Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

FIGNL1 Expression and its Prognostic Significance in Pan-cancer Analysis

Author(s): Zicheng Zhen, Minghao Li*, Muyan Zhong, Liqun Ye and Xiaofang Ma

Volume 25, Issue 13, 2022

Published on: 14 April, 2022

Page: [2180 - 2190] Pages: 11

DOI: 10.2174/1386207325666220301110517

Price: $65

Abstract

Background: Fidgetin-like 1 (FIGNL1), a subfamily member of ATPases, is associated with diverse cellular activities (AAA proteins). FIGNL1 is involved in DNA repair. However, the latest study has indicated that FIGNL1 plays a crucial role in the occurrence and development of malignant tumors.

Methods: FIGNL1 expression was analyzed via Oncomine and GEPIA databases, and its prognostic potential was analyzed using OncoLnc, UALCAN, and GEPIA databases. Moreover, the promoter methylation of FIGNL1 was analyzed through the UALCAN database. FIGNL1-related gene network was found within STRING. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were investigated across WebGestalt. FIGNL1 correlation with cancer immune infiltrates was estimated using the Tumor Immune Estimation Resource (TIMER) database.

Results: We found that FIGNL1 is widely overexpressed in multiple human cancers, and its high expression was correlated with the poor prognosis of patients with kidney renal clear-cell carcinoma (KIRP), low-grade glioma (LGG) of brain and liver hepatocellular carcinoma (LIHC). Additionally, the promoter methylation level of FIGNL1 showed a statistical significance between normal and primary tissues in KIRP and LGG via the UALCAN (P < 0.0001). FIGNL1 expression was highly correlated with the infiltrating levels of CD8+ T and CD4+ T cells, dendritic cells (DCs), macrophages, and neutrophils in LIHC.

Conclusions: In this study, the correlation of FIGNL1 expression with the prognosis, promoter methylation, and immune infiltrates in KIRP, LGG, and LIHC was revealed. These findings suggested that FIGNL1 promised to be a prognostic biomarker for KIRP, LGG, and LIHC.

Keywords: FIGNL1, prognosis biomarker, expression, methylation, pan-cancer, mutation.

Graphical Abstract

[1]
Pinsky, P.F. Lung cancer screening with low-dose CT: A world-wide view. Transl. Lung Cancer Res., 2018, 7(3), 234-242.
[http://dx.doi.org/10.21037/tlcr.2018.05.12] [PMID: 30050762]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; Sherman, R.L.; Wu, M.; Benard, V.B.; Richardson, L.C.; Jemal, A.; Cronin, K.; Kohler, B.A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2020, 126(10), 2225-2249.
[http://dx.doi.org/10.1002/cncr.32802] [PMID: 32162336]
[4]
Harding, M.C.; Sloan, C.D.; Merrill, R.M.; Harding, T.M.; Thacker, B.J.; Thacker, E.L. Transitions from heart disease to cancer as the leading cause of death in US States, 1999-2016. Prev. Chronic Dis., 2018, 15, E158.
[http://dx.doi.org/10.5888/pcd15.180151] [PMID: 30576276]
[5]
Park, J.; Suh, B.; Shin, D.W.; Hong, J.H.; Ahn, H. Cause of death in Korean men with prostate cancer: An analysis of time trends in a nationwide Cohort. J. Korean Med. Sci., 2016, 31(11), 1802-1807.
[http://dx.doi.org/10.3346/jkms.2016.31.11.1802] [PMID: 27709860]
[6]
Luke-Glaser, S.; Pintard, L.; Tyers, M.; Peter, M. The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the C. elegans germ line. J. Cell Sci., 2007, 120(Pt 18), 3179-3187.
[http://dx.doi.org/10.1242/jcs.015883] [PMID: 17878235]
[7]
Joly, N.; Zhang, N.; Buck, M.; Zhang, X. Coupling AAA protein function to regulated gene expression. Biochim. Biophys. Acta, 2012, 1823(1), 108-116.
[http://dx.doi.org/10.1016/j.bbamcr.2011.08.012] [PMID: 21906631]
[8]
Miller, J.M.; Enemark, E.J. Fundamental characteristics of AAA+ protein family structure and function. Archaea, 2016, 2016, 9294307.
[http://dx.doi.org/10.1155/2016/9294307] [PMID: 27703410]
[9]
Kowalczykowski, S.C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol., 2015, 7(11), a016410.
[http://dx.doi.org/10.1101/cshperspect.a016410] [PMID: 26525148]
[10]
Matsuzaki, K.; Kondo, S.; Ishikawa, T.; Shinohara, A. Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase. Nat. Commun., 2019, 10(1), 1407.
[http://dx.doi.org/10.1038/s41467-019-09190-1] [PMID: 30926776]
[11]
Yuan, J.; Chen, J. FIGNL1-containing protein complex is required for efficient homologous recombination repair. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10640-10645.
[http://dx.doi.org/10.1073/pnas.1220662110] [PMID: 23754376]
[12]
Park, S.J.; Kim, S.J.; Rhee, Y.; Byun, J.H.; Kim, S.H.; Kim, M.H.; Lee, E.J.; Lim, S.K. Fidgetin-like 1 gene inhibited by basic fibroblast growth factor regulates the proliferation and differentiation of osteoblasts. J. Bone Miner. Res., 2007, 22(6), 889-896.
[http://dx.doi.org/10.1359/jbmr.070311] [PMID: 17352653]
[13]
Li, W.; Zhang, G.; Li, X.; Wang, X.; Li, Q.; Hong, L.; Shen, Y.; Zhao, C.; Gong, X.; Chen, Y.; Zhou, J. Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma. Biochem. Biophys. Res. Commun., 2018, 499(3), 416-424.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.129] [PMID: 29567476]
[14]
Ma, J.; Li, J.; Yao, X.; Lin, S.; Gu, Y.; Xu, J.; Deng, Z.; Ma, W.; Zhang, H. FIGNL1 is overexpressed in small cell lung cancer patients and enhances NCI-H446 cell resistance to cisplatin and etoposide. Oncol. Rep., 2017, 37(4), 1935-1942.
[http://dx.doi.org/10.3892/or.2017.5483] [PMID: 28260065]
[15]
Li, M.; Rui, Y.; Peng, W.; Hu, J.; Jiang, A.; Yang, Z.; Huang, L. FIGNL1 promotes non-small cell lung cancer cell proliferation. Int. J. Oncol., 2021, 58(1), 83-99.
[http://dx.doi.org/10.3892/ijo.2020.5154] [PMID: 33367932]
[16]
Rhodes, D.R.; Kalyana-Sundaram, S.; Mahavisno, V.; Varambally, R.; Yu, J.; Briggs, B.B.; Barrette, T.R.; Anstet, M.J.; Kincead-Beal, C.; Kulkarni, P.; Varambally, S.; Ghosh, D.; Chinnaiyan, A.M. Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 2007, 9(2), 166-180.
[http://dx.doi.org/10.1593/neo.07112] [PMID: 17356713]
[17]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[18]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[19]
The Genotype-Tissue Expression (GTEx) project Nat. Genet., 2013, 45(6), 580-585.
[http://dx.doi.org/10.1038/ng.2653] [PMID: 23715323]
[20]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[21]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[22]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T. Lin, CY cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(4), S11.
[23]
Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[24]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[25]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[26]
Tannir, N.M.; Jonasch, E.; Albiges, L.; Altinmakas, E.; Ng, C.S.; Matin, S.F.; Wang, X.; Qiao, W.; Dubauskas Lim, Z.; Tamboli, P.; Rao, P.; Sircar, K.; Karam, J.A.; McDermott, D.F.; Wood, C.G.; Choueiri, T.K. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): A randomized multicenter phase 2 trial. Eur. Urol., 2016, 69(5), 866-874.
[http://dx.doi.org/10.1016/j.eururo.2015.10.049] [PMID: 26626617]
[27]
Armstrong, A.J.; Halabi, S.; Eisen, T.; Broderick, S.; Stadler, W.M.; Jones, R.J.; Garcia, J.A.; Vaishampayan, U.N.; Picus, J.; Hawkins, R.E.; Hainsworth, J.D.; Kollmannsberger, C.K.; Logan, T.F.; Puzanov, I.; Pickering, L.M.; Ryan, C.W.; Protheroe, A.; Lusk, C.M.; Oberg, S.; George, D.J. Everolimus Versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): A multicentre, open-label, randomised phase 2 trial. Lancet Oncol., 2016, 17(3), 378-388.
[http://dx.doi.org/10.1016/S1470-2045(15)00515-X] [PMID: 26794930]
[28]
Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-oncol., 2016, 18(Suppl. 5), v1-v75.
[http://dx.doi.org/10.1093/neuonc/now207] [PMID: 28475809]
[29]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[30]
Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol., 2015, 17(4), iv1-iv62.
[31]
Kayabolen, A.; Yilmaz, E.; Bagci-Onder, T. IDH mutations in glioma: Double-edged sword in clinical applications? Biomedicines, 2021, 9(7), 799.
[http://dx.doi.org/10.3390/biomedicines9070799] [PMID: 34356864]
[32]
Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2012, 379(9822), 1245-1255.
[http://dx.doi.org/10.1016/S0140-6736(11)61347-0] [PMID: 22353262]
[33]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: From genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[34]
Morgan, A.E.; Davies, T.J.; Mc Auley, M.T. The role of DNA methylation in ageing and cancer. Proc. Nutr. Soc., 2018, 77(4), 412-422.
[http://dx.doi.org/10.1017/S0029665118000150] [PMID: 29708096]
[35]
Lakschevitz, F.S.; Hassanpour, S.; Rubin, A.; Fine, N.; Sun, C.; Glogauer, M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp. Cell Res., 2016, 342(2), 200-209.
[http://dx.doi.org/10.1016/j.yexcr.2016.03.007] [PMID: 26970376]
[36]
Jabbarzadeh Kaboli, P.; Leong, M.P.; Ismail, P.; Ling, K.H. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study. Pharmacol. Rep., 2019, 71(1), 13-23.
[http://dx.doi.org/10.1016/j.pharep.2018.07.005] [PMID: 30343043]
[37]
Brenner, J.C.; Chinnaiyan, A.M. Translocations in epithelial cancers. Biochim. Biophys. Acta, 2009, 1796(2), 201-215.
[PMID: 19406209]
[38]
Wang, Q.; Armenia, J.; Zhang, C.; Penson, A.V.; Reznik, E.; Zhang, L.; Minet, T.; Ochoa, A.; Gross, B.E.; Iacobuzio-Donahue, C.A.; Betel, D.; Taylor, B.S.; Gao, J.; Schultz, N. Unifying cancer and normal RNA sequencing data from different sources. Sci. Data, 2018, 5(1), 180061.
[http://dx.doi.org/10.1038/sdata.2018.61] [PMID: 29664468]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy