-1215.
[http://dx.doi.org/10.1007/s11164-015-2081-7]
[288]
Brahmbhatt, D.I.; Kaneria, A.R.; Patel, A.K.; Patel, N.H. Synthesis and antimicrobial screening of some 3-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] and 4-methyl-3- phenyl-6-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin2-yl]coumarins. Indian J. Chem., 2010, 49B, 971.
[http://dx.doi.org/10.1002/chin.201047141]
[289]
Chovatiya, Y.L.; Kundaliya, K.N.; Giri, R.R.; Brahmbhatt, D.I. Synthesis and antimicrobial evaluation of some new asymmetrically substituted 4-aryl- 2,6-di(coumarinyl) pyridines. J. Chil. Chem. Soc., 2016, 61, 2788-2791.
[http://dx.doi.org/10.4067/S0717-97072016000100009]
[290]
Patel, A.K.; Patel, N.H.; Patel, M.A.; Brahmbhatt, D.I. Synthesis of some 3-(4-aryl-benzofuro[3,2-b]pyridin-2-yl)coumarins and their antimicrobial screening. J. Heterocycl. Chem., 2012, 49(3), 504-510.
[http://dx.doi.org/10.1002/jhet.778]
[291]
Pianaro, A.; Fox, E.G.P.; Bueno, O.C.; Marsaioli, A.J. Rapid configuration analysis of the solenopsins. Tetrahedron Asymmetry, 2012, 23(9), 635-642.
[http://dx.doi.org/10.1016/j.tetasy.2012.05.005]
[292]
Anderson, T. Vorläufiger bericht über die wirkung der salpetersäure auf organische alkalien. Justus Liebigs Ann. Chem., 1850, 75(1), 80-83.
[http://dx.doi.org/10.1002/jlac.18500750110]
[293]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[294]
Hall, H.K. Correlation of the base strengths of amines 1. J. Am. Chem. Soc., 1957, 79(20), 5441-5444.
[http://dx.doi.org/10.1021/ja01577a030]
[295]
Ponomarenko, M.V.; Grabowsky, S.; Pal, R.; Röschenthaler, G-V.; Fokin, A.A. SF5-enolates in Ti(IV)-mediated aldol reactions. J. Org. Chem., 2016, 81(15), 6783-6791.
[http://dx.doi.org/10.1021/acs.joc.6b00946] [PMID: 27384450]
[296]
Soussi, M.A.; Audisio, D.; Messaoudi, S.; Provot, O.; Brion, J-D.; Alami, M. Palladium-catalyzed coupling of 3-halo-substituted coumarins, chromenes, and quinolones with various nitrogen-containing nucleophiles. Eur. J. Org. Chem., 2011, 2011(26), 5077-5088.
[http://dx.doi.org/10.1002/ejoc.201100480]
[297]
Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review. J. Taibah Univ. Sci., 2017, 11(6), 1047-1069.
[http://dx.doi.org/10.1016/j.jtusci.2017.05.005]
[298]
Meti, P.; Park, H-H.; Gong, Y-D. Recent developments in pyrazine functionalized π-conjugated materials for optoelectronic applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(2), 352-379.
[http://dx.doi.org/10.1039/C9TC05014K]
[299]
Lamberth, C. Pyridazine chemistry in crop protection. J. Heterocycl. Chem., 2017, 54(6), 2974-2984.
[http://dx.doi.org/10.1002/jhet.2945]
[300]
Mohamed, H.M.; Abd El-Wahab, A.H.; Ahmed, K.A.; El-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M. Synthesis, reactions and antimicrobial activities of 8-ethoxycoumarin derivatives. Molecules, 2012, 17(1), 971-988.
[http://dx.doi.org/10.3390/molecules17010971] [PMID: 22258342]
[301]
Alizadeh, A.; Ghanbaripour, R.; Zhu, L-G. Piperidine-iodine a dual system catalyst for synthesis of coumarin bearing pyrrolo[1,2-a]quinoxaline derivatives via a one-pot three-component reaction. Tetrahedron, 2014, 70(11), 2048-2053.
[http://dx.doi.org/10.1016/j.tet.2014.01.038]
[302]
Wadhwa, P.; Kharbanda, A.; Bagchi, S.; Sharma, A. Water-mediated one-pot three-component reaction to bifunctionalized thiadiazoloquinazolinone-coumarin hybrids: A green approach. ChemistrySelect, 2018, 3(10), 2837-2841.
[http://dx.doi.org/10.1002/slct.201702908]
[303]
Tamam, G.H.; Bakeer, H.M.; Abdel-Motelab, R.M.; Arafa, W.A. Synthesis and some reactions of coumarin-3-yl crotononitrile derivatives. J. Chin. Chem. Soc. (Taipei), 2005, 52(6), 1191-1199.
[http://dx.doi.org/10.1002/jccs.200500171]
[304]
Aziz, S.I. The uses of 3-α-bromoacetylcoumarin in a novel syntheses of 3-(coumarin-3-yl) pyridazine and 3-(coumarin-3-yl) ketoximothiophene derivatives. Heteroatom Chem., 1996, 7(2), 137-142.
[http://dx.doi.org/10.1002/(SICI)1098-1071(199603)7:2<137:AID-HC6>3.0.CO;2-A]
[305]
Kuarm, B.S.; Reddy, Y.T.; Madhav, J.V.; Crooks, P.A.; Rajitha, B. 3-[Benzimidazo- and 3-[benzothiadiazoleimidazo-(1,2-c)quinazolin-5-yl]-2H-chromene-2-ones as potent antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 524-527.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.082] [PMID: 21134751]
[306]
Rao, V.R.; Sharma, V.M.; Rao, T.V.P. Studies on coumarin derivatives part II: A novel one step synthesis of 2,5-bis-substituted pyrazines. Ind. Nat. Acad. Sci. Lett., 1990, 13, 3.
[307]
Ibrahim, E.D.; Sayed, E.; Wakeel, A.; Ahmed, E.M. Syntheses of 3-pyrimidyl-and 3-pyranyl-5, 6-benzocoumarin derivative. Bull. Korean Chem. Soc., 2002, 23, 610.
[http://dx.doi.org/10.5012/bkcs.2002.23.4.610]
[308]
Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.045] [PMID: 28797881]
[309]
Redtenbacher, J.; Liebig, J. Ueber das carbothialdin. Justus Liebigs Ann. Chem., 1848, 65(1), 43-45.
[http://dx.doi.org/10.1002/jlac.18480650104]
[310]
Rodríguez, H.; Suárez, M.; Albericio, F.; Thiadiazines, N.; Thiadiazines, N. N-heterocycles of biological relevance. Molecules, 2012, 17(7), 7612-7628.
[http://dx.doi.org/10.3390/molecules17077612] [PMID: 22732878]
[311]
Bermello, J.C.; Piñeiro, R.P.; Fidalgo, L.M.; Cabrera, H.R.; Navarro, M.S. Thiadiazine derivatives as antiprotozoal new drugs. Open Med. Chem. J., 2011, 5, 51-60.
[http://dx.doi.org/10.2174/1874104501105010051] [PMID: 21673837]
[312]
Chunduru, V.S.R.; Vedula, R.R. One-pot synthesis of 1,3,4-thiadiazin-5-yl-chromen-2-one derivatives via three-component reaction. Synth. Commun., 2012, 42(10), 1454-1460.
[http://dx.doi.org/10.1080/00397911.2010.540697]
[313]
Rao Chunduru, V.S.; Rao, V.R. Synthesis of aryl and heteryl 1,3,4-thiadiazinyl-phthalazine-1,4-dione derivatives via a multicomponent approach. Synth. Commun., 2013, 43(7), 923-929.
[http://dx.doi.org/10.1080/00397911.2011.604147]
[314]
Chunduru, V.S.R.; Rajeswar Rao, V. Synthesis of coumarin substituted triazolothiadiazine derivatives via ring transformation reaction. J. Heterocycl. Chem., 2013, 50(1), 159-163.
[http://dx.doi.org/10.1002/jhet.958]
[315]
Rao, V.R.; Ramanna, S.; Rao, T.V.P. A facile one step preparation of thiadiazolo[2,3-][1,2,4]triazine-ones. Natl. Acad. Sci. Lett., 1994, 17, 47.
[316]
Vedula, R.R.; Srimanth, K. Vijaya kumar, P. Synthesis of 3-[3-substituted thio]-7H-1,2,4-triazolo [3,4-b][1,3,4]thiadiazin-6-yl]-2H-1-benzopyran-2-ones and 3-[3-aminoaryl/heterocyclyl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl]-2H-1-benzopyran-2-ones. Indian J. Heterocycl. Chem., 2004, 14, 141.
[317]
Kumar, V.N.; De Clercq, E.; Rajitha, B. One-pot synthesis of novel 3-(2-oxo-2H-chromen-3-yl)-[1,3,4] thiadiazino [2,3-b] quinazolin-6(2H)-ones under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(2), 273-279.
[http://dx.doi.org/10.1080/10426500600917094]
[318]
Choudhary, S.; Silakari, O.; Singh, P.K. Key updates on the chemistry and biological roles of thiazine scaffold: A review. Mini Rev. Med. Chem., 2018, 18(17), 1452-1478.
[http://dx.doi.org/10.2174/1389557518666180416150552] [PMID: 29663882]
[319]
Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21(8), 1054.
[http://dx.doi.org/10.3390/molecules21081054] [PMID: 27537865]
[320]
Ewies, E.F.; El-Hag, F.A.A. Synthesis, Reactions, and antimicrobial evaluations of new benzo[e][1,3]thiazine derivatives. J. Heterocycl. Chem., 2020, 57(1), 163-172.
[http://dx.doi.org/10.1002/jhet.3759]
[321]
Vaarla, K.; Pavurala, S.; Arandkar, V.; Vedula, R.R.; Toopurani, M.K. Solvent-free one-pot tandem multicomponent synthesis of triazolothiadiazinyl coumarins and their antimicrobial properties. ChemistrySelect, 2019, 4(19), 5828-5834.
[http://dx.doi.org/10.1002/slct.201900655]
[322]
Khoobi, M. Ramazani, A.; Foroumadi, A.; Emami, S.; Jafarpour, F.; Mahyari, A.; Slepokura, K.; Lis, T.; Shafiee, A. Highly cis-diastereoselective synthesis of coumarin-based 2,3-disubstituted dihydrobenzothiazines by organocatalysis. Helv. Chim. Acta, 2012, 95(4), 660-671.
[http://dx.doi.org/10.1002/hlca.201100357]
[323]
Xiu, C.; Hua, Z.; Xiao, B.S.; Tang, W.J.; Zhou, H.P.; Liu, X.H. Novel benzopyran derivatives and their therapeutic applications: A patent review (2009-2016). Expert Opin. Ther. Pat., 2017, 27(9), 1031-1045.
[http://dx.doi.org/10.1080/13543776.2017.1338687] [PMID: 28627270]
[324]
Stevenson, A.J.; Ager, E.I.; Proctor, M.A.; Škalamera, D.; Heaton, A.; Brown, D.; Gabrielli, B.G. Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo. Sci. Rep., 2018, 8(1), 5144.
[http://dx.doi.org/10.1038/s41598-018-22882-w] [PMID: 29572477]
[325]
Deželic M.; Trkovnik, M. Syntheses of some 4-hydroxycoumarins and their condensation products with aldehydes and carboxylic acids. the anticoagulant activity of some 4-hydroxycoumarin derivatives. J. Med. Chem., 1964, 7(3), 284-288.
[http://dx.doi.org/10.1021/jm00333a008] [PMID: 14204961]
[326]
Xu, L.; Wang, Q.; Yuan, M-S.; Zhang, Y. Dicyanomethylene-benzopyran-based alkynyl conjugatable near-infrared fluorescent probe for detection of fluoride anion. ChemistrySelect, 2016, 1(1), 114-118.
[http://dx.doi.org/10.1002/slct.201500049]
[327]
Bell, N.S.; Piech, M. Photophysical effects between spirobenzopyran-methyl methacrylate-functionalized colloidal particles. Langmuir, 2006, 22(4), 1420-1427.
[http://dx.doi.org/10.1021/la0516375] [PMID: 16460056]
[328]
Roy, R.; Rakshit, S.; Bhowmik, T.; Khan, S.; Ghatak, A.; Bhar, S. Substituted 3-E-styryl-2H-chromenes and 3-E-styryl-2H-thiochromenes: synthesis, photophysical studies, anticancer activity, and exploration to tricyclic benzopyran skeleton. J. Org. Chem., 2014, 79(14), 6603-6614.
[http://dx.doi.org/10.1021/jo5011125] [PMID: 24999530]
[329]
Choi, M.G.; Lee, Y.J.; Chang, I.J.; Ryu, H.; Yoon, S.; Chang, S-K. Flatbed-scanner-based colorimetric Cu2+ signaling system derived from a coumarin-benzopyrylium conjugated dye. Sens. Actuators B Chem., 2018, 268, 22-28.
[http://dx.doi.org/10.1016/j.snb.2018.04.068]
[330]
Chen, Y.; Wang, X.; Yang, X-F.; Zhong, Y.; Li, Z.; Li, H. Development of a ratiometric fluorescent probe for sulfite based on a coumarin-benzopyrylium platform. Sens. Actuators B Chem., 2015, 206, 268-275.
[http://dx.doi.org/10.1016/j.snb.2014.09.052]
[331]
Liu, J.; Sun, Y-Q.; Zhang, J.; Yang, T.; Cao, J.; Zhang, L.; Guo, W. A ratiometric fluorescent probe for biological signaling molecule H2S: fast response and high selectivi-ty. Chemistry, 2013, 19(15), 4717-4722.
[http://dx.doi.org/10.1002/chem.201300455] [PMID: 23460538]
[332]
Li, H.D.; Yao, Q.C.; Fan, J.L.; Jiang, N.; Wang, J.Y.; Xia, J.; Peng, X.J. A fluorescent probe for H2S in vivo with fast response and high sensitivity. Chem. Commun. (Camb.), 2015, 51(90), 16225-16228.
[http://dx.doi.org/10.1039/C5CC06612C] [PMID: 26400755]
[333]
Duan, Y-W.; Yang, X-F.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. A ratiometric fluorescent probe for gasotransmitter hydrogen sulfide based on a coumarin-benzopyrylium platform. Anal. Chim. Acta, 2015, 859, 59-65.
[http://dx.doi.org/10.1016/j.aca.2014.12.054] [PMID: 25622606]
[334]
Lv, H.; Yang, X-F.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine. Anal. Chem., 2014, 86(3), 1800-1807.
[http://dx.doi.org/10.1021/ac4038027] [PMID: 24410246]
[335]
Yang, X.; Liu, W.; Tang, J.; Li, P.; Weng, H.; Ye, Y.; Xian, M.; Tang, B.; Zhao, Y. A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals. Chem. Commun. (Camb.), 2018, 54(81), 11387-11390.
[http://dx.doi.org/10.1039/C8CC05418E] [PMID: 30191239]
[336]
Dong, B.; Song, X.; Kong, X.; Wang, C.; Tang, Y.; Liu, Y.; Lin, W. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium. Adv. Mater., 2016, 28(39), 8755-8759.
[http://dx.doi.org/10.1002/adma.201602939] [PMID: 27545434]
[337]
Li, K-T.; Lin, Y-B.; Yang, D-Y. One-pot synthesis of pyranocoumarins via microwave-assisted pseudo multicomponent reactions and their molecular switching prop-erties. Org. Lett., 2012, 14(5), 1190-1193.
[http://dx.doi.org/10.1021/ol203229z] [PMID: 22332883]
[338]
Masamune, S.; Castellucci, N.T. Pyran. J. Am. Chem. Soc., 1962, 84(12), 2452-2453.
[http://dx.doi.org/10.1021/ja00871a037]
[339]
Hiremath, P.B.; Kantharaju, K. An efficient and facile synthesis of 2-amino-4H-pyrans and tetrahydrobenzo[b]pyrans catalysed by WEMFSA at room temperature. ChemistrySelect, 2020, 5(6), 1896-1906.
[http://dx.doi.org/10.1002/slct.201904336]
[340]
El-Sayed, E.H.; Fadda, A.A. Synthesis and antimicrobial activity of some novel bis polyfunctional pyridine, pyran, and thiazole derivatives. J. Heterocycl. Chem., 2018, 55(10), 2251-2260.
[http://dx.doi.org/10.1002/jhet.3276]
[341]
Wang, J.P.; Tsao, L.T.; Raung, S.L.; Lin, P.L.; Lin, C.N. Stimulation of respiratory burst by cyclocommunin in rat neutrophils is associated with the increase in cellular Ca2+ and protein kinase C activity. Free Radic. Biol. Med., 1999, 26(5-6), 580-588.
[http://dx.doi.org/10.1016/S0891-5849(98)00230-5] [PMID: 10218646]
[342]
Vardhan Reddy, K.H.; Brion, J-D.; Messaoudi, S.; Alami, M. Synthesis of biheterocycles based on quinolinone, chromone, and coumarin scaffolds by palladium-catalyzed decarboxylative couplings. J. Org. Chem., 2016, 81(2), 424-432.
[http://dx.doi.org/10.1021/acs.joc.5b02103] [PMID: 26691351]
[343]
Fang, M.; Adhikari, R.; Bi, J.; Mazi, W.; Dorh, N.; Wang, J.; Conner, N.; Ainsley, J.; Karabencheva-Christova, T.G.; Luo, F-T.; Tiwari, A.; Liu, H. Fluorescent probes for sensitive and selective detection of ph changes in live cells in visible and near-infrared channels. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(48), 9579-9590.
[http://dx.doi.org/10.1039/C7TB02583A] [PMID: 29607047]
[344]
Basa, S.C. Natural bicoumarins. Phytochemistry, 1988, 27(7), 1933-1941.
[http://dx.doi.org/10.1016/0031-9422(88)80071-2]
[345]
Balachandran, I. Characterization of coumarins from Ipomoea Mauritiana Jacq by LC-APCI-MS/MS analysis and evaluation of its anti-amnesic activity. Beni. Suef Univ. J. Basic Appl. Sci., 2019, 8(1), 24.
[http://dx.doi.org/10.1186/s43088-019-0022-z]
[346]
Kumar, D.; Arya, V.; Kaur, R.; Bhat, Z.A.; Gupta, V.K.; Kumar, V. A review of immunomodulators in the Indian traditional health care system. J. Microbiol. Immunol. Infect., 2012, 45(3), 165-184.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030] [PMID: 22154993]
[347]
Wegner, H.A.; Ahles, S.; Neuburger, M. A new gold-catalyzed domino cyclization and oxidative coupling reaction. Chemistry, 2008, 14(36), 11310-11313.
[http://dx.doi.org/10.1002/chem.200801848] [PMID: 19006147]
[348]
Pujar, K.K.; Kulkarni, M.V.; Alawandi, G.N.; Anilkumar, G.N.; Basanagouda, M. Synthetic and structural studies on novel 4,3′-bicoumarins. Synth. Commun., 2015, 45(17), 2043-2052.
[http://dx.doi.org/10.1080/00397911.2015.1063656]
[349]
Frasinyuk, M.S.; Bondarenko, S.P.; Khilya, V.P. Chemistry of 3-hetarylcoumarins 3*. synthesis and aminomethylation of 7′-hydroxy-3,4′- bicoumarins. Chem. Heterocycl. Compd., 2012, 48(3), 422-426.
[http://dx.doi.org/10.1007/s10593-012-1009-z]
[350]
Zhan, Q-F.; Xia, Z-H.; Wang, J-L.; Lao, A-N. Two new bicoumarins from Trifolium repens L. J. Asian Nat. Prod. Res., 2003, 5(4), 303-306.
[http://dx.doi.org/10.1080/1028602031000111978] [PMID: 14604241]
[351]
Ramírez-Camejo, L.A.; Zuluaga-Montero, A.; Lázaro-Escudero, M.; Hernández-Kendall, V.; Bayman, P. Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol., 2012, 116(3), 452-463.
[http://dx.doi.org/10.1016/j.funbio.2012.01.006] [PMID: 22385627]
[352]
TePaske, M.R.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Aflavarin and β-aflatrem: new anti-insectan metabolites from the sclerotia of Aspergillus flavus. J. Nat. Prod., 1992, 55(8), 1080-1086.
[http://dx.doi.org/10.1021/np50086a008]
[353]
Nozawa, K.; Nakajima, S.; Kawai, K-I.; Udagawa, S-I.; Miyaji, M. Bicoumarins from Ascostromata of Petromyces alliaceus. Phytochemistry, 1994, 35(4), 1049-1051.
[http://dx.doi.org/10.1016/S0031-9422(00)90666-6]
[354]
Gao, X.; Huang, S.; Dong, P.; Wang, C.; Hou, J.; Huo, X.; Zhang, B.; Ma, T.; Ma, X. Horseradish Peroxidase (HRP): A tool for catalyzing the formation of novel bicouma-rins. Catal. Sci. Technol., 2016, 6(10), 3585-3593.
[http://dx.doi.org/10.1039/C5CY01682G]
[355]
Yamaguchi, Y.; Nishizono, N.; Kobayashi, D.; Yoshimura, T.; Wada, K.; Oda, K. Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(12), 2645-2649.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.062] [PMID: 28512028]
[356]
Archer, G.A.; Sternbach, L.H. Chemistry of benzodiazepines. Chem. Rev., 1968, 68(6), 747-784.
[http://dx.doi.org/10.1021/cr60256a004]
[357]
Schmitz, A. Benzodiazepine use, misuse, and abuse: A review. Ment. Health Clin., 2016, 6(3), 120-126.
[http://dx.doi.org/10.9740/mhc.2016.05.120] [PMID: 29955458]
[358]
Meagher, T.P.; Murugan, R. 13.04 - 1,2-Diazepines; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V; Elsevier: Oxford, 2008, pp. 143-160.
[http://dx.doi.org/10.1016/B978-008044992-0.01204-9]
[359]
Yoshihana, I.; Okuhaara, M.; Yamamoto, T.; Ishawa, N.; Dohi, Y.; Otiyma, T.; Marayana, K.; Matsuzaki, Y.; Kasamatsu, S. EP 435, 1992.
[360]
Lacan, M.; Cacic, M.; Cizmar, V. Glas. Hem. Drus. Beogr., 1981, 46(10), 531.
[361]
Kusanur, R.A.; Ghate, M.; Kulkarni, M.V. Synthesis of spiro[indolo-1,5-benzodiazepines] from 3-acetyl coumarins for use as possible antianxiety agents. J. Chem. Sci., 2004, 116(5), 265-270.
[http://dx.doi.org/10.1007/BF02708277]
[362]
Holiyachi, M.; Shastri, S.L.; Chougala, B.M.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Nagarajaiah, H.; Sunagar, V.A. Design, synthesis and structure-activity relationship study of coumarin benzimidazole hybrid as potent antibacterial and anticancer agents. ChemistrySelect, 2016, 1(15), 4638-4644.
[http://dx.doi.org/10.1002/slct.201600665]
[363]
Holiyachi, M.; Shastri, S.; Chougala, B.M.; Naik, N.S.; Madar, J.M.; Shaikh, F.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Sunagar, V.A.; Shivasarana, C.T. Synthesis and molecular docking studies of coumarin-imidazole conjugates as potential antimicrobial agents. Indian J. Chem. - Sect. B Org. Med. Chem., 2020, 59B(01), 110-125.
[364]
Holiyachi, M.; Samundeeswari, S.; Chougala, B.M.; Naik, N.S.; Madar, J.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Dodamani, S.; Jalalpure, S.; Sunagar, V.A. Design and synthesis of coumarin-imidazole hybrid and phenyl-imidazoloacrylates as potent antimicrobial and antiinflammatory agents. Monatshefte für Chemie - Chem. Mon., 2018, 149(3), 595-609.
[http://dx.doi.org/10.1007/s00706-017-2079-5]
[365]
Madar, J.M.; Shastri, L.A.; Shastri, S.; Holiyachi, M.; Naik, N.S.; Shaikh, F.; Sungar, V.A.; Joshi, S.D. Synthesis and characterization of coumarin-4-thiazolidinone scaf-folds as new class of anti-tuberculosis and antibacterial agents. IOSR J. Appl. Chem., 2018, 11(7), 77-101.
[366]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approach-es. PLoS One, 2015, 10(7), e0132175.
[http://dx.doi.org/10.1371/journal.pone.0132175] [PMID: 26147722]
[367]
Emmanuel-Giota, A.A.; Fylaktakidou, K.C.; Litinas, K.E.; Nicolaides, D.N.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of several 3-(coumarin-4-yl)tetrahydroisoxazole and 3-(coumarin-4-yl)dihydropyrazole derivatives. J. Heterocycl. Chem., 2001, 38(3), 717-722.
[http://dx.doi.org/10.1002/jhet.5570380329]
[368]
Patagar, D.; Kusanur, R.; Sitwala, N.D.; Ghate, M.D.; Saravanakumar, S.; Nembenna, S.; Gediya, P.A. Synthesis of novel 4-substituted coumarins, docking studies, and DHODH inhibitory activity. J. Heterocycl. Chem., 2019, 56(10), 2761-2771.
[http://dx.doi.org/10.1002/jhet.3644]
[369]
Brites, N.P.; Dilelio, M.C.; Martins, G.M.; do Carmo, G.; Morel, A.F.; Kaufman, T.S.; Silveira, C.C. Synthesis and antifungal activity of 4- and 6-(1H-pyrrol-1-yl) couma-rins, and their thiocyanato derivatives. ChemistrySelect, 2019, 4(19), 5398-5406.
[http://dx.doi.org/10.1002/slct.201900842]
[370]
Zhang, W.; Li, Z.; Zhou, M.; Wu, F.; Hou, X.; Luo, H.; Liu, H.; Han, X.; Yan, G.; Ding, Z.; Li, R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 799-807.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.095] [PMID: 24418772]
[371]
He, X-P.; Song, Z.; Wang, Z-Z.; Shi, X-X.; Chen, K.; Chen, G-R. Creation of 3,4-bis-triazolocoumarin-sugar conjugates via flourogenic dual click chemistry and their quenching specificity with silver(I) in aqueous media. Tetrahedron, 2011, 67(19), 3343-3347.
[http://dx.doi.org/10.1016/j.tet.2011.03.068]
[372]
Shaikh, F.; Shastri, S.L.; Naik, N.S.; Kulkarni, R.; Madar, J.M.; Shastri, L.A.; Joshi, S.D.; Sunagar, V. Synthesis, Antitubercular and antimicrobial activity of 1,2,4-triazolidine-3-thione functionalized coumarin and phenyl derivatives and molecular docking studies. ChemistrySelect, 2019, 4(1), 105-115.
[http://dx.doi.org/10.1002/slct.201802395]
[373]
Nicolaides, D.N.; Fylaktakidou, K.C.; Litinas, K.E.; Hadjipavlou-Litina, D. Synthesis and biological evaluation of some 4-(isoxazolinyl or 1,2,4-oxadiazolyl) couma-rins. J. Heterocycl. Chem., 1996, 33(3), 967-971.
[http://dx.doi.org/10.1002/jhet.5570330367]
[374]
Nicolaides, D.N.; Fylaktakidou, K.C.; Litinas, K.E.; Papageorgiou, G.K.; Hadjipavlou-Litina, D.J. 1,3-cycloaddition reactions of 2-oxo-2H-[1]benzopyran-4-carbonitrile N-oxide. synthesis of several new 4-substituted coumarins. J. Heterocycl. Chem., 1998, 35(3), 619-625.
[http://dx.doi.org/10.1002/jhet.5570350321]
[375]
Sheng, J.; Fan, C.; Wu, J. Generation of 4-substituted coumarins via C-H bond activation under Palladium bromide-copper(I) bromide cooperative catalysis. Tetrahedron, 2013, 69(48), 10230-10234.
[http://dx.doi.org/10.1016/j.tet.2013.10.043]
[376]
Nicolaides, D.N.; Fylaktakidou, K.C.; Litinas, K.E.; Hadjipavlou-Litina, D. Synthesis and biological evaluation of several coumarin-4-carboxamidoxime and 3-(coumarin-4-yl)-1,2,4-oxadiazole derivatives. Eur. J. Med. Chem., 1998, 33(9), 715-724.
[http://dx.doi.org/10.1016/S0223-5234(98)80030-5]
[377]
Sreenivasalu, B.; Sundaramurthy, V.; Subharao, N.V. J. Indian Chem. Soc., 1974, 51, 488.
[378]
Hanmantgad, S.S.; Kulkarni, M.V.; Patil, V.D.; Indian, J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1986, 25B, 779.
[379]
Ghate, M.; Manohar, D.; Kulkarni, V.; Shobha, R.; Kattimani, S.Y. Synthesis of vanillin ethers from 4-(bromomethyl) coumarins as anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38(3), 297-302.
[http://dx.doi.org/10.1016/S0223-5234(03)00016-3] [PMID: 12667696]
[380]
Boregowda, P.; Kalegowda, S.; Rasal, V.P.; Eluru, J.; Koyye, E. Synthesis and biological evaluation of 4-(3-hydroxy-benzofuran-2-yl)coumarins. Org. Chem. Int., 2014, 2014, 297586.
[http://dx.doi.org/10.1155/2014/297586]
[381]
Anklekar, K.Y.; Lakkannavar, C.D.; Kulkarni, G.M.; Kulkarni, M.V. Synthesis, spectral studies and biological evaluation of some new 4-substituled coumarins. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 2003, 42B, 1548.
[382]
Ghate, M.; Kulkarni, M.V. Synthesis and anti-inflammatory activity of 4-(5′-acetyl-6′-hydroxy-3′-methyl-benzofuran-2′-yl) coumarin and 6-acetyl-3, 7-dimethyl-2-(coumarin-4′-yl) furo [3, 2-g] chromen-5-one. Indian J. Chem. - Sect. B Org. Med. Chem., 2005, 44B, 1674.
[383]
Khan, I.A.; Kulkarni, M.V.; Gopal, M.; Shahabuddin, M.S.; Sun, C-M. Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. Bioorg. Med. Chem. Lett., 2005, 15(15), 3584-3587.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.063] [PMID: 15967664]
[384]
Khan, I.A.; Kulkarni, M.V.; Sun, C-M. One pot synthesis of oxygenated tri-heterocycles as anti-microbial agents. Eur. J. Med. Chem., 2005, 40(11), 1168-1172.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.007] [PMID: 15992968]
[385]
Madar, J.M.; Shastri, L.A.; Shastri, S.L.; Holiyachi, M.; Naik, N.S.; Shaikh, F.; Kumbar, V.M.; Bhat, K.G.; Joshi, S.D.; Sungar, V.A. The anti-inflammatory design, synthe-sis and exploiting pharmacological activities of 2,3-dihydrofuranocoumarins as multi-therapeutic agents. ChemistrySelect, 2018, 3(38), 10738-10749.
[http://dx.doi.org/10.1002/slct.201802196]
[386]
Kulkarni, M.V.; Khan, I. Synthesis and biological evaluation of some sterically hindered 4-[2′- benzo(b)furanyl]coumarin. Indian J. Chem. - Sect. B Org. Med. Chem. (N.Y.), 1999, 38B, 491.
[387]
Shastri, L.A.; Shastri, S.L.; Kulkarni, M.V.; Gupta, V.K.; Goswami, S. Stereoselective synthesis of cis-substituted-3′-anilino-2′ 3′-dihydro-4-2′-benzo[b]furanylcoumarins via intramolecular aldol reactions. Int. J. Org. Chem. (Irvine), 2012, 2(1), 44-48.
[http://dx.doi.org/10.4236/ijoc.2012.21008]
[388]
Yaragatti, N.B.; Kulkarni, M.V.; Shcherbakov, I.N. Synthesis, modeling and biological studies on 4-2′(2, 3- dihydrobenzofuranyl) coumarins. ARKIVOC, 2012, viii, 1-16.
[http://dx.doi.org/10.3998/ark.5550190.0013.801]
[389]
Kumari, T.U.; Krupadanam, G.L.D.; Srimannarayana, G.; Padmavathi, D.A.; Bhavani, A.K.D.; Veeresham, S. Photooxidative cyclization of 3-aryl/heteroaryl-4-heteroaryl coumarins: An experimental and semi-empirical study. Heterocycl. Commun., 2012, 18(5-6), 269-274.
[http://dx.doi.org/10.1515/hc-2012-0128]
[390]
Wu, J.; Liao, Y.; Yang, Z. Synthesis of 4-substituted coumarins via the palladium-catalyzed cross-couplings of 4-tosylcoumarins with terminal acetylenes and or-ganozinc reagents. J. Org. Chem., 2001, 66(10), 3642-3645.
[http://dx.doi.org/10.1021/jo0102157] [PMID: 11348165]
[391]
Rajale, T.; Sharma, S.; Stroud, D.A.; Unruh, D.K.; Miaou, E.; Lai, K.; Birney, D.M. An efficient synthesis of 4-substituted coumarin derivatives via a palladium-catalyzed suzuki cross-coupling reaction. Tetrahedron Lett., 2014, 55(49), 6627-6630.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.078]
[392]
Bardasov, I.N.; Alekseeva, A.U.; Ershov, O.V.; Surazhskaya, M.D.; Churakov, A.V.; Grishanov, D.A. New approach to synthesis of 4-arylcoumarin derivatives. Tetrahedron Lett., 2015, 56(44), 6145-6148.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.111]
[393]
Sharma, H.; Mourya, M.; Soni, L.K.; Guin, D.; Joshi, Y.C.; Dobhal, M.P.; Basak, A.K. Iodine mediated synthesis of coumarins from chromenes. Tetrahedron Lett., 2015, 56(51), 7100-7104.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.019]
[394]
Frasinyuk, M.S.; Gorelov, S.V.; Bondarenko, S.P.; Khilya, V.P. Synthesis and properties of 4-(3-amino-2-benzofuranyl)-coumarins. Chem. Heterocycl. Compd., 2009, 45(10), 1261-1269.
[http://dx.doi.org/10.1007/s10593-010-0417-1]
[395]
Shastri, S.; Chougala, B.; Holiyachi, M.; Shastri, L.; Hunnur, R.; Sunagar, V. Synthesis of coumarin analogous of decursivine derivatives. Synth. Commun., 2016, 46(10), 869-877.
[http://dx.doi.org/10.1080/00397911.2016.1171359]
[396]
Shastri, L.A.; Kulkarni, M.V.; Gupta, V.; Sharma, N. First thermal chemoselective synthesis of novel 2′,3′‐dihydro‐3′‐hydroxy‐benzofuranylcoumarins. Synth. Commun., 2008, 38(9), 1407-1415.
[http://dx.doi.org/10.1080/00397910801914251]
[397]
Wu, J.; Yang, Z. Nickel-catalyzed cross-couplings of 4-diethylphosphonooxycoumarins with organozinc reagents: An efficient new methodology for the synthesis of 4-substituted coumarins. J. Org. Chem., 2001, 66(23), 7875-7878.
[http://dx.doi.org/10.1021/jo010452+] [PMID: 11701051]
[398]
Irgashev, R.A.; Karmatsky, A.A.; Rusinov, G.L.; Charushin, V.N. Synthesis of 4-(thien-2-yl)-substituted coumarins through lewis acid catalyzed michael addition of thiophenes to 3-benzoylcoumarins followed by oxidation. Tetrahedron Lett., 2014, 55(26), 3603-3606.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.112]
[399]
Mashelkar, U.C.; Audi, A.A. Synthesis of some novel 4-substituted coumarins having potential biological activity (part III). Indian J. Chem. - Sect. B Org. Med. Chem., 2006, 45B, 1463-1469.
[400]
Anand, A.; Yenagi, J.; Tonnanavar, J.; Kulkarni, M.V. Cyclopropanes in water: A diastereoselective synthesis of substituted 2H-chromen-2-one and quinolin-2(1H)-one linked cyclopropane. Green Chem., 2016, 18, 2201-2205.
[http://dx.doi.org/10.1039/C5GC02443A]
[401]
Lin, G.; Lei, J.; Xu, M.; Ren, J. Coumarins compounds, the preparation and the use thereof. EP1634878A1, 2003.
[402]
Naik, N.S.; Shastri, L.A.; Shastri, S.L.; Chougala, B.M.; Shaikh, F.; Madar, J.M.; Kulkarni, R.C.; Dodamani, S.; Jalalpure, S.; Joshi, S.D.; Sunagar, V. Synthesis of poly-functionalized fused pyrazolo-pyridines: characterization, anticancer activity, protein binding and molecular docking studies. ChemistrySelect, 2019, 4(1), 285-297.
[http://dx.doi.org/10.1002/slct.201802927]
[403]
Chougala, B.M.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Microwave synthesis of coumarinyl substi-tuted pyridine derivatives as potent anticancer agents and molecular docking studies. ChemistrySelect, 2017, 2(18), 5234-5242.
[http://dx.doi.org/10.1002/slct.201700358]
[404]
Naik, N.S.; Shastri, L.A.; Bathula, C.; Chougala, B.; Shastri, S.; Holiyachi, M.; Sunagar, V. Synthesis, characterization and photophysical studies of tricoumarin-pyridines. J. Fluoresc., 2017, 27(2), 419-425.
[http://dx.doi.org/10.1007/s10895-016-2018-6] [PMID: 28070796]
[405]
Schio, L.; Chatreaux, F.; Klich, M. Tosylates in palladium-catalysed coupling reactions. Application to the synthesis of arylcoumarin inhibitors of Gyrase B. Tetrahedron Lett., 2000, 41(10), 1543-1547.
[http://dx.doi.org/10.1016/S0040-4039(99)02351-5]
[406]
Rieke, R.D.; Kim, S-H. A novel organozinc reagent 4-coumarinylzinc bromide; preparation and application in the synthesis of 4-substituted coumarin derivatives. Tetrahedron Lett., 2011, 52(24), 3094-3096.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.151]
[407]
Zhou, X.; Wang, X-B.; Wang, T.; Kong, L-Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg. Med. Chem., 2008, 16(17), 8011-8021.
[http://dx.doi.org/10.1016/j.bmc.2008.07.068] [PMID: 18701305]
[408]
Schio, L.; Chatreaux, F.; Loyau, V.; Murer, M.; Ferreira, A.; Mauvais, P.; Bonnefoy, A.; Klich, M. Fine Tuning of physico-chemical parameters to optimise a new series of novobiocin analogues. Bioorg. Med. Chem. Lett., 2001, 11(11), 1461-1464.
[http://dx.doi.org/10.1016/S0960-894X(01)00257-8] [PMID: 11378377]
[409]
Kaur, P.; Gill, R.K.; Singh, G.; Bariwal, J. Synthesis, cytotoxic evaluation, and in silico studies of 4-substituted coumarins. J. Heterocycl. Chem., 2016, 53(5), 1519-1527.
[http://dx.doi.org/10.1002/jhet.2458]
[410]
Modh, R.P.; Kumar, S.P.; Jasrai, Y.T.; Chikhalia, K.H. Design, synthesis, biological evaluation, and molecular modeling of coumarin-piperazine derivatives as acetylcho-linesterase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(11), 793-804.
[http://dx.doi.org/10.1002/ardp.201300242] [PMID: 24591157]
[411]
Kang, J.; Huo, F.; Zhang, Y.; Chao, J.; Strongin, R.M.; Yin, C. Detecting intracellular ClO- with ratiometric fluorescent signal and its application in vivo. Sens. Actuators B Chem., 2018, 273, 1532-1538.
[http://dx.doi.org/10.1016/j.snb.2018.07.072]
[412]
V, M.; Kulkarni, M.V.; Shah, A.; Alagawadi, K.R. Mannich reaction as a new route for the synthesis of tetrahydro pyrimido benzimidazolyl coumarins. J. Heterocycl. Chem., 2014, 51(6), 1705-1711.
[http://dx.doi.org/10.1002/jhet.1832]
[413]
Naik, N.S.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shaikh, F.; Madar, J.; Kulkarni, R.; Sunagar, V. 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: Synthesis, biological evaluation and molecular modelling study. Bioorg. Med. Chem., 2017, 25(4), 1413-1422.
[http://dx.doi.org/10.1016/j.bmc.2017.01.001] [PMID: 28094219]
[414]
Shastri, L.A.; Shivashankar, K.; Kulkarni, M.V. Facile synthesis of some novel 4-{3-aryl-3, 4-dihydro-2H-benzo[b][1,4] thiazin-2-yl}-2H-chromen-2-one derivatives. J. Sulfur Chem., 2007, 28(6), 625-630.
[http://dx.doi.org/10.1080/17415990701591286]
[415]
Shaikh, F.; Shastri, S.; Chougala, B.M.; Holiyachi, M.; Shastri, L.A.; Joshi, S.D.; Sunagar, V.A. Synthesis of 2,3-dihydro flavone coumarins as a class of potent antifungal and anti-inflammatory agents. ChemistrySelect, 2018, 3(12), 3451-3458.
[http://dx.doi.org/10.1002/slct.201800120]
[416]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected syn-thesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[417]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[418]
Saxena, A.; Shastri, L.; Sunagar, V. Green approach for the synthesis of 4-coumarin-4H-pyrans from 4-formylcoumarins and their antibacterial study. Synth. Commun., 2017, 47(17), 1570-1576.
[http://dx.doi.org/10.1080/00397911.2017.1336557]
[419]
Kawata, H.; Ichikawa, S.; Kumagai, T.; Niizuma, S. A new type of photodimerization reaction for coumarin derivatives. Tetrahedron Lett., 2002, 43(29), 5161-5163.
[http://dx.doi.org/10.1016/S0040-4039(02)00969-3]
[420]
Konde Deshmukh, R.S.; Paradkar, M.V. A facile synthesis of new [4,4′-bi-2h-1-benzopyran]-2,2′-diones. Synth. Commun., 1988, 18(6), 589-596.
[http://dx.doi.org/10.1080/00397918808064016]
[421]
Panichayupakaranant, P.; Noguchi, H.; De-Eknamkul, W. A new biscoumarin from Impatiens balsamina root cultures. Planta Med., 1998, 64(8), 774-775.
[http://dx.doi.org/10.1055/s-2006-957583] [PMID: 17253327]
[422]
Lei, J-G.; Lin, G-Q. The first total synthesis of 4,4′-biisofraxidin. Chin. J. Chem., 2002, 20(11), 1263-1267.
[http://dx.doi.org/10.1002/cjoc.20020201119]
[423]
Mulwad, V.V.; Mir, A.A.; Parmar, H.T. Synthesis and antimicrobial screening of 5-benzylidine-2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one and its deriva-tives. Indian J. Chem. - Sect. B Org. Med. Chem., 2009, 48B, 137-141.
[424]
Dalvi, M.B.; Mulwad, V.V. Synthesis of pyrroloisoxazoles. Indian J. Heterocycl. Chem., 2002, 11(3), 195.
[425]
Band, P.M.; Gokhale, N.L.; Jamode, V.S. J. Indian Chem. Soc., 1983, 60(8), 804.
[426]
Galayev, O.; Garazd, Y.; Garazd, M.; Lesyk, R. Synthesis and anticancer activity of 6-heteroarylcoumarins. Eur. J. Med. Chem., 2015, 105, 171-181.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.021] [PMID: 26491980]
[427]
Men, Y.; Li, Z.; Zhang, J.; Tong, Z.; Xi, Z.; Qiu, X.; Yi, L. Rational design and synthesis of fast-response NBD-based fluorescent probes for biothiols. Tetrahedron Lett., 2015, 56(42), 5781-5786.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.073]
[428]
Cui, L.; Ji, C.; Peng, Z.; Zhong, L.; Zhou, C.; Yan, L.; Qu, S.; Zhang, S.; Huang, C.; Qian, X.; Xu, Y. Unique tri-output optical probe for specific and ultrasensitive detec-tion of hydrazine. Anal. Chem., 2014, 86(9), 4611-4617.
[http://dx.doi.org/10.1021/ac5007552] [PMID: 24702027]
[429]
Barman, S.; Mukhopadhyay, S.K.; Gangopadhyay, M.; Biswas, S.; Dey, S.; Singh, N.D.P. Coumarin-benzothiazole-chlorambucil (Cou-Benz-Cbl) conjugate: An ESIPT based pH sensitive photoresponsive drug delivery system. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(17), 3490-3497.
[http://dx.doi.org/10.1039/C4TB02081B] [PMID: 32262232]
[430]
Wang, M.; Han, F.; Yuan, H.; Liu, Q. Tandem Nazarov cyclization-halovinylation of divinyl ketones under Vilsmeier conditions: Synthesis of highly substituted cyclo-pentadienes. Chem. Commun. (Camb.), 2010, 46(13), 2247-2249.
[http://dx.doi.org/10.1039/b917703e] [PMID: 20234921]
[431]
Huang, P.; Zhang, N.; Zhang, R.; Dong, D. Vilsmeier-type reaction of dimethylaminoalkenoyl cyclopropanes: One-pot access to 2,3-dihydrofuro [3,2-c]pyridin-4(5H)-ones. Org. Lett., 2012, 14(1), 370-373.
[http://dx.doi.org/10.1021/ol203124f] [PMID: 22168361]
[432]
Nagamallu, R.; Kariyappa, A.K. Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett., 2013, 23(23), 6406-6409.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.053] [PMID: 24120538]
[433]
Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[434]
Ronad, P.M.; Noolvi, M.N.; Sapkal, S.; Dharbhamulla, S.; Maddi, V.S. Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl)-benzopyran-2-one derivatives. Eur. J. Med. Chem., 2010, 45(1), 85-89.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.028] [PMID: 19837487]
[435]
Pokhodylo, N.T.; Obushak, N.D. Synthesis of 6-(5-sulfanyl-1H-tetrazol-1-yl)-2H-chromen-2-one and 5-methyl-1-(2-oxo-2H-chromen-6-yl)-1H-1,2,3-triazole-4-carboxylic acid. Russ. J. Org. Chem., 2010, 46(11), 1748-1749.
[http://dx.doi.org/10.1134/S1070428010110242]
[436]
Das, A.; Roy, H.; Ansary, I. Microwave-assisted, one-pot three-component synthesis of 6-(pyrrolyl) coumarin/quinolone derivatives catalyzed by In(III) chloride. ChemistrySelect, 2018, 3(33), 9592-9595.
[http://dx.doi.org/10.1002/slct.201801931]
[437]
Ansary, I.; Roy, H.; Das, A.; Mitra, D.; Bandyopadhyay, A.K. Regioselective synthesis, molecular descriptors of (1,5-disubstituted 1,2,3-triazolyl)coumarin/quinolone derivatives and their docking studies against cancer targets. ChemistrySelect, 2019, 4(12), 3486-3494.
[http://dx.doi.org/10.1002/slct.201900114]
[438]
Sashidhara, K.V.; Avula, S.R.; Sharma, K.; Palnati, G.R.; Bathula, S.R. Discovery of coumarin-monastrol hybrid as potential antibreast tumor-specific agent. Eur. J. Med. Chem., 2013, 60, 120-127.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.044] [PMID: 23287057]
[439]
Sashidhara, K.V.; Modukuri, R.K.; Singh, S.; Bhaskara Rao, K.; Aruna Teja, G.; Gupta, S.; Shukla, S. Design and synthesis of new series of coumarin-aminopyran deriva-tives possessing potential anti-depressant-like activity. Bioorg. Med. Chem. Lett., 2015, 25(2), 337-341.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.036] [PMID: 25488839]
[440]
Ullah, N.; Ahmed, S.; Malik, A. A dicoumarin glycoside from Daphne Oleoides. Phytochemistry, 1999, 51(1), 99-101.
[http://dx.doi.org/10.1016/S0031-9422(98)00726-2]
[441]
Liang, S.; Shen, Y-H.; Tian, J-M.; Wu, Z-J.; Jin, H-Z.; Zhang, W-D.; Yan, S-K. Three new dicoumarins from Daphne Feddei. Helv. Chim. Acta, 2009, 92(1), 133-138.
[http://dx.doi.org/10.1002/hlca.200800232]
[442]
Laakso, J.A.; Narske, E.D.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F.; Isokotanins, A.C. Isokotanins A-C: new bicoumarins from the sclerotia of Aspergillus alliaceus. J. Nat. Prod., 1994, 57(1), 128-133.
[http://dx.doi.org/10.1021/np50103a018] [PMID: 8158157]
[443]
Joshi, P.C. Mandal (nee Sarkar), S.; Das, P. C. Jayantinin, a dimeric coumarin from Boenninghausenia Albiflora. Phytochemistry, 1989, 28(4), 1281-1283.
[http://dx.doi.org/10.1016/0031-9422(89)80236-5]
[444]
Baba, K.; Taniguti, M.; Yoneda, Y.; Kozawa, M. Coumarin glycosides from Edgeworthia Chrysantha. Phytochemistry, 1990, 29(1), 247-249.
[http://dx.doi.org/10.1016/0031-9422(90)89043-9]
[445]
Nozawa, K.; Seyea, H.; Nakajima, S.; Udagawa, S.; Kawai, K. Studies on fungal products. Part 10. Isolation and structures of novel bicoumarins, desertorins A, B, and C, from Emericella Desertorum. J. Chem. Soc., Perkin Trans. 1, 1987, 1735-1738.
[http://dx.doi.org/10.1039/p19870001735]
[446]
Riaz, M.; Malik, A. Structure determination of daphjamilin, a new bicoumarin glycoside, by NMR spectroscopy. Magn. Reson. Chem., 2001, 39(10), 641-642.
[http://dx.doi.org/10.1002/mrc.873]
[447]
Ayaz, M.; Lodhi, M.A.; Riaz, M.; Ul-haq, A.; Malik, A.; Choudhary, M.I. Novel urease inhibitors from Daphne oleoids. J. Enzyme Inhib. Med. Chem., 2006, 21(5), 527-529.
[http://dx.doi.org/10.1080/14756360600774470] [PMID: 17194022]
[448]
Riaz, M.; Malik, A.; Sadhozai, S.K.; Hussain, M.; Ullah, N. Daphwazirin, biscoumarin glycopyranoside from Daphne oleoides. Nat. Prod. Lett., 2001, 15(6), 433-438.
[http://dx.doi.org/10.1080/10575630108041314] [PMID: 11838982]
[449]
Miyazaki, T.; Mihashi, S. Studies on the constituents of Boenninghausenia Albiflora meissner Var. Japonica S. Suzuki. I. structure of Matsukaze-Lactone.(1). Chem. Pharm. Bull. (Tokyo), 1964, 12(10), 1232-1235.
[http://dx.doi.org/10.1248/cpb.12.1232] [PMID: 14241642]
[450]
Arisawa, M.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. Ipomopsin, a new biscoumarin from Ipomopsis Aggregata. J. Nat. Prod., 1984, 47(1), 106-112.
[http://dx.doi.org/10.1021/np50031a014]
[451]
Su, B-N.; Park, E.J.; Mbwambo, Z.H.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. New chemical constituents of Euphorbia quinque-costata and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J. Nat. Prod., 2002, 65(9), 1278-1282.
[http://dx.doi.org/10.1021/np0202475] [PMID: 12350147]
[452]
Spencer, R.R.; Witt, S.C.; Lundin, R.E.; Bickoff, E.M. Bicoumol, a new bicoumarinyl, from Ladino Clover. J. Agric. Food Chem., 1967, 15(3), 536-538.
[http://dx.doi.org/10.1021/jf60151a036]
[453]
Khulbe, K.; Sati, S.C. Antibacterial activity of Boenninghausenia Albiflora reichb.(Rutaceae). Afr. J. Biotechnol., 2009, 8(22), 634-6348.
[454]
Basa, S.C.; Das, S.P.; Tripathy, R.N.; Elango, V.; Shamma, M. Bhubaneswin: A new bicoumarin. Heterocycles, 1984, 22(2), 333-337.
[http://dx.doi.org/10.3987/R-1984-02-0333]
[455]
Zhou, H.Y.; Hong, J.L.; Shu, P.; Ni, Y.J.; Qin, M.J. A new dicoumarin and anticoagulant activity from Viola yedoensis Makino. Fitoterapia, 2009, 80(5), 283-285.
[http://dx.doi.org/10.1016/j.fitote.2009.03.005] [PMID: 19306914]
[456]
Dutta, P.K.; Banerjee, D.; Dutta, N.L. Euphorbetin: A new bicoumarin from Euphorbia Lathyris L. Tetrahedron Lett., 1972, 13(7), 601-604.
[http://dx.doi.org/10.1016/S0040-4039(01)84388-4]
[457]
Huang, J.; Yang, J.; Xue, Q.; Yu, L.; Zhang, D. [Studies on chemical constituents from herbs of Viola yedoensis Zhongguo Zhongyao Zazhi, 2009, 34(9), 1114-1116.
[PMID: 19685747]
[458]
Dutta, P.K.; Banerjee, D.; Dutta, N.L. Isoeuphorbetin: A novel bicoumarin from Euphorbia Lathyris. Indian J. Chem., 1975, 11, 831.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy