Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

A Review of Neuroreceptors for Clinical and Experimental Neuropharmacology in Central Nervous System Disorders

Author(s): Susan C. McKarns*

Volume 18, Issue 3, 2023

Published on: 12 May, 2022

Page: [192 - 241] Pages: 50

DOI: 10.2174/2772432817666220301104118

Price: $65

Abstract

The neurobiology drug discovery landscape has transformed over the past decade or so by the discovery of allosteric modulators of receptor superfamilies. A wide range of physiological reactions can occur in response to a limited number of neurotransmitters. This review provides an update on physiological features of the receptors and the signaling pathways that are generated in response to neuroreceptor activation that allow the explanation of this vast array of neurotransmitter responses. Primarily based upon structure, receptors in the nervous system can be classified into four groups: Gprotein coupled receptors, ligand-gated receptors, enzyme-linked receptors, and nuclear receptors. With a particular emphasis on the central nervous system, i.e., brain, spinal cord, and optic nerves, we identify the neuroreceptors, their endogenous agonists, antagonists, sites of expression within the nervous system, current neuropharmacological clinical use, and potential for new drug discovery. New molecular approaches and advances in our knowledge of neuronal communication in processes involved in development, functioning and disorders of the nervous system combined with opportunities to re-purpose existing drugs for new indications continue to highlight the exciting opportunities to improve human health.

Keywords: Neuroreceptor, central nervous system, drug discovery, environmental stimuli, ion channels, G protein-coupled receptors, enzyme-linked receptors, nuclear receptors, endogenous ligands, signaling cascades.

[1]
Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ. Single-synapse analysis of a diverse synapse population: Proteomic imaging methods and markers. Neuron 2010; 68(4): 639-53.
[http://dx.doi.org/10.1016/j.neuron.2010.09.024] [PMID: 21092855]
[2]
Lovinger DM. Communication networks in the brain: Neurons, receptors, neurotransmitters, and alcohol. Alcohol Res Health 2008; 31(3): 196-214.
[PMID: 23584863]
[3]
Chiu AM, Wang J, Fiske MP, et al. NMDAR-activated PP1 dephosphorylates GluN2B to modulate NMDAR synaptic content. Cell Rep 2019; 28(2): 332-41.
[http://dx.doi.org/10.1016/j.celrep.2019.06.030] [PMID: 31291571]
[4]
Yang D, Zhou Q, Labroska V, et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6(1): 7.
[http://dx.doi.org/10.1038/s41392-020-00435-w] [PMID: 33414387]
[5]
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-protein-coupled receptors in CNS: A potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells 2020; 9(2): 506.
[http://dx.doi.org/10.3390/cells9020506] [PMID: 32102186]
[6]
Zhang X, Chen WW, Huang WJ. Ligand gated channels in nervous system. J Neurosurg Sci 2019; 63(4): 493-4.
[http://dx.doi.org/10.23736/S0390-5616.17.04021-8] [PMID: 29115097]
[7]
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 2016; 90(3): 452-70.
[http://dx.doi.org/10.1016/j.neuron.2016.03.032] [PMID: 27151638]
[8]
Bowie D. Ligand-gated ion channels: From genes to behaviour. J Physiol 2012; 590(1): 9-11.
[http://dx.doi.org/10.1113/jphysiol.2011.224592] [PMID: 22210286]
[9]
Rosenbaum DM, Cherezov V, Hanson MA, et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 2007; 318(5854): 1266-73.
[http://dx.doi.org/10.1126/science.1150609] [PMID: 17962519]
[10]
Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007; 318(5854): 1258-65.
[http://dx.doi.org/10.1126/science.1150577] [PMID: 17962520]
[11]
Hyman SE. Neurotransmitters. Curr Biol 2005; 15(5): R154-8.
[http://dx.doi.org/10.1016/j.cub.2005.02.037] [PMID: 15753022]
[12]
Alexander SP, Benson HE, Faccenda E, et al. CGTP Collaborators. The concise guide to pharmacology 2013/14: Catalytic receptors. Br J Pharmacol 2013; 170(8): 1676-705.
[http://dx.doi.org/10.1111/bph.12449] [PMID: 24528241]
[13]
Vigneswara V, Kundi S, Ahmed Z. Receptor tyrosine kinases: Molecular switches regulating CNS axon regeneration. J Signal Transduct 2012; 2012: 361721.
[http://dx.doi.org/10.1155/2012/361721] [PMID: 22848811]
[14]
Olivares AM, Moreno-Ramos OA, Haider NB. Role of nuclear receptors in central nervous system development and associated diseases. J Exp Neurosci 2016; 9 (Suppl. 2): 93-121.
[PMID: 27168725]
[15]
Xu D, Huang S, Wang H, Xie W. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors. Drug Metab Rev 2018; 50(4): 407-14.
[http://dx.doi.org/10.1080/03602532.2018.1554673] [PMID: 30501435]
[16]
Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 2017; 16(1): 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[17]
Hammond-Weinberger DR, Wang Y, Glavis-Bloom A, Spitzer NC. Mechanism for neurotransmitter-receptor matching. Proc Natl Acad Sci USA 2020; 117(8): 4368-74.
[http://dx.doi.org/10.1073/pnas.1916600117] [PMID: 32041885]
[18]
Acher FC, Cabayé A, Eshak F, Goupil-Lamy A, Pin JP. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022; 204: 108886.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108886] [PMID: 34813860]
[19]
Reddy VB, Sun S, Azimi E, Elmariah SB, Dong X, Lerner EA. Redefining the concept of protease-activated receptors: Cathepsin S evokes itch via activation of Mrgprs. Nat Commun 2015; 6(1): 7864.
[http://dx.doi.org/10.1038/ncomms8864] [PMID: 26216096]
[20]
Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One 2014; 9(10): e111053.
[http://dx.doi.org/10.1371/journal.pone.0111053] [PMID: 25340336]
[21]
Paradiso K, Brehm P. Long-term desensitization of nicotinic acetylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J Neurosci 1998; 18(22): 9227-37.
[http://dx.doi.org/10.1523/JNEUROSCI.18-22-09227.1998] [PMID: 9801362]
[22]
Pugh JR, Raman IM. GABAA receptor kinetics in the cerebellar nuclei: Evidence for detection of transmitter from distant release sites. Biophys J 2005; 88(3): 1740-54.
[http://dx.doi.org/10.1529/biophysj.104.055814] [PMID: 15626699]
[23]
Papke D, Gonzalez-Gutierrez G, Grosman C. Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: A comparative study of Cys-loop, AMPA and purinergic receptors. J Physiol 2011; 589(Pt 7): 1571-85.
[http://dx.doi.org/10.1113/jphysiol.2010.203315] [PMID: 21300749]
[24]
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 2013; 12(4): 265-86.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[25]
Reidenberg MM. Drug discontinuation effects are part of the pharmacology of a drug. J Pharmacol Exp Ther 2011; 339(2): 324-8.
[http://dx.doi.org/10.1124/jpet.111.183285] [PMID: 21849624]
[26]
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: A new dimension in drug discovery. Nat Rev Drug Discov 2020; 19(12): 884-901.
[http://dx.doi.org/10.1038/s41573-020-0086-4] [PMID: 33177699]
[27]
Harding SD, Sharman JL, Faccenda E, et al. NC-IUPHAR. The IUPHAR/BPS guide to pharmacology in 2018: Updates and expansion to encompass the new guide to immunopharmacology. Nucleic Acids Res 2018; 46(D1): D1091-106.
[http://dx.doi.org/10.1093/nar/gkx1121] [PMID: 29149325]
[28]
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: New agents, targets and indications. Nat Rev Drug Discov 2017; 16(12): 829-42.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[29]
Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: Avenues for therapeutic intervention. Curr Opin Pharmacol 2017; 32: 96-110.
[http://dx.doi.org/10.1016/j.coph.2017.02.001] [PMID: 28288370]
[30]
Insel PA, Sriram K, Gorr MW, et al. GPCRomics: An approach to discover GPCR drug targets. Trends Pharmacol Sci 2019; 40(6): 378-87.
[http://dx.doi.org/10.1016/j.tips.2019.04.001] [PMID: 31078319]
[31]
Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol Pharmacol 2018; 93(4): 251-8.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[32]
van Gastel J, Leysen H, Boddaert J, et al. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2021; 223: 107793.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107793] [PMID: 33316288]
[33]
Santos-Otte P, Leysen H, van Gastel J, Hendrickx JO, Martin B, Maudsley SG. Protein-coupled receptor systems and their role in cellular senescence. Comput Struct Biotechnol J 2019; 17: 1265-77.
[http://dx.doi.org/10.1016/j.csbj.2019.08.005] [PMID: 31921393]
[34]
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. Gi/o-Protein coupled receptors in the aging brain. Front Aging Neurosci 2019; 11: 89.
[http://dx.doi.org/10.3389/fnagi.2019.00089] [PMID: 31105551]
[35]
Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19(10): 638-53.
[http://dx.doi.org/10.1038/s41580-018-0049-3] [PMID: 30104700]
[36]
Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat Rev Drug Discov 2018; 17(4): 243-60.
[http://dx.doi.org/10.1038/nrd.2017.229] [PMID: 29302067]
[37]
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101: 1-14.
[http://dx.doi.org/10.1016/j.neuint.2016.09.005] [PMID: 27620813]
[38]
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 1990; 27(5): 457-64.
[http://dx.doi.org/10.1002/ana.410270502] [PMID: 2360787]
[39]
Johnson ECB, Dammer EB, Duong DM, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26(5): 769-80.
[http://dx.doi.org/10.1038/s41591-020-0815-6] [PMID: 32284590]
[40]
Wingo AP, Dammer EB, Breen MS, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun 2019; 10(1): 1619.
[http://dx.doi.org/10.1038/s41467-019-09613-z] [PMID: 30962425]
[41]
Perez-Nievas BG, Stein TD, Tai HC, et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 2013; 136(Pt 8): 2510-26.
[http://dx.doi.org/10.1093/brain/awt171] [PMID: 23824488]
[42]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[43]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[44]
Selkoe DJ. The therapeutics of Alzheimer’s disease: Where we stand and where we are heading. Ann Neurol 2013; 74(3): 328-36.
[http://dx.doi.org/10.1002/ana.24001] [PMID: 25813842]
[45]
Grossberg GT, Farlow MR, Meng X, Velting DM. Evaluating high-dose rivastigmine patch in severe Alzheimer’s disease: Analyses with concomitant memantine usage as a factor. Curr Alzheimer Res 2015; 12(1): 53-60.
[http://dx.doi.org/10.2174/1567205011666141218122835] [PMID: 25523430]
[46]
Farlow MR, Graham SM, Alva G. Memantine for the treatment of Alzheimer’s disease: Tolerability and safety data from clinical trials. Drug Saf 2008; 31(7): 577-85.
[http://dx.doi.org/10.2165/00002018-200831070-00003] [PMID: 18558791]
[47]
Zhang G, Ásgeirsdóttir HN, Cohen SJ, Munchow AH, Barrera MP, Stackman RW Jr. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 2013; 64: 403-13.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.007] [PMID: 22722027]
[48]
Lo AC, De Maeyer JH, Vermaercke B, Callaerts-Vegh Z, Schuurkes JA, D’Hooge R. SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice. Neuropharmacology 2014; 85: 178-89.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.013] [PMID: 24863046]
[49]
Hamilton A, Esseltine JL, DeVries RA, Cregan SP, Ferguson SS. Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer’s disease. Mol Brain 2014; 7(1): 40.
[http://dx.doi.org/10.1186/1756-6606-7-40] [PMID: 24886239]
[50]
Guimarães TR, Swanson E, Kofler J, Thathiah A. G protein-coupled receptor kinases are associated with Alzheimer’s disease pathology. Neuropathol Appl Neurobiol 2021; 47(7): 942-57.
[http://dx.doi.org/10.1111/nan.12742] [PMID: 34164834]
[51]
Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 2006; 99(2): 381-92.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04124.x] [PMID: 16942598]
[52]
Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4(10): 2737-44.
[http://dx.doi.org/10.1096/fasebj.4.10.2197154] [PMID: 2197154]
[53]
Galantucci S, Agosta F, Stefanova E, et al. Structural brain connectome and cognitive impairment in Parkinson disease. Radiology 2017; 283(2): 515-25.
[http://dx.doi.org/10.1148/radiol.2016160274] [PMID: 27924721]
[54]
Iarkov A, Mendoza C, Echeverria V. Cholinergic receptor modulation as a target for preventing dementia in Parkinson’s disease. Front Neurosci 2021; 15: 665820.
[http://dx.doi.org/10.3389/fnins.2021.665820] [PMID: 34616271]
[55]
Stacy M, Galbreath A. Optimizing long-term therapy for Parkinson disease: Levodopa, dopamine agonists, and treatment-associated dyskinesia. Clin Neuropharmacol 2008; 31(1): 51-6.
[http://dx.doi.org/10.1097/WNF.0b013e318065b088] [PMID: 18303491]
[56]
Stacy M, Galbreath A. Optimizing long-term therapy for Parkinson disease: Options for treatment-associated dyskinesia. Clin Neuropharmacol 2008; 31(2): 120-5.
[http://dx.doi.org/10.1097/WNF.0b013e318065b09c] [PMID: 18382184]
[57]
Komatsu H. Innovative therapeutic approaches for Huntington’s disease: From nucleic acids to GPCR-targeting small molecules. Front Cell Neurosci 2021; 15: 785703.
[http://dx.doi.org/10.3389/fncel.2021.785703] [PMID: 34899193]
[58]
Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 1991; 11(6): 1649-59.
[http://dx.doi.org/10.1523/JNEUROSCI.11-06-01649.1991] [PMID: 1710657]
[59]
Bruno V, Ksiazek I, Battaglia G, et al. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 2000; 39(12): 2223-30.
[http://dx.doi.org/10.1016/S0028-3908(00)00079-4] [PMID: 10974306]
[60]
Charvin D, Vanhoutte P, Pagès C, Borrelli E, Caboche J. Unraveling a role for dopamine in Huntington’s disease: The dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci USA 2005; 102(34): 12218-23.
[http://dx.doi.org/10.1073/pnas.0502698102] [PMID: 16103364]
[61]
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington’s disease: A mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7: 114.
[http://dx.doi.org/10.3389/fnins.2013.00114] [PMID: 23847463]
[62]
Alpay M, Koroshetz WJ. Quetiapine in the treatment of behavioral disturbances in patients with Huntington’s disease. Psychosomatics 2006; 47(1): 70-2.
[http://dx.doi.org/10.1176/appi.psy.47.1.70] [PMID: 16384811]
[63]
Jensen NH, Rodriguiz RM, Caron MG, Wetsel WC, Rothman RB, Roth BL. N-desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine’s antidepressant activity. Neuropsychopharmacology 2008; 33(10): 2303-12.
[http://dx.doi.org/10.1038/sj.npp.1301646] [PMID: 18059438]
[64]
Komatsu H, Maruyama M, Yao S, et al. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS One 2014; 9(2): e90134.
[http://dx.doi.org/10.1371/journal.pone.0090134] [PMID: 24587241]
[65]
Alexander SP, Davenport AP, Kelly E, et al. CGTP Collaborators. The concise guide to pharmacology 2015/16 protein-coupled receptors. Br J Pharmacol 2015; 172(24): 5744-869.
[http://dx.doi.org/10.1111/bph.13348] [PMID: 26650439]
[66]
Tse LH, Wong YH. GPCRs in autocrine and paracrine regulations. Front Endocrinol (Lausanne) 2019; 10: 428.
[http://dx.doi.org/10.3389/fendo.2019.00428] [PMID: 31354618]
[67]
Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett 2015; 589(14): 1607-19.
[http://dx.doi.org/10.1016/j.febslet.2015.05.007] [PMID: 25980603]
[68]
Maziarz M, Park JC, Leyme A, et al. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 2020; 182(3): 770-85.
[http://dx.doi.org/10.1016/j.cell.2020.06.020] [PMID: 32634377]
[69]
Gurevich VV, Gurevich EV. GPCR signaling regulation: The role of GRKs and arrestins. Front Pharmacol 2019; 10: 125.
[http://dx.doi.org/10.3389/fphar.2019.00125] [PMID: 30837883]
[70]
Gulati S, Jin H, Masuho I, et al. Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 2018; 9(1): 1996.
[http://dx.doi.org/10.1038/s41467-018-04432-0] [PMID: 29777099]
[71]
Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008; 133(1): 38-52.
[http://dx.doi.org/10.1016/j.cell.2008.03.011] [PMID: 18394988]
[72]
Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459(7245): 356-63.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[73]
Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008; 9(1): 60-71.
[http://dx.doi.org/10.1038/nrm2299] [PMID: 18043707]
[74]
Marshall FH. Heterodimerization of G-protein-coupled receptors in the CNS. Curr Opin Pharmacol 2001; 1(1): 40-4.
[http://dx.doi.org/10.1016/S1471-4892(01)00001-7] [PMID: 11712533]
[75]
Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW. GPCR-mediated signaling of metabolites. Cell Metab 2017; 25(4): 777-96.
[http://dx.doi.org/10.1016/j.cmet.2017.03.008] [PMID: 28380372]
[76]
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 2016; 428(19): 3850-68.
[http://dx.doi.org/10.1016/j.jmb.2016.08.002] [PMID: 27515397]
[77]
Eichel K, von Zastrow M. Subcellular organization of GPCR signaling. Trends Pharmacol Sci 2018; 39(2): 200-8.
[http://dx.doi.org/10.1016/j.tips.2017.11.009] [PMID: 29478570]
[78]
Alexander SPH, Christopoulos A, Davenport AP, et al. CGTP Collaborators. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 2019; 176 (Suppl. 1): S21-S141.
[http://dx.doi.org/10.1111/bph.14748] [PMID: 31710717]
[79]
Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB. G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 2013; 53(1): 127-46.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134548] [PMID: 23020293]
[80]
Sakmar TP, Menon ST, Marin EP, Awad ES. Rhodopsin: Insights from recent structural studies. Annu Rev Biophys Biomol Struct 2002; 31(1): 443-84.
[http://dx.doi.org/10.1146/annurev.biophys.31.082901.134348] [PMID: 11988478]
[81]
Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC. Insights into the structure of class B GPCRs. Trends Pharmacol Sci 2014; 35(1): 12-22.
[http://dx.doi.org/10.1016/j.tips.2013.11.001] [PMID: 24359917]
[82]
Bortolato A, Doré AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH. Structure of class B GPCRs: New horizons for drug discovery. Br J Pharmacol 2014; 171(13): 3132-45.
[http://dx.doi.org/10.1111/bph.12689] [PMID: 24628305]
[83]
Kypreos M, Banerjee T, Mukherjee D. G protein-coupled receptors--potential roles in clinical pharmacology. Cardiovasc Hematol Agents Med Chem 2014; 12(1): 29-33.
[http://dx.doi.org/10.2174/187152571201141201093751] [PMID: 25470151]
[84]
Engers DW, Lindsley CW. Allosteric modulation of class C GPCRs: A novel approach for the treatment of CNS disorders. Drug Discov Today Technol 2013; 10(2): e269-76.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.007] [PMID: 24050278]
[85]
Jakubík J, El-Fakahany EE. Allosteric modulation of GPCRs of class a by cholesterol. Int J Mol Sci 2021; 22(4): 1953.
[http://dx.doi.org/10.3390/ijms22041953] [PMID: 33669406]
[86]
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric modulation of class A GPCRs: Targets, agents, and emerging concepts. J Med Chem 2019; 62(1): 88-127.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00875] [PMID: 30106578]
[87]
Bjarnadóttir TK, Fredriksson R, Schiöth HB. The adhesion GPCRs: A unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 2007; 64(16): 2104-19.
[http://dx.doi.org/10.1007/s00018-007-7067-1] [PMID: 17502995]
[88]
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246(4): 275-84.
[http://dx.doi.org/10.1002/dvdy.24473] [PMID: 27859941]
[89]
Civelli O. Orphan GPCRs and neuromodulation. Neuron 2012; 76(1): 12-21.
[http://dx.doi.org/10.1016/j.neuron.2012.09.009] [PMID: 23040803]
[90]
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2018; 98: 222-32.
[http://dx.doi.org/10.1016/j.biopha.2017.12.056] [PMID: 29268243]
[91]
Watkins LR, Orlandi C. Orphan G protein coupled receptors in affective disorders. Genes (Basel) 2020; 11(6): 11.
[http://dx.doi.org/10.3390/genes11060694] [PMID: 32599826]
[92]
Zhao M, Wang Z, Yang M, et al. The roles of orphan G protein-coupled receptors in autoimmune diseases. Clin Rev Allergy Immunol 2021; 60(2): 220-43.
[http://dx.doi.org/10.1007/s12016-020-08829-y] [PMID: 33411320]
[93]
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in neurobiology and pharmacology of GPR12. Front Pharmacol 2020; 11: 628.
[http://dx.doi.org/10.3389/fphar.2020.00628] [PMID: 32457622]
[94]
Mantas I, Yang Y, Mannoury-la-Cour C, Millan MJ, Zhang X, Svenningsson P. Genetic deletion of GPR88 enhances the locomotor response to L-DOPA in experimental parkinsonism while counteracting the induction of dyskinesia. Neuropharmacology 2020; 162: 107829.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107829] [PMID: 31666199]
[95]
Ye N, Li B, Mao Q, et al. Orphan receptor GPR88 as an emerging neurotherapeutic target. ACS Chem Neurosci 2019; 10(1): 190-200.
[http://dx.doi.org/10.1021/acschemneuro.8b00572] [PMID: 30540906]
[96]
Cullen M, Elzarrad MK, Seaman S, et al. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci USA 2011; 108(14): 5759-64.
[http://dx.doi.org/10.1073/pnas.1017192108] [PMID: 21421844]
[97]
Langosch D, Thomas L, Betz H. Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 1988; 85(19): 7394-8.
[http://dx.doi.org/10.1073/pnas.85.19.7394] [PMID: 2459705]
[98]
Smart TG, Paoletti P. Synaptic neurotransmitter-gated receptors. Cold Spring Harb Perspect Biol 2012; 4(3): 4.
[http://dx.doi.org/10.1101/cshperspect.a009662] [PMID: 22233560]
[99]
Kumar A, Basak S, Chakrapani S. Recombinant expression and purification of pentameric ligand-gated ion channels for Cryo-EM structural studies. Methods Enzymol 2021; 652: 81-103.
[http://dx.doi.org/10.1016/bs.mie.2021.01.022] [PMID: 34059291]
[100]
Alexander SPH, Mathie A, Peters JA, et al. CGTP Collaborators. The concise guide to pharmacology 2019/20: Ion channels. Br J Pharmacol 2019; 176 (Suppl. 1): S142-228.
[http://dx.doi.org/10.1111/bph.14749] [PMID: 31710715]
[101]
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: Dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 2018; 25(1): 46.
[http://dx.doi.org/10.1186/s12929-018-0448-y] [PMID: 29793480]
[102]
Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol 2015; 33(1): 291-353.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112212] [PMID: 25861976]
[103]
Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids 2013; 45(1): 87-94.
[http://dx.doi.org/10.1007/s00726-011-1193-7] [PMID: 22160261]
[104]
Kleopa KA. Autoimmune channelopathies of the nervous system. Curr Neuropharmacol 2011; 9(3): 458-67.
[http://dx.doi.org/10.2174/157015911796557966] [PMID: 22379460]
[105]
Ashcroft FM. From molecule to malady. Nature 2006; 440(7083): 440-7.
[http://dx.doi.org/10.1038/nature04707] [PMID: 16554803]
[106]
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20(10): 1241-85.
[http://dx.doi.org/10.2174/0929867311320100005] [PMID: 23409712]
[107]
Li M, Lester HA. Ion channel diseases of the central nervous system. CNS Drug Rev 2001; 7(2): 214-40.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00196.x] [PMID: 11474425]
[108]
Gielen M, Barilone N, Corringer PJ. The desensitization pathway of GABAA receptors, one subunit at a time. Nat Commun 2020; 11(1): 5369.
[http://dx.doi.org/10.1038/s41467-020-19218-6] [PMID: 33097732]
[109]
Rhodes KJ, Trimmer JS. Antibody-based validation of CNS ion channel drug targets. J Gen Physiol 2008; 131(5): 407-13.
[http://dx.doi.org/10.1085/jgp.200709926] [PMID: 18411328]
[110]
Zhang Y, Wang K, Yu Z. Drug development in channelopathies: Allosteric modulation of ligand-gated and voltage-gated ion channels. J Med Chem 2020; 63(24): 15258-78.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01304] [PMID: 33253554]
[111]
Li S, Wong AH, Liu F. Ligand-gated ion channel interacting proteins and their role in neuroprotection. Front Cell Neurosci 2014; 8: 125.
[http://dx.doi.org/10.3389/fncel.2014.00125] [PMID: 24847210]
[112]
Sallard E, Letourneur D, Legendre P. Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78(13): 5341-70.
[http://dx.doi.org/10.1007/s00018-021-03846-2] [PMID: 34061215]
[113]
Salpietro V, Dixon CL, Guo H, et al. SYNAPS Study Group. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun 2019; 10(1): 3094.
[http://dx.doi.org/10.1038/s41467-019-10910-w] [PMID: 31300657]
[114]
Celli R, Fornai F. Targeting ionotropic glutamate receptors in the treatment of epilepsy. Curr Neuropharmacol 2021; 19(6): 747-65.
[http://dx.doi.org/10.2174/1570159X18666200831154658] [PMID: 32867642]
[115]
Hanada T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules 2020; 10(3): 10.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[116]
Pinheiro PS, Mulle C. Presynaptic glutamate receptors: Physiological functions and mechanisms of action. Nat Rev Neurosci 2008; 9(6): 423-36.
[http://dx.doi.org/10.1038/nrn2379] [PMID: 18464791]
[117]
Amin J, Weiss DS. GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 1993; 366(6455): 565-9.
[http://dx.doi.org/10.1038/366565a0] [PMID: 7504783]
[118]
Spurny R, Ramerstorfer J, Price K, et al. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc Natl Acad Sci USA 2012; 109(44): E3028-34.
[http://dx.doi.org/10.1073/pnas.1208208109] [PMID: 23035248]
[119]
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABAA receptors: Structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 2021; 19(1): 123.
[http://dx.doi.org/10.1186/s43141-021-00224-0] [PMID: 34417930]
[120]
Ben-Ari Y. Excitatory actions of gaba during development: The nature of the nurture. Nat Rev Neurosci 2002; 3(9): 728-39.
[http://dx.doi.org/10.1038/nrn920] [PMID: 12209121]
[121]
Jembrek MJ, Vlainic J. GABA receptors: Pharmacological potential and pitfalls. Curr Pharm Des 2015; 21(34): 4943-59.
[http://dx.doi.org/10.2174/1381612821666150914121624] [PMID: 26365137]
[122]
Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004; 84(4): 1051-95.
[http://dx.doi.org/10.1152/physrev.00042.2003] [PMID: 15383648]
[123]
Zhu H, Gouaux E. Architecture and assembly mechanism of native glycine receptors. Nature 2021; 599(7885): 513-7.
[http://dx.doi.org/10.1038/s41586-021-04022-z] [PMID: 34555840]
[124]
Sheng M, Pak DT. Glutamate receptor anchoring proteins and the molecular organization of excitatory synapses. Ann N Y Acad Sci 1999; 868: 483-93.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb11317.x] [PMID: 10414325]
[125]
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 2010; 62(3): 405-96.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[126]
Sattler C, Eick T, Hummert S, et al. Unravelling the intricate cooperativity of subunit gating in P2X2 ion channels. Sci Rep 2020; 10(1): 21751.
[http://dx.doi.org/10.1038/s41598-020-78672-w] [PMID: 33303878]
[127]
Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E. X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 2016; 538(7623): 66-71.
[http://dx.doi.org/10.1038/nature19367] [PMID: 27626375]
[128]
Keramidas A, Lynch JW. An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci 2013; 70(7): 1241-53.
[http://dx.doi.org/10.1007/s00018-012-1133-z] [PMID: 22936353]
[129]
Salter MW, Kalia LV. Src kinases: A hub for NMDA receptor regulation. Nat Rev Neurosci 2004; 5(4): 317-28.
[http://dx.doi.org/10.1038/nrn1368] [PMID: 15034556]
[130]
Chen BS, Roche KW. Regulation of NMDA receptors by phosphorylation. Neuropharmacology 2007; 53(3): 362-8.
[http://dx.doi.org/10.1016/j.neuropharm.2007.05.018] [PMID: 17644144]
[131]
Dorszewska J. Cell biology of normal brain aging: Synaptic plasticity-cell death. Aging Clin Exp Res 2013; 25(1): 25-34.
[http://dx.doi.org/10.1007/s40520-013-0004-2] [PMID: 23740630]
[132]
Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007; 23(1): 613-43.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123516] [PMID: 17506699]
[133]
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87(4): 1215-84.
[http://dx.doi.org/10.1152/physrev.00017.2006] [PMID: 17928584]
[134]
Alexander SP, Peters JA, Kelly E, et al. CGTP Collaborators. The concise guide to pharmacology 2017/18: Ligand-gated ion channels. Br J Pharmacol 2017; 174 (Suppl. 1): S130-59.
[http://dx.doi.org/10.1111/bph.13879] [PMID: 29055038]
[135]
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002; 213: 1-47.
[http://dx.doi.org/10.1016/S0074-7696(02)13011-7] [PMID: 11837891]
[136]
Olsen RW, Sieghart W. GABA A receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56(1): 141-8.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.045] [PMID: 18760291]
[137]
Mody I, De Koninck Y, Otis TS, Soltesz I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci 1994; 17(12): 517-25.
[http://dx.doi.org/10.1016/0166-2236(94)90155-4] [PMID: 7532336]
[138]
Nusser Z, Cull-Candy S, Farrant M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 1997; 19(3): 697-709.
[http://dx.doi.org/10.1016/S0896-6273(00)80382-7] [PMID: 9331359]
[139]
Succol F, Fiumelli H, Benfenati F, Cancedda L, Barberis A. Intracellular chloride concentration influences the GABAA receptor subunit composition. Nat Commun 2012; 3(1): 738.
[http://dx.doi.org/10.1038/ncomms1744] [PMID: 22415829]
[140]
Farrant M, Nusser Z. Variations on an inhibitory theme: Phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005; 6(3): 215-29.
[http://dx.doi.org/10.1038/nrn1625] [PMID: 15738957]
[141]
Bryson A, Hatch RJ, Zandt BJ, et al. GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proc Natl Acad Sci USA 2020; 117(6): 3192-202.
[http://dx.doi.org/10.1073/pnas.1906369117] [PMID: 31974304]
[142]
Glykys J, Mody I. Activation of GABAA receptors: Views from outside the synaptic cleft. Neuron 2007; 56(5): 763-70.
[http://dx.doi.org/10.1016/j.neuron.2007.11.002] [PMID: 18054854]
[143]
Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extrasynaptic GABAA receptors: Form, pharmacology, and function. J Neurosci 2009; 29(41): 12757-63.
[http://dx.doi.org/10.1523/JNEUROSCI.3340-09.2009] [PMID: 19828786]
[144]
Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 2018; 98(6): 1080-98.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[145]
López-Corcuera B, Geerlings A, Aragón C. Glycine neurotransmitter transporters: An update. Mol Membr Biol 2001; 18(1): 13-20.
[http://dx.doi.org/10.1080/09687680010028762] [PMID: 11396606]
[146]
Betz H, Langosch D, Hoch W, et al. Structure and expression of inhibitory glycine receptors. Adv Exp Med Biol 1991; 287: 421-9.
[http://dx.doi.org/10.1007/978-1-4684-5907-4_37] [PMID: 1722070]
[147]
Dutertre S, Becker CM, Betz H. Inhibitory glycine receptors: An update. J Biol Chem 2012; 287(48): 40216-23.
[http://dx.doi.org/10.1074/jbc.R112.408229] [PMID: 23038260]
[148]
Burgos CF, Yévenes GE, Aguayo LG. Structure and pharmacologic modulation of inhibitory glycine receptors. Mol Pharmacol 2016; 90(3): 318-25.
[http://dx.doi.org/10.1124/mol.116.105726] [PMID: 27401877]
[149]
Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci 2013; 7: 184.
[http://dx.doi.org/10.3389/fncel.2013.00184] [PMID: 24155690]
[150]
Zeilhofer HU, Wildner H, Yévenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012; 92(1): 193-235.
[http://dx.doi.org/10.1152/physrev.00043.2010] [PMID: 22298656]
[151]
Alvarez FJ, Benito-Gonzalez A, Siembab VC. Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Ann N Y Acad Sci 2013; 1279(1): 22-31.
[http://dx.doi.org/10.1111/nyas.12084] [PMID: 23530999]
[152]
Zeilhofer HU, Werynska K, Gingras J, Yévenes GE. Glycine receptors in spinal nociceptive control-an update. Biomolecules 2021; 11(6): 11.
[http://dx.doi.org/10.3390/biom11060846] [PMID: 34204137]
[153]
Apostolides PF, Trussell LO. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci 2013; 33(11): 4768-81.
[http://dx.doi.org/10.1523/JNEUROSCI.5555-12.2013] [PMID: 23486948]
[154]
Edwards RH. The neurotransmitter cycle and quantal size. Neuron 2007; 55(6): 835-58.
[http://dx.doi.org/10.1016/j.neuron.2007.09.001] [PMID: 17880890]
[155]
Harvey RJ, Topf M, Harvey K, Rees MI. The genetics of hyperekplexia: More than startle! Trends Genet 2008; 24(9): 439-47.
[http://dx.doi.org/10.1016/j.tig.2008.06.005] [PMID: 18707791]
[156]
Lynch JW, Callister RJ. Glycine receptors: A new therapeutic target in pain pathways. Curr Opin Investig Drugs 2006; 7(1): 48-53.
[PMID: 16425671]
[157]
Grothe B. New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 2003; 4(7): 540-50.
[http://dx.doi.org/10.1038/nrn1136] [PMID: 12838329]
[158]
Soto D, Altafaj X, Sindreu C, Bayés A. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 2014; 7(1): e27887.
[http://dx.doi.org/10.4161/cib.27887] [PMID: 24605182]
[159]
Trippe J, Steinke K, Orth A, Faustmann PM, Hollmann M, Haase CG. Autoantibodies to glutamate receptor antigens in multiple sclerosis and Rasmussen’s encephalitis. Neuroimmunomodulation 2014; 21(4): 189-94.
[http://dx.doi.org/10.1159/000356519] [PMID: 24504116]
[160]
Salling MC, Harrison NL. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated. J Neurophysiol 2014; 112(5): 1169-78.
[http://dx.doi.org/10.1152/jn.00714.2013] [PMID: 24872538]
[161]
Van den Eynden J, Ali SS, Horwood N, et al. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009; 2: 9.
[http://dx.doi.org/10.3389/neuro.02.009.2009] [PMID: 19738917]
[162]
Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001; 19(1): 497-521.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.497] [PMID: 11244045]
[163]
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune response in neurological pathology: Emerging role of central and peripheral immune crosstalk. Front Immunol 2021; 12: 676621.
[http://dx.doi.org/10.3389/fimmu.2021.676621] [PMID: 34177918]
[164]
Webb TI, Lynch JW. Molecular pharmacology of the glycine receptor chloride channel. Curr Pharm Des 2007; 13(23): 2350-67.
[http://dx.doi.org/10.2174/138161207781368693] [PMID: 17692006]
[165]
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired glycine receptor trafficking in neurological diseases. Front Mol Neurosci 2018; 11: 291.
[http://dx.doi.org/10.3389/fnmol.2018.00291] [PMID: 30186111]
[166]
Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015; 36(2): 96-108.
[http://dx.doi.org/10.1016/j.tips.2014.12.002] [PMID: 25639674]
[167]
Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 2015; 96(Pt B): 302-11.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.003] [PMID: 25460185]
[168]
Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016; 73(13): 2511-30.
[http://dx.doi.org/10.1007/s00018-016-2175-4] [PMID: 26979166]
[169]
Noda M, Kobayashi AI. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. J Physiol Sci 2017; 67(1): 235-45.
[http://dx.doi.org/10.1007/s12576-016-0460-5] [PMID: 27256075]
[170]
Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 2013; 86(8): 1122-32.
[http://dx.doi.org/10.1016/j.bcp.2013.06.031] [PMID: 23856289]
[171]
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 2018; 16(4): 338-49.
[http://dx.doi.org/10.2174/1570159X15666170912110450] [PMID: 28901280]
[172]
Fujii T, Mashimo M, Moriwaki Y, et al. Expression and function of the cholinergic system in immune cells. Front Immunol 2017; 8: 1085.
[http://dx.doi.org/10.3389/fimmu.2017.01085] [PMID: 28932225]
[173]
Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334(6052): 98-101.
[http://dx.doi.org/10.1126/science.1209985] [PMID: 21921156]
[174]
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421(6921): 384-8.
[http://dx.doi.org/10.1038/nature01339] [PMID: 12508119]
[175]
Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann N Y Acad Sci 2012; 1261(1): 7-17.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06516.x] [PMID: 22823388]
[176]
Paradiso KG, Steinbach JH. Nicotine is highly effective at producing desensitization of rat alpha4beta2 neuronal nicotinic receptors. J Physiol 2003; 553(Pt 3): 857-71.
[http://dx.doi.org/10.1113/jphysiol.2003.053447] [PMID: 14555718]
[177]
Picciotto MR, Addy NA, Mineur YS, Brunzell DH. It is not “either/or”: Activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 2008; 84(4): 329-42.
[http://dx.doi.org/10.1016/j.pneurobio.2007.12.005] [PMID: 18242816]
[178]
Conejero-Goldberg C, Davies P, Ulloa L. Alpha7 nicotinic acetylcholine receptor: A link between inflammation and neurodegeneration. Neurosci Biobehav Rev 2008; 32(4): 693-706.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.007] [PMID: 18180036]
[179]
de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007; 151(7): 915-29.
[http://dx.doi.org/10.1038/sj.bjp.0707264] [PMID: 17502850]
[180]
Corradi J, Bouzat C. Understanding the bases of function and modulation of α7 nicotinic receptors: Implications for drug discovery. Mol Pharmacol 2016; 90(3): 288-99.
[http://dx.doi.org/10.1124/mol.116.104240] [PMID: 27190210]
[181]
Ahmad S, She Z, Kraatz HB. Electrochemical studies of human nAChR a7 subunit phosphorylation by kinases PKA, PKC and Src. Anal Biochem 2019; 574: 46-56.
[http://dx.doi.org/10.1016/j.ab.2019.03.012] [PMID: 30914244]
[182]
Quik M, Bordia T, O’Leary K. Nicotinic receptors as CNS targets for Parkinson’s disease. Biochem Pharmacol 2007; 74(8): 1224-34.
[http://dx.doi.org/10.1016/j.bcp.2007.06.015] [PMID: 17631864]
[183]
Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: Implication for pharmacological interventions. Rev Neurosci 2015; 26(2): 199-223.
[http://dx.doi.org/10.1515/revneuro-2014-0044] [PMID: 25565544]
[184]
Decker MW, Meyer MD, Sullivan JP. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control. Expert Opin Investig Drugs 2001; 10(10): 1819-30.
[http://dx.doi.org/10.1517/13543784.10.10.1819] [PMID: 11772288]
[185]
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 2011; 63(4): 938-66.
[http://dx.doi.org/10.1124/pr.110.003269] [PMID: 21969327]
[186]
Michely J, Eldar E, Martin IM, Dolan RJ. A mechanistic account of serotonin’s impact on mood. Nat Commun 2020; 11(1): 2335.
[http://dx.doi.org/10.1038/s41467-020-16090-2] [PMID: 32393738]
[187]
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4(1): 48-63.
[http://dx.doi.org/10.1021/cn300186b] [PMID: 23336044]
[188]
Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71(4): 533-54.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[189]
Nayak SV, Rondé P, Spier AD, Lummis SC, Nichols RA. Nicotinic receptors co-localize with 5-HT(3) serotonin receptors on striatal nerve terminals. Neuropharmacology 2000; 39(13): 2681-90.
[http://dx.doi.org/10.1016/S0028-3908(00)00109-X] [PMID: 11044738]
[190]
Lummis SC. 5-HT(3) receptors. J Biol Chem 2012; 287(48): 40239-45.
[http://dx.doi.org/10.1074/jbc.R112.406496] [PMID: 23038271]
[191]
Derkach V, Surprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature 1989; 339(6227): 706-9.
[http://dx.doi.org/10.1038/339706a0] [PMID: 2472553]
[192]
Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 1991; 254(5030): 432-7.
[http://dx.doi.org/10.1126/science.1718042] [PMID: 1718042]
[193]
Yang J. Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J Gen Physiol 1990; 96(6): 1177-98.
[http://dx.doi.org/10.1085/jgp.96.6.1177] [PMID: 2286832]
[194]
Teixeira CM, Rosen ZB, Suri D, et al. Hippocampal 5-HT input regulates memory formation and schaffer collateral excitation. Neuron 2018; 98(5): 992-1004.e4.
[http://dx.doi.org/10.1016/j.neuron.2018.04.030] [PMID: 29754752]
[195]
Kilpatrick GJ, Jones BJ, Tyers MB. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 1987; 330(6150): 746-8.
[http://dx.doi.org/10.1038/330746a0] [PMID: 3696238]
[196]
Zhong W, Shahbaz O, Teskey G, et al. Mechanisms of nausea and vomiting: Current knowledge and recent advances in intracellular emetic signaling systems. Int J Mol Sci 2021; 22(11): 22.
[http://dx.doi.org/10.3390/ijms22115797] [PMID: 34071460]
[197]
Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 1993; 90(4): 1430-4.
[http://dx.doi.org/10.1073/pnas.90.4.1430] [PMID: 8434003]
[198]
Faerber L, Drechsler S, Ladenburger S, Gschaidmeier H, Fischer W. The neuronal 5-HT3 receptor network after 20 years of research--evolving concepts in management of pain and inflammation. Eur J Pharmacol 2007; 560(1): 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.028] [PMID: 17316606]
[199]
Kishi T, Mukai T, Matsuda Y, Iwata N. Selective serotonin 3 receptor antagonist treatment for schizophrenia: Meta-analysis and systematic review. Neuromolecular Med 2014; 16(1): 61-9.
[http://dx.doi.org/10.1007/s12017-013-8251-0] [PMID: 23896722]
[200]
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT3 receptor antagonists in neurologic and neuropsychiatric disorders: The iceberg still lies beneath the surface. Pharmacol Rev 2019; 71(3): 383-412.
[http://dx.doi.org/10.1124/pr.118.015487] [PMID: 31243157]
[201]
Theriot J, Wermuth HR, Ashurst JV. Antiemetic serotonin-5-HT3 receptor blockers. Treasure Island, (FL): StatPearls 2021.
[202]
Terashima A, Cotton L, Dev KK, et al. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J Neurosci 2004; 24(23): 5381-90.
[http://dx.doi.org/10.1523/JNEUROSCI.4378-03.2004] [PMID: 15190111]
[203]
Schousboe A. Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 1981; 22: 1-45.
[http://dx.doi.org/10.1016/S0074-7742(08)60289-5] [PMID: 6115823]
[204]
Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 2004; 14(3): 346-52.
[http://dx.doi.org/10.1016/j.conb.2004.05.007] [PMID: 15194115]
[205]
Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and glial glutamate transporters. Neuron 1994; 13(3): 713-25.
[http://dx.doi.org/10.1016/0896-6273(94)90038-8] [PMID: 7917301]
[206]
Lodge D. The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 2009; 56(1): 6-21.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.006] [PMID: 18765242]
[207]
Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008; 28(42): 10576-86.
[http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008] [PMID: 18923034]
[208]
Cohen S, Greenberg ME. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 2008; 24(1): 183-209.
[http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175235] [PMID: 18616423]
[209]
Keinänen K, Wisden W, Sommer B, et al. A family of AMPA-selective glutamate receptors. Science 1990; 249(4968): 556-60.
[http://dx.doi.org/10.1126/science.2166337] [PMID: 2166337]
[210]
Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 1994; 266(5187): 1059-62.
[http://dx.doi.org/10.1126/science.7973663] [PMID: 7973663]
[211]
Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61(3): 340-50.
[http://dx.doi.org/10.1016/j.neuron.2009.01.015] [PMID: 19217372]
[212]
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron 2018; 100(2): 314-29.
[http://dx.doi.org/10.1016/j.neuron.2018.10.018] [PMID: 30359599]
[213]
Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006; 71(9): 1273-88.
[http://dx.doi.org/10.1016/j.bcp.2005.12.022] [PMID: 16442080]
[214]
Francis PT. Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 2003; 18 (Suppl. 1): S15-21.
[http://dx.doi.org/10.1002/gps.934] [PMID: 12973746]
[215]
Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 2016; 17(6): 337-50.
[http://dx.doi.org/10.1038/nrn.2016.37] [PMID: 27080385]
[216]
Benke TA, Lüthi A, Isaac JT, Collingridge GL. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 1998; 393(6687): 793-7.
[http://dx.doi.org/10.1038/31709] [PMID: 9655394]
[217]
Plant K, Pelkey KA, Bortolotto ZA, et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 2006; 9(5): 602-4.
[http://dx.doi.org/10.1038/nn1678] [PMID: 16582904]
[218]
Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009; 462(7274): 745-56.
[http://dx.doi.org/10.1038/nature08624] [PMID: 19946266]
[219]
Lu W, Shi Y, Jackson AC, et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 2009; 62(2): 254-68.
[http://dx.doi.org/10.1016/j.neuron.2009.02.027] [PMID: 19409270]
[220]
Renner MC, Albers EH, Gutierrez-Castellanos N, et al. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 2017; 6: 6.
[http://dx.doi.org/10.7554/eLife.25462] [PMID: 28762944]
[221]
Liu SJ, Zukin RS. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 2007; 30(3): 126-34.
[http://dx.doi.org/10.1016/j.tins.2007.01.006] [PMID: 17275103]
[222]
Braithwaite SP, Xia H, Malenka RC. Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proc Natl Acad Sci USA 2002; 99(10): 7096-101.
[http://dx.doi.org/10.1073/pnas.102156099] [PMID: 12011465]
[223]
Dev KK, Nishimune A, Henley JM, Nakanishi S. The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 1999; 38(5): 635-44.
[http://dx.doi.org/10.1016/S0028-3908(98)00230-5] [PMID: 10340301]
[224]
Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL. GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997; 386(6622): 279-84.
[http://dx.doi.org/10.1038/386279a0] [PMID: 9069286]
[225]
Goldberg JH, Tamas G, Aronov D, Yuste R. Calcium microdomains in aspiny dendrites. Neuron 2003; 40(4): 807-21.
[http://dx.doi.org/10.1016/S0896-6273(03)00714-1] [PMID: 14622584]
[226]
O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES. AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004; 3(3): 181-94.
[http://dx.doi.org/10.2174/1568007043337508] [PMID: 15180479]
[227]
Watkins JC. The synthesis of some acidic amino acids possessing neuropharmacological activity. J Med Pharm Chem 1962; 91(6): 1187-99.
[http://dx.doi.org/10.1021/jm01241a010] [PMID: 14056452]
[228]
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14(6): 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[229]
Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241(4867): 835-7.
[http://dx.doi.org/10.1126/science.2841759] [PMID: 2841759]
[230]
Schmid SM, Hollmann M. To gate or not to gate: Are the delta subunits in the glutamate receptor family functional ion channels? Mol Neurobiol 2008; 37(2-3): 126-41.
[http://dx.doi.org/10.1007/s12035-008-8025-0] [PMID: 18521762]
[231]
Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat Methods 2007; 4(4): 319-21.
[http://dx.doi.org/10.1038/nmeth1024] [PMID: 17369835]
[232]
Ulbrich MH, Isacoff EY. Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA 2008; 105(37): 14163-8.
[http://dx.doi.org/10.1073/pnas.0802075105] [PMID: 18779583]
[233]
Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J 2008; 27(15): 2158-70.
[http://dx.doi.org/10.1038/emboj.2008.140] [PMID: 18636091]
[234]
Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005; 438(7065): 185-92.
[http://dx.doi.org/10.1038/nature04089] [PMID: 16281028]
[235]
Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309(5965): 261-3.
[http://dx.doi.org/10.1038/309261a0] [PMID: 6325946]
[236]
Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307(5950): 462-5.
[http://dx.doi.org/10.1038/307462a0] [PMID: 6320006]
[237]
Ault B, Evans RH, Francis AA, Oakes DJ, Watkins JC. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol 1980; 307(1): 413-28.
[http://dx.doi.org/10.1113/jphysiol.1980.sp013443] [PMID: 6259339]
[238]
Cotman CW, Monaghan DT, Ganong AH. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 1988; 11(1): 61-80.
[http://dx.doi.org/10.1146/annurev.ne.11.030188.000425] [PMID: 2452598]
[239]
Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 1990; 11(7): 290-6.
[http://dx.doi.org/10.1016/0165-6147(90)90011-V] [PMID: 2167544]
[240]
Yu SP, Yeh C, Strasser U, Tian M, Choi DW. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 1999; 284(5412): 336-9.
[http://dx.doi.org/10.1126/science.284.5412.336] [PMID: 10195902]
[241]
Yu XM, Salter MW. Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 1999; 96(14): 7697-704.
[http://dx.doi.org/10.1073/pnas.96.14.7697] [PMID: 10393883]
[242]
Regalado MP, Villarroel A, Lerma J. Intersubunit cooperativity in the NMDA receptor. Neuron 2001; 32(6): 1085-96.
[http://dx.doi.org/10.1016/S0896-6273(01)00539-6] [PMID: 11754839]
[243]
Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 2001; 4(6): 587-96.
[http://dx.doi.org/10.1038/88404] [PMID: 11369939]
[244]
Erreger K, Traynelis SF. Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 2005; 569(Pt 2): 381-93.
[http://dx.doi.org/10.1113/jphysiol.2005.095497] [PMID: 16166158]
[245]
Sessoms-Sikes S, Honse Y, Lovinger DM, Colbran RJ. CaMKIIalpha enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol Cell Neurosci 2005; 29(1): 139-47.
[http://dx.doi.org/10.1016/j.mcn.2005.01.006] [PMID: 15866054]
[246]
Hu B, Zheng F. Differential effects on current kinetics by point mutations in the lurcher motif of NR1/NR2A receptors. J Pharmacol Exp Ther 2005; 312(3): 899-904.
[http://dx.doi.org/10.1124/jpet.104.077388] [PMID: 15501991]
[247]
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - a focus on NMDA receptors. Neuropharmacology 2014; 76(Pt A): 16-26.
[248]
Verhagen Metman L, Morris MJ, Farmer C, et al. Huntington’s disease: A randomized, controlled trial using the NMDA-antagonist amantadine. Neurology 2002; 59(5): 694-9.
[http://dx.doi.org/10.1212/WNL.59.5.694] [PMID: 12221159]
[249]
Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology 2013; 74: 69-75.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.030] [PMID: 23583930]
[250]
Molero P, Ramos-Quiroga JA, Martin-Santos R, Calvo-Sánchez E, Gutiérrez-Rojas L, Meana JJ. Antidepressant efficacy and tolerability of ketamine and esketamine: A critical review. CNS Drugs 2018; 32(5): 411-20.
[http://dx.doi.org/10.1007/s40263-018-0519-3] [PMID: 29736744]
[251]
Zhou D, Xie C, Li X, et al. Rare presence of autoantibodies targeting to NMDA and GABAA receptors in schizophrenia patients. Schizophr Res 2021; S0920-9964(21)00486-2.
[http://dx.doi.org/10.1016/j.schres.2021.12.002] [PMID: 34916095]
[252]
Bigal ME, Bordini CA, Tepper SJ, Speciali JG. Intravenous magnesium sulphate in the acute treatment of migraine without aura and migraine with aura. A randomized, double-blind, placebo-controlled study. Cephalalgia 2002; 22(5): 345-53.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00364.x] [PMID: 12110110]
[253]
Foster AC, Mena EE, Monaghan DT, Cotman CW. Synaptic localization of kainic acid binding sites. Nature 1981; 289(5793): 73-5.
[http://dx.doi.org/10.1038/289073a0] [PMID: 6256647]
[254]
Selvakumar P, Lee J, Khanra N, et al. Structural and compositional diversity in the kainate receptor family. Cell Rep 2021; 37(4): 109891.
[http://dx.doi.org/10.1016/j.celrep.2021.109891] [PMID: 34706237]
[255]
Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: Milestones of two decades of research. Trends Neurosci 2011; 34(3): 154-63.
[http://dx.doi.org/10.1016/j.tins.2010.12.002] [PMID: 21256604]
[256]
Valbuena S, Lerma J. Kainate receptors, homeostatic gatekeepers of synaptic plasticity. Neuroscience 2021; 456: 17-26.
[http://dx.doi.org/10.1016/j.neuroscience.2019.11.050] [PMID: 31866560]
[257]
Veran J, Kumar J, Pinheiro PS, et al. Zinc potentiates GluK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface. Neuron 2012; 76(3): 565-78.
[http://dx.doi.org/10.1016/j.neuron.2012.08.027] [PMID: 23141068]
[258]
Pollok S, Reiner A. Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization. Proc Natl Acad Sci USA 2020; 117(41): 25851-8.
[http://dx.doi.org/10.1073/pnas.2007471117] [PMID: 32999066]
[259]
Cui C, Mayer ML. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J Neurosci 1999; 19(19): 8281-91.
[http://dx.doi.org/10.1523/JNEUROSCI.19-19-08281.1999] [PMID: 10493729]
[260]
Gallyas F Jr, Ball SM, Molnar E. Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neurochem 2003; 86(6): 1414-27.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01945.x] [PMID: 12950450]
[261]
Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 1992; 8(4): 775-85.
[http://dx.doi.org/10.1016/0896-6273(92)90098-X] [PMID: 1373632]
[262]
Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 1991; 351(6329): 742-4.
[http://dx.doi.org/10.1038/351742a0] [PMID: 1648176]
[263]
Jane DE, Lodge D, Collingridge GL. Kainate receptors: Pharmacology, function and therapeutic potential. Neuropharmacology 2009; 56(1): 90-113.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.023] [PMID: 18793656]
[264]
Paternain AV, Herrera MT, Nieto MA, Lerma J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000; 20(1): 196-205.
[http://dx.doi.org/10.1523/JNEUROSCI.20-01-00196.2000] [PMID: 10627597]
[265]
Vesikansa A, Sallert M, Taira T, Lauri SE. Activation of kainate receptors controls the number of functional glutamatergic synapses in the area CA1 of rat hippocampus. J Physiol 2007; 583(Pt 1): 145-57.
[http://dx.doi.org/10.1113/jphysiol.2007.133975] [PMID: 17569736]
[266]
Pinheiro PS, Perrais D, Coussen F, et al. GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 2007; 104(29): 12181-6.
[http://dx.doi.org/10.1073/pnas.0608891104] [PMID: 17620617]
[267]
Arora V, Pecoraro V, Aller MI, Román C, Paternain AV, Lerma J. Increased grik4 gene dosage causes imbalanced circuit output and human disease-related behaviors. Cell Rep 2018; 23(13): 3827-38.
[http://dx.doi.org/10.1016/j.celrep.2018.05.086] [PMID: 29949767]
[268]
Wong AY, MacLean DM, Bowie D. Na+/Cl- dipole couples agonist binding to kainate receptor activation. J Neurosci 2007; 27(25): 6800-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-07.2007] [PMID: 17581967]
[269]
Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997; 388(6638): 179-82.
[http://dx.doi.org/10.1038/40639] [PMID: 9217158]
[270]
Rivera R, Rozas JL, Lerma J. PKC-dependent autoregulation of membrane kainate receptors. EMBO J 2007; 26(20): 4359-67.
[http://dx.doi.org/10.1038/sj.emboj.7601865] [PMID: 17898803]
[271]
Rozas JL. Metabotropic actions of kainate receptors in dorsal root ganglion cells. Adv Exp Med Biol 2011; 717: 69-80.
[http://dx.doi.org/10.1007/978-1-4419-9557-5_7] [PMID: 21713668]
[272]
Rozas JL, Paternain AV, Lerma J. Noncanonical signaling by ionotropic kainate receptors. Neuron 2003; 39(3): 543-53.
[http://dx.doi.org/10.1016/S0896-6273(03)00436-7] [PMID: 12895426]
[273]
Nadler JV. Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981; 29(20): 2031-42.
[http://dx.doi.org/10.1016/0024-3205(81)90659-7] [PMID: 7031398]
[274]
Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH. A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 1992; 11(4): 1651-6.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05211.x] [PMID: 1373382]
[275]
Ko S, Zhao MG, Toyoda H, Qiu CS, Zhuo M. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci 2005; 25(4): 977-84.
[http://dx.doi.org/10.1523/JNEUROSCI.4059-04.2005] [PMID: 15673679]
[276]
McCarran WJ, Goldberg MP. White matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated. J Neurosci 2007; 27(15): 4220-9.
[http://dx.doi.org/10.1523/JNEUROSCI.5542-06.2007] [PMID: 17429000]
[277]
Xu J, Liu Y, Zhang GY. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase. J Biol Chem 2008; 283(43): 29355-66.
[http://dx.doi.org/10.1074/jbc.M800393200] [PMID: 18678878]
[278]
Braga MF, Aroniadou-Anderjaska V, Li H. The physiological role of kainate receptors in the amygdala. Mol Neurobiol 2004; 30(2): 127-41.
[http://dx.doi.org/10.1385/MN:30:2:127] [PMID: 15475623]
[279]
Li H, Chen A, Xing G, Wei ML, Rogawski MA. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat Neurosci 2001; 4(6): 612-20.
[http://dx.doi.org/10.1038/88432] [PMID: 11369942]
[280]
Aller MI, Pecoraro V, Paternain AV, Canals S, Lerma J. Increased dosage of high-affinity kainate receptor gene grik4 alters synaptic transmission and reproduces autism spectrum disorders features. J Neurosci 2015; 35(40): 13619-28.
[http://dx.doi.org/10.1523/JNEUROSCI.2217-15.2015] [PMID: 26446216]
[281]
Benes FM, Vincent SL, Todtenkopf M. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 2001; 50(6): 395-406.
[http://dx.doi.org/10.1016/S0006-3223(01)01084-8] [PMID: 11566156]
[282]
Meador-Woodruff JH, Davis KL, Haroutunian V. Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 2001; 24(5): 545-52.
[http://dx.doi.org/10.1016/S0893-133X(00)00189-5] [PMID: 11282254]
[283]
Kranzler HR, Armeli S, Feinn R, Tennen H, Gelernter J, Covault J. GRIK1 genotype moderates topiramate’s effects on daily drinking level, expectations of alcohol’s positive effects and desire to drink. Int J Neuropsychopharmacol 2014; 17(10): 1549-56.
[http://dx.doi.org/10.1017/S1461145714000510] [PMID: 24786948]
[284]
Cai J, Zhang W, Yi Z, et al. Influence of polymorphisms in genes SLC1A1, GRIN2B, and GRIK2 on clozapine-induced obsessive-compulsive symptoms. Psychopharmacology (Berl) 2013; 230(1): 49-55.
[http://dx.doi.org/10.1007/s00213-013-3137-2] [PMID: 23660601]
[285]
Gisabella B, Bolshakov VY, Benes FM. Kainate receptor-mediated modulation of hippocampal fast spiking interneurons in a rat model of schizophrenia. PLoS One 2012; 7(3): e32483.
[http://dx.doi.org/10.1371/journal.pone.0032483] [PMID: 22396770]
[286]
Blackwood DH, Thiagarajah T, Malloy P, Pickard BS, Muir WJ. Chromosome abnormalities, mental retardation and the search for genes in bipolar disorder and schizophrenia. Neurotox Res 2008; 14(2-3): 113-20.
[http://dx.doi.org/10.1007/BF03033803] [PMID: 19073419]
[287]
Schmid SM, Hollmann M. Bridging the synaptic cleft: Lessons from orphan glutamate receptors. Sci Signal 2010; 3(136): pe28.
[http://dx.doi.org/10.1126/scisignal.3136pe28] [PMID: 20736482]
[288]
Orth A, Tapken D, Hollmann M. The delta subfamily of glutamate receptors: Characterization of receptor chimeras and mutants. Eur J Neurosci 2013; 37(10): 1620-30.
[http://dx.doi.org/10.1111/ejn.12193] [PMID: 23551821]
[289]
Carrillo E, Gonzalez CU, Berka V, Jayaraman V. Delta glutamate receptors are functional glycine- and ᴅ-serine-gated cation channels in situ. Sci Adv 2021; 7(52): eabk2200.
[http://dx.doi.org/10.1126/sciadv.abk2200] [PMID: 34936451]
[290]
Lomeli H, Sprengel R, Laurie DJ, et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 1993; 315(3): 318-22.
[http://dx.doi.org/10.1016/0014-5793(93)81186-4] [PMID: 8422924]
[291]
Yamazaki M, Araki K, Shibata A, Mishina M. Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 1992; 183(2): 886-92.
[http://dx.doi.org/10.1016/0006-291X(92)90566-4] [PMID: 1372507]
[292]
Yadav R, Gupta SC, Hillman BG, Bhatt JM, Stairs DJ, Dravid SM. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7(3): e32969.
[http://dx.doi.org/10.1371/journal.pone.0032969] [PMID: 22412961]
[293]
Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar purkinje cells. Biochem Biophys Res Commun 1993; 197(3): 1267-76.
[http://dx.doi.org/10.1006/bbrc.1993.2614] [PMID: 7506541]
[294]
Yuzaki M. Cerebellar LTD vs. motor learning-lessons learned from studying GluD2. Neural Netw 2013; 47: 36-41.
[http://dx.doi.org/10.1016/j.neunet.2012.07.001] [PMID: 22840919]
[295]
Burada AP, Vinnakota R, Kumar J. The architecture of GluD2 ionotropic delta glutamate receptor elucidated by cryo-EM. J Struct Biol 2020; 211(2): 107546.
[http://dx.doi.org/10.1016/j.jsb.2020.107546] [PMID: 32512155]
[296]
Burada AP, Vinnakota R, Kumar J. Cryo-EM structures of the ionotropic glutamate receptor GluD1 reveal a non-swapped architecture. Nat Struct Mol Biol 2020; 27(1): 84-91.
[http://dx.doi.org/10.1038/s41594-019-0359-y] [PMID: 31925409]
[297]
Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 2010; 327(5970): 1250-4.
[http://dx.doi.org/10.1126/science.1184821] [PMID: 20203048]
[298]
Bartok A, Weaver D, Golenár T, et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 2019; 10(1): 3726.
[http://dx.doi.org/10.1038/s41467-019-11646-3] [PMID: 31427578]
[299]
Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87(2): 593-658.
[http://dx.doi.org/10.1152/physrev.00035.2006] [PMID: 17429043]
[300]
Sharp AH, Nucifora FC Jr, Blondel O, et al. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 1999; 406(2): 207-20.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990405)406:2<207:::AID-CNE6>3.0.CO;2-7] [PMID: 10096607]
[301]
Shiratori-Hayashi M, Yamaguchi C, Eguchi K, et al. Astrocytic STAT3 activation and chronic itch require IP3R1/TRPC-dependent Ca2+ signals in mice. J Allergy Clin Immunol 2021; 147(4): 1341-53.
[http://dx.doi.org/10.1016/j.jaci.2020.06.039] [PMID: 32781002]
[302]
Brown SA, Loew LM. Computational analysis of calcium signaling and membrane electrophysiology in cerebellar purkinje neurons associated with ataxia. BMC Syst Biol 2012; 6(1): 70.
[http://dx.doi.org/10.1186/1752-0509-6-70] [PMID: 22703638]
[303]
Post JI, Leergaard TB, Ratz V, Walaas SI, von Hörsten S, Nissen-Meyer LSH. Differential levels and phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in four different murine models of Huntington disease. J Huntingtons Dis 2019; 8(3): 271-89.
[http://dx.doi.org/10.3233/JHD-180301] [PMID: 31256144]
[304]
Sherwood MW, Arizono M, Panatier A, Mikoshiba K, Oliet SHR. Astrocytic IP3Rs: Beyond IP3R2. Front Cell Neurosci 2021; 15: 695817.
[http://dx.doi.org/10.3389/fncel.2021.695817] [PMID: 34393726]
[305]
Shi M, Chen F, Chen Z, et al. Sigma-1 receptor: A potential therapeutic target for traumatic brain injury. Front Cell Neurosci 2021; 15: 685201.
[http://dx.doi.org/10.3389/fncel.2021.685201] [PMID: 34658788]
[306]
Bononi A, Giorgi C, Patergnani S, et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 2017; 546(7659): 549-53.
[http://dx.doi.org/10.1038/nature22798] [PMID: 28614305]
[307]
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8(3): 375-417.
[http://dx.doi.org/10.1007/s11302-012-9314-7] [PMID: 22547202]
[308]
North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82(4): 1013-67.
[http://dx.doi.org/10.1152/physrev.00015.2002] [PMID: 12270951]
[309]
Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87(2): 659-797.
[http://dx.doi.org/10.1152/physrev.00043.2006] [PMID: 17429044]
[310]
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63(3): 641-83.
[http://dx.doi.org/10.1124/pr.110.003129] [PMID: 21737531]
[311]
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: New insights into neurological disorders and ligand recognition. Chem Rev 2012; 112(12): 6285-318.
[http://dx.doi.org/10.1021/cr3000829] [PMID: 22988962]
[312]
Burnstock G, Fredholm BB, Verkhratsky A. Adenosine and ATP receptors in the brain. Curr Top Med Chem 2011; 11(8): 973-1011.
[http://dx.doi.org/10.2174/156802611795347627] [PMID: 21401499]
[313]
Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: Focus on neuropsychiatric disorders. Front Pharmacol 2018; 9: 30.
[http://dx.doi.org/10.3389/fphar.2018.00030] [PMID: 29449810]
[314]
Illes P, Khan TM, Rubini P. Neuronal P2X7 receptors revisited: Do they really exist? J Neurosci 2017; 37(30): 7049-62.
[http://dx.doi.org/10.1523/JNEUROSCI.3103-16.2017] [PMID: 28747388]
[315]
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the purinergic signaling system. Neuroscience 2019; 405: 137-47.
[http://dx.doi.org/10.1016/j.neuroscience.2018.12.021] [PMID: 30582977]
[316]
Kashfi S, Peymani M, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M. Purinergic receptor expression and potential association with human embryonic stem cell-derived oligodendrocyte progenitor cell development. Cell J 2017; 19(3): 386-402.
[PMID: 28836401]
[317]
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity 2020; 52(2): 404-416.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.01.012] [PMID: 32049054]
[318]
Lazarowski ER. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 2012; 8(3): 359-73.
[http://dx.doi.org/10.1007/s11302-012-9304-9] [PMID: 22528679]
[319]
Yamamoto K, Korenaga R, Kamiya A, Qi Z, Sokabe M, Ando J. P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 2000; 279(1): H285-92.
[http://dx.doi.org/10.1152/ajpheart.2000.279.1.H285] [PMID: 10899068]
[320]
Manohar M, Hirsh MI, Chen Y, Woehrle T, Karande AA, Junger WG. ATP release and autocrine signaling through P2X4 receptors regulate γδ T cell activation. J Leukoc Biol 2012; 92(4): 787-94.
[http://dx.doi.org/10.1189/jlb.0312121] [PMID: 22753954]
[321]
Salter MW, Hicks JL. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 1995; 15(4): 2961-71.
[http://dx.doi.org/10.1523/JNEUROSCI.15-04-02961.1995] [PMID: 7722640]
[322]
Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 2015; 209(6): 879-94.
[http://dx.doi.org/10.1083/jcb.201409071] [PMID: 26101220]
[323]
Jurewicz A, Matysiak M, Tybor K, Kilianek L, Raine CS, Selmaj K. Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor. Brain 2005; 128(Pt 11): 2675-88.
[http://dx.doi.org/10.1093/brain/awh627] [PMID: 16219674]
[324]
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-dependent modulation of mast cell and glial cell activities in neuroinflammation. Cells 2021; 10(9): 10.
[http://dx.doi.org/10.3390/cells10092282] [PMID: 34571930]
[325]
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79: 119-33.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.001] [PMID: 28499503]
[326]
Xu J, Zhang X, Qian Q, et al. Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammation 2018; 15(1): 41.
[http://dx.doi.org/10.1186/s12974-018-1068-x] [PMID: 29433511]
[327]
Jiang L, Cheng L, Chen H, et al. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J Exp Med 2021; 218(1): 218.
[http://dx.doi.org/10.1084/jem.20191365] [PMID: 32991666]
[328]
James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 2002; 447(2-3): 247-60.
[http://dx.doi.org/10.1016/S0014-2999(02)01756-9] [PMID: 12151016]
[329]
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62(11): 1762-79.
[http://dx.doi.org/10.1002/glia.22674] [PMID: 24753049]
[330]
Hamilton N, Vayro S, Kirchhoff F, et al. Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 2008; 56(7): 734-49.
[http://dx.doi.org/10.1002/glia.20649] [PMID: 18293404]
[331]
Hamilton N, Vayro S, Wigley R, Butt AM. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 2010; 58(1): 66-79.
[http://dx.doi.org/10.1002/glia.20902] [PMID: 19533604]
[332]
Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 2006; 26(5): 1378-85.
[http://dx.doi.org/10.1523/JNEUROSCI.3902-05.2006] [PMID: 16452661]
[333]
Allan D, Fairlie-Clarke KJ, Elliott C, et al. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: Expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun 2016; 4(1): 75.
[http://dx.doi.org/10.1186/s40478-016-0344-1] [PMID: 27455844]
[334]
Martínez-Frailes C, Di Lauro C, Bianchi C, et al. Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality. Front Cell Neurosci 2019; 13: 143.
[http://dx.doi.org/10.3389/fncel.2019.00143] [PMID: 31031598]
[335]
Martin E, Amar M, Dalle C, et al. New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol Psychiatry 2019; 24(1): 108-25.
[http://dx.doi.org/10.1038/s41380-018-0108-3] [PMID: 29934546]
[336]
Sanz JM, Chiozzi P, Ferrari D, et al. Activation of microglia by amyloid beta requires P2X7 receptor expression. J Immunol 2009; 182(7): 4378-85.
[http://dx.doi.org/10.4049/jimmunol.0803612] [PMID: 19299738]
[337]
Domercq M, Matute C. Targeting P2X4 and P2X7 receptors in multiple sclerosis. Curr Opin Pharmacol 2019; 47: 119-25.
[http://dx.doi.org/10.1016/j.coph.2019.03.010] [PMID: 31015145]
[338]
D’Ambrosi N, Finocchi P, Apolloni S, et al. The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol 2009; 183(7): 4648-56.
[http://dx.doi.org/10.4049/jimmunol.0901212] [PMID: 19734218]
[339]
Wang XH, Xie X, Luo XG, Shang H, He ZY. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol Med Rep 2017; 15(2): 768-76.
[http://dx.doi.org/10.3892/mmr.2016.6070] [PMID: 28035410]
[340]
Ribeiro DE, Roncalho AL, Glaser T, Ulrich H, Wegener G, Joca S. P2X7 Receptor signaling in stress and depression. Int J Mol Sci 2019; 20(11): 20.
[http://dx.doi.org/10.3390/ijms20112778] [PMID: 31174279]
[341]
Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG. Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 2006; 281(39): 29369-78.
[http://dx.doi.org/10.1074/jbc.M605122200] [PMID: 16882660]
[342]
Karsan N, Gonzales EB, Dussor G. Targeted acid-sensing ion channel therapies for migraine. Neurotherapeutics 2018; 15(2): 402-14.
[http://dx.doi.org/10.1007/s13311-018-0619-2] [PMID: 29549622]
[343]
Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 2013; 14(7): 461-71.
[http://dx.doi.org/10.1038/nrn3529] [PMID: 23783197]
[344]
Kweon HJ, Suh BC. Acid-sensing ion channels (ASICs): Therapeutic targets for neurological diseases and their regulation. BMB Rep 2013; 46(6): 295-304.
[http://dx.doi.org/10.5483/BMBRep.2013.46.6.121] [PMID: 23790972]
[345]
Chu XP, Xiong ZG. Physiological and pathological functions of acid-sensing ion channels in the central nervous system. Curr Drug Targets 2012; 13(2): 263-71.
[http://dx.doi.org/10.2174/138945012799201685] [PMID: 22204324]
[346]
Sluka KA, Winter OC, Wemmie JA. Acid-sensing ion channels: A new target for pain and CNS diseases. Curr Opin Drug Discov Devel 2009; 12(5): 693-704.
[PMID: 19736627]
[347]
Deval E, Gasull X, Noël J, et al. Acid-sensing ion channels (ASICs): Pharmacology and implication in pain. Pharmacol Ther 2010; 128(3): 549-58.
[http://dx.doi.org/10.1016/j.pharmthera.2010.08.006] [PMID: 20807551]
[348]
Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature 1997; 386(6621): 173-7.
[http://dx.doi.org/10.1038/386173a0] [PMID: 9062189]
[349]
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73(10): e22120.
[http://dx.doi.org/10.1002/syn.22120] [PMID: 31180161]
[350]
Gründer S, Chen X. Structure, function, and pharmacology of acid-sensing ion channels (ASICs): Focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol 2010; 2(2): 73-94.
[PMID: 21383888]
[351]
Zha XM. Acid-sensing ion channels: Trafficking and synaptic function. Mol Brain 2013; 6(1): 1.
[http://dx.doi.org/10.1186/1756-6606-6-1] [PMID: 23281934]
[352]
Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 2011; 31(26): 9723-34.
[http://dx.doi.org/10.1523/JNEUROSCI.1665-11.2011] [PMID: 21715637]
[353]
Yoder N, Yoshioka C, Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature 2018; 555(7696): 397-401.
[http://dx.doi.org/10.1038/nature25782] [PMID: 29513651]
[354]
Hesselager M, Timmermann DB, Ahring PK. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 2004; 279(12): 11006-15.
[http://dx.doi.org/10.1074/jbc.M313507200] [PMID: 14701823]
[355]
Zhang P, Sigworth FJ, Canessa CM. Gating of acid-sensitive ion channel-1: Release of Ca2+ block vs. allosteric mechanism. J Gen Physiol 2006; 127(2): 109-17.
[http://dx.doi.org/10.1085/jgp.200509396] [PMID: 16418400]
[356]
Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 2008; 19(10): 1845-54.
[http://dx.doi.org/10.1681/ASN.2008020225] [PMID: 18753254]
[357]
Sharma K, Haque M, Guidry R, Ueta Y, Teruyama R. Effect of dietary salt intake on epithelial Na+ channels (ENaC) in vasopressin magnocellular neurosecretory neurons in the rat supraoptic nucleus. J Physiol 2017; 595(17): 5857-74.
[http://dx.doi.org/10.1113/JP274856] [PMID: 28714095]
[358]
Schild L. The epithelial sodium channel: From molecule to disease. Rev Physiol Biochem Pharmacol 2004; 151: 93-107.
[http://dx.doi.org/10.1007/s10254-004-0023-7] [PMID: 15146350]
[359]
Blakemore LJ, Trombley PQ. Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Front Cell Neurosci 2017; 11: 297.
[http://dx.doi.org/10.3389/fncel.2017.00297] [PMID: 29033788]
[360]
Assaf SY, Chung SH. Release of endogenous Zn2+ from brain tissue during activity. Nature 1984; 308(5961): 734-6.
[http://dx.doi.org/10.1038/308734a0] [PMID: 6717566]
[361]
Howell GA, Welch MG, Frederickson CJ. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 1984; 308(5961): 736-8.
[http://dx.doi.org/10.1038/308736a0] [PMID: 6717567]
[362]
Davies PA, Wang W, Hales TG, Kirkness EF. A novel class of ligand-gated ion channel is activated by Zn2+. J Biol Chem 2003; 278(2): 712-7.
[http://dx.doi.org/10.1074/jbc.M208814200] [PMID: 12381728]
[363]
Houtani T, Munemoto Y, Kase M, Sakuma S, Tsutsumi T, Sugimoto T. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system. Biochem Biophys Res Commun 2005; 335(2): 277-85.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.079] [PMID: 16083862]
[364]
Rivers-Auty J, Tapia VS, White CS, et al. Zinc status alters Alzheimer’s disease progression through NLRP3-dependent inflammation. J Neurosci 2021; 41(13): 3025-38.
[http://dx.doi.org/10.1523/JNEUROSCI.1980-20.2020] [PMID: 33597269]
[365]
D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic abnormalities, dietary risk factors and nutritional management in amyotrophic lateral sclerosis. Nutrients 2021; 13(7): 13.
[http://dx.doi.org/10.3390/nu13072273] [PMID: 34209133]
[366]
Alexander SPH, Fabbro D, Kelly E, et al. CGTP Collaborators. The concise guide to pharmacology 2019/20: Enzymes. Br J Pharmacol 2019; 176 (Suppl. 1): S297-396.
[http://dx.doi.org/10.1111/bph.14752] [PMID: 31710714]
[367]
Dey A, Allen JN, Fraser JW, et al. Neuroprotective role of the ron receptor tyrosine kinase underlying central nervous system inflammation in health and disease. Front Immunol 2018; 9: 513.
[http://dx.doi.org/10.3389/fimmu.2018.00513] [PMID: 29616029]
[368]
Yu S, Allen JN, Dey A, et al. The ron receptor tyrosine kinase regulates macrophage heterogeneity and plays a protective role in diet-induced obesity, atherosclerosis, and hepatosteatosis. J Immunol 2016; 197(1): 256-65.
[http://dx.doi.org/10.4049/jimmunol.1600450] [PMID: 27233965]
[369]
Li J, Halfter K, Zhang M, et al. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: Implications for treatment and discovery of potential therapeutic signatures. BMC Cancer 2019; 19(1): 600.
[http://dx.doi.org/10.1186/s12885-019-5804-0] [PMID: 31208363]
[370]
Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000; 19(49): 5548-57.
[http://dx.doi.org/10.1038/sj.onc.1203957] [PMID: 11114734]
[371]
van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994; 10(1): 251-337.
[http://dx.doi.org/10.1146/annurev.cb.10.110194.001343] [PMID: 7888178]
[372]
Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science 1987; 238(4834): 1717-20.
[http://dx.doi.org/10.1126/science.2825356] [PMID: 2825356]
[373]
Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 2009; 12(1): 15-20.
[http://dx.doi.org/10.1038/nn.2231] [PMID: 19029886]
[374]
Stallaert W, Brüggemann Y, Sabet O, Baak L, Gattiglio M, Bastiaens PIH. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci Signal 2018; 11(541): 11.
[http://dx.doi.org/10.1126/scisignal.aat0114] [PMID: 30065026]
[375]
Coulthard MG, Morgan M, Woodruff TM, et al. Eph/Ephrin signaling in injury and inflammation. Am J Pathol 2012; 181(5): 1493-503.
[http://dx.doi.org/10.1016/j.ajpath.2012.06.043] [PMID: 23021982]
[376]
Fabes J, Anderson P, Brennan C, Bolsover S. Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord. Eur J Neurosci 2007; 26(9): 2496-505.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05859.x] [PMID: 17970742]
[377]
Casalini P, Iorio MV, Galmozzi E, Ménard S. Role of HER receptors family in development and differentiation. J Cell Physiol 2004; 200(3): 343-50.
[http://dx.doi.org/10.1002/jcp.20007] [PMID: 15254961]
[378]
Duchnowska R, Loibl S, Jassem J. Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev 2018; 67: 71-7.
[http://dx.doi.org/10.1016/j.ctrv.2018.05.004] [PMID: 29772459]
[379]
Aiko N, Shimokawa T, Miyazaki K, et al. Comparison of the efficacies of first-generation epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in patients with advanced non-small-cell lung cancer harboring EGFR mutations. BMC Cancer 2018; 18(1): 1012.
[http://dx.doi.org/10.1186/s12885-018-4911-7] [PMID: 30348116]
[380]
Zeng Q, Wang J, Cheng Z, et al. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J Med Chem 2015; 58(20): 8200-15.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01073] [PMID: 26313252]
[381]
Matrone C, Marolda R, Ciafrè S, Ciotti MT, Mercanti D, Calissano P. Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via abeta-mediated phosphorylation. Proc Natl Acad Sci USA 2009; 106(27): 11358-63.
[http://dx.doi.org/10.1073/pnas.0904998106] [PMID: 19549834]
[382]
Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: From the early discoveries to the potential clinical use. J Transl Med 2012; 10(1): 239.
[http://dx.doi.org/10.1186/1479-5876-10-239] [PMID: 23190582]
[383]
Mufson EJ, Counts SE, Ginsberg SD, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 2019; 13: 533.
[http://dx.doi.org/10.3389/fnins.2019.00533] [PMID: 31312116]
[384]
Cheng HC, Sun Y, Lai LC, et al. Genetic polymorphisms of nerve growth factor receptor (NGFR) and the risk of Alzheimer’s disease. J Negat Results Biomed 2012; 11(1): 5.
[http://dx.doi.org/10.1186/1477-5751-11-5] [PMID: 22236693]
[385]
Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 2008; 7(1): 46-62.
[http://dx.doi.org/10.2174/187152708783885174] [PMID: 18289031]
[386]
Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003; 72(1): 609-42.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[387]
Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 2007; 3(3): 249-59.
[http://dx.doi.org/10.1038/ncpendmet0424] [PMID: 17315033]
[388]
Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 2002; 67(3): 203-33.
[http://dx.doi.org/10.1016/S0301-0082(02)00016-3] [PMID: 12169297]
[389]
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141(7): 1117-34.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[390]
Yu J, Rupasinghe C, Wilson JL, et al. Targeting receptor tyrosine kinases and their downstream signaling with cell-penetrating peptides in human pulmonary artery smooth muscle and endothelial cells. Chem Biol Drug Des 2015; 85(5): 586-97.
[http://dx.doi.org/10.1111/cbdd.12446] [PMID: 25298192]
[391]
Reuss B, von Bohlen und Halbach O. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 2003; 313(2): 139-57.
[http://dx.doi.org/10.1007/s00441-003-0756-7] [PMID: 12845521]
[392]
Ornitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271(25): 15292-7.
[http://dx.doi.org/10.1074/jbc.271.25.15292] [PMID: 8663044]
[393]
Klimaschewski L, Claus P. Fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol 2021; 58(8): 3884-902.
[http://dx.doi.org/10.1007/s12035-021-02367-0] [PMID: 33860438]
[394]
Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun 2016; 7(1): 10262.
[http://dx.doi.org/10.1038/ncomms10262] [PMID: 26725515]
[395]
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16(2): 139-49.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[396]
Airaksinen MS, Saarma M. The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3(5): 383-94.
[http://dx.doi.org/10.1038/nrn812] [PMID: 11988777]
[397]
Runeberg-Roos P, Saarma M. Neurotrophic factor receptor RET: Structure, cell biology, and inherited diseases. Ann Med 2007; 39(8): 572-80.
[http://dx.doi.org/10.1080/07853890701646256] [PMID: 17934909]
[398]
Schlee S, Carmillo P, Whitty A. Quantitative analysis of the activation mechanism of the multicomponent growth-factor receptor Ret. Nat Chem Biol 2006; 2(11): 636-44.
[http://dx.doi.org/10.1038/nchembio823] [PMID: 17013378]
[399]
Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur Neuropsychopharmacol 2014; 24(12): 1947-53.
[http://dx.doi.org/10.1016/j.euroneuro.2014.01.020] [PMID: 24529663]
[400]
Gammeltoft S, Haselbacher GK, Humbel RE, Fehlmann M, Van Obberghen E. Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J 1985; 4(13A): 3407-12.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04097.x] [PMID: 3004958]
[401]
Shaw LM. The insulin receptor substrate (IRS) proteins: At the intersection of metabolism and cancer. Cell Cycle 2011; 10(11): 1750-6.
[http://dx.doi.org/10.4161/cc.10.11.15824] [PMID: 21597332]
[402]
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: More than just a peripheral hormone. J Aging Res 2012; 2012: 384017.
[http://dx.doi.org/10.1155/2012/384017] [PMID: 22500228]
[403]
Feld GB, Wilhem I, Benedict C, et al. Central nervous insulin signaling in sleep-associated memory formation and neuroendocrine regulation. Neuropsychopharmacology 2016; 41(6): 1540-50.
[http://dx.doi.org/10.1038/npp.2015.312] [PMID: 26448203]
[404]
Sheehan TP, Neve RL, Duman RS, Russell DS. Antidepressant effect of the calcium-activated tyrosine kinase Pyk2 in the lateral septum. Biol Psychiatry 2003; 54(5): 540-51.
[http://dx.doi.org/10.1016/S0006-3223(02)01815-2] [PMID: 12946883]
[405]
Menegon A, Burgaya F, Baudot P, Dunlap DD, Girault JA, Valtorta F. FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: Similarities and differences in the expression pattern. Eur J Neurosci 1999; 11(11): 3777-88.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00798.x] [PMID: 10583467]
[406]
Tian D, Litvak V, Lev S. Cerebral ischemia and seizures induce tyrosine phosphorylation of PYK2 in neurons and microglial cells. J Neurosci 2000; 20(17): 6478-87.
[http://dx.doi.org/10.1523/JNEUROSCI.20-17-06478.2000] [PMID: 10964954]
[407]
de Pins B, Mendes T, Giralt A, Girault JA. The non-receptor tyrosine kinase Pyk2 in brain function and neurological and psychiatric diseases. Front Synaptic Neurosci 2021; 13: 749001.
[http://dx.doi.org/10.3389/fnsyn.2021.749001] [PMID: 34690733]
[408]
Kohno T, Matsuda E, Sasaki H, Sasaki T. Protein-tyrosine kinase CAKbeta/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 alpha2 helix and thus forming its dimer. Biochem J 2008; 410(3): 513-23.
[http://dx.doi.org/10.1042/BJ20070665] [PMID: 18031286]
[409]
Niimura M, Moussa R, Bissoon N, Ikeda-Douglas C, Milgram NW, Gurd JW. Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus. J Neurochem 2005; 92(6): 1377-85.
[http://dx.doi.org/10.1111/j.1471-4159.2005.02977.x] [PMID: 15748156]
[410]
Sun Y, Savanenin A, Reddy PH, Liu YF. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 2001; 276(27): 24713-8.
[http://dx.doi.org/10.1074/jbc.M103501200] [PMID: 11319238]
[411]
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[412]
Alexander SPH, Cidlowski JA, Kelly E, et al. CGTP Collaborators. The concise guide to pharmacology 2019/20: Nuclear hormone receptors. Br J Pharmacol 2019; 176 (Suppl. 1): S229-46.
[http://dx.doi.org/10.1111/bph.14750] [PMID: 31710718]
[413]
Ferrara SJ, Scanlan TS. A CNS-targeting prodrug strategy for nuclear receptor modulators. J Med Chem 2020; 63(17): 9742-51.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00868] [PMID: 32787092]
[414]
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear receptors as therapeutic targets for neurodegenerative diseases: Lost in translation. Annu Rev Pharmacol Toxicol 2019; 59(1): 237-61.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021807] [PMID: 30208281]
[415]
Kim CH, Han BS, Moon J, et al. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci USA 2015; 112(28): 8756-61.
[http://dx.doi.org/10.1073/pnas.1509742112] [PMID: 26124091]
[416]
Kabat GC, Etgen AM, Rohan TE. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol Biomarkers Prev 2010; 19(10): 2421-7.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0658] [PMID: 20841389]
[417]
Xu Y, O’Malley BW, Elmquist JK. Brain nuclear receptors and body weight regulation. J Clin Invest 2017; 127(4): 1172-80.
[http://dx.doi.org/10.1172/JCI88891] [PMID: 28218618]
[418]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[419]
Moore JT, Collins JL, Pearce KH. The nuclear receptor superfamily and drug discovery. ChemMedChem 2006; 1(5): 504-23.
[http://dx.doi.org/10.1002/cmdc.200600006] [PMID: 16892386]
[420]
Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol 2011; 334(1-2): 3-13.
[http://dx.doi.org/10.1016/j.mce.2010.06.018] [PMID: 20615454]
[421]
Xu EH, Lambert MH. Structural insights into regulation of nuclear receptors by ligands. Nucl Recept Signal 2003; 1(1): e004.
[http://dx.doi.org/10.1621/nrs.01004] [PMID: 16604176]
[422]
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53(12): 1821-33.
[http://dx.doi.org/10.1038/s12276-021-00703-x] [PMID: 34857900]
[423]
McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J 2016; 30(11): 3658-68.
[http://dx.doi.org/10.1096/fj.201600275R] [PMID: 27468758]
[424]
Sarkar A, Carter EL, Harland JB, Speelman AL, Lehnert N, Ragsdale SW. Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer. Proc Natl Acad Sci USA 2021; 118(3): 118.
[http://dx.doi.org/10.1073/pnas.2016717118] [PMID: 33436410]
[425]
Raghuram S, Stayrook KR, Huang P, et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 2007; 14(12): 1207-13.
[http://dx.doi.org/10.1038/nsmb1344] [PMID: 18037887]
[426]
Jeong H, Moye LS, Southey BR, et al. Gene network dysregulation in the trigeminal ganglia and nucleus accumbens of a model of chronic migraine-associated hyperalgesia. Front Syst Neurosci 2018; 12: 63.
[http://dx.doi.org/10.3389/fnsys.2018.00063] [PMID: 30618656]
[427]
Gupta S, McCarson KE, Welch KM, Berman NE. Mechanisms of pain modulation by sex hormones in migraine. Headache 2011; 51(6): 905-22.
[http://dx.doi.org/10.1111/j.1526-4610.2011.01908.x] [PMID: 21631476]
[428]
Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci USA 2004; 101(12): 4274-9.
[http://dx.doi.org/10.1073/pnas.0306147101] [PMID: 15016917]
[429]
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting orphan nuclear receptors NR4As for energy homeostasis and diabetes. Front Pharmacol 2020; 11: 587457.
[http://dx.doi.org/10.3389/fphar.2020.587457] [PMID: 33328994]
[430]
Tobin JF, Freedman LP. Nuclear receptors as drug targets in metabolic diseases: New approaches to therapy. Trends Endocrinol Metab 2006; 17(7): 284-90.
[http://dx.doi.org/10.1016/j.tem.2006.07.004] [PMID: 16870465]
[431]
Kong Y, Zhou W, Sun Z. Nuclear receptor corepressors in intellectual disability and autism. Mol Psychiatry 2020; 25(10): 2220-36.
[http://dx.doi.org/10.1038/s41380-020-0667-y] [PMID: 32034290]
[432]
Jang Y, Kim W, Leblanc P, Kim CH, Kim KS. Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Exp Mol Med 2021; 53(1): 19-29.
[http://dx.doi.org/10.1038/s12276-021-00555-5] [PMID: 33479411]
[433]
Casali BT, Reed-Geaghan EG, Landreth GE. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer’s disease. J Neuroinflammation 2018; 15(1): 43.
[http://dx.doi.org/10.1186/s12974-018-1091-y] [PMID: 29448961]
[434]
Moutinho M, Landreth GE. Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J Lipid Res 2017; 58(10): 1937-49.
[http://dx.doi.org/10.1194/jlr.R075556] [PMID: 28264880]
[435]
Wada Y, Maekawa M, Ohnishi T, et al. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine 2020; 62: 103130.
[http://dx.doi.org/10.1016/j.ebiom.2020.103130] [PMID: 33279456]
[436]
Tsai SY, Catts VS, Fullerton JM, Corley SM, Fillman SG, Weickert CS. Nuclear receptors and neuroinflammation in schizophrenia. Mol Neuropsychiatry 2018; 3(4): 181-91.
[http://dx.doi.org/10.1159/000485565] [PMID: 29888229]
[437]
Dwyer JB, Aftab A, Radhakrishnan R, et al. APA Council of Research Task Force on Novel Biomarkers and Treatments. Hormonal treatments for major depressive disorder: State of the art. Am J Psychiatry 2020; 177(8): 686-705.
[http://dx.doi.org/10.1176/appi.ajp.2020.19080848] [PMID: 32456504]
[438]
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72(Pt A): 104-16.
[http://dx.doi.org/10.1016/j.nbd.2014.05.019]
[439]
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics. Annu Rev Physiol 2010; 72(1): 247-72.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135917] [PMID: 20148675]
[440]
Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: Implications for function. Annu Rev Physiol 2007; 69(1): 201-20.
[http://dx.doi.org/10.1146/annurev.physiol.69.031905.160308] [PMID: 17137423]
[441]
Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 2013; 51(3): T1-T21.
[http://dx.doi.org/10.1530/JME-13-0173] [PMID: 24103914]
[442]
Kumar R, Thompson EB. Transactivation functions of the N-terminal domains of nuclear hormone receptors: Protein folding and coactivator interactions. Mol Endocrinol 2003; 17(1): 1-10.
[http://dx.doi.org/10.1210/me.2002-0258] [PMID: 12511601]
[443]
Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Signal 2012; 10(1): e001.
[http://dx.doi.org/10.1621/nrs.10001] [PMID: 22438791]
[444]
Gronemeyer H, Moras D. Nuclear receptors. How to finger DNA. Nature 1995; 375(6528): 190-1.
[http://dx.doi.org/10.1038/375190a0] [PMID: 7746310]
[445]
Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995; 375(6528): 203-11.
[http://dx.doi.org/10.1038/375203a0] [PMID: 7746322]
[446]
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12(6): 486-504.
[http://dx.doi.org/10.2174/156802612799436641] [PMID: 22242852]
[447]
Wurtz JM, Bourguet W, Renaud JP, et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 1996; 3(1): 87-94.
[http://dx.doi.org/10.1038/nsb0196-87] [PMID: 8548460]
[448]
Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. J Mol Biol 2005; 354(5): 1091-102.
[http://dx.doi.org/10.1016/j.jmb.2005.10.009] [PMID: 16289203]
[449]
Weatherman RV, Fletterick RJ, Scanlan TS. Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 1999; 68(1): 559-81.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.559] [PMID: 10872460]
[450]
Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: Structure and function. Curr Opin Cell Biol 1998; 10(3): 384-91.
[http://dx.doi.org/10.1016/S0955-0674(98)80015-X] [PMID: 9640540]
[451]
Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387(6634): 733-6.
[http://dx.doi.org/10.1038/42750] [PMID: 9192902]
[452]
Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 1996; 272(5266): 1336-9.
[http://dx.doi.org/10.1126/science.272.5266.1336] [PMID: 8650544]
[453]
Ortlund EA, Lee Y, Solomon IH, et al. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat Struct Mol Biol 2005; 12(4): 357-63.
[http://dx.doi.org/10.1038/nsmb910] [PMID: 15723037]
[454]
Nedumaran B, Kim GS, Hong S, et al. Orphan nuclear receptor DAX-1 acts as a novel corepressor of liver X receptor alpha and inhibits hepatic lipogenesis. J Biol Chem 2010; 285(12): 9221-32.
[http://dx.doi.org/10.1074/jbc.M109.073650] [PMID: 20080977]
[455]
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27(11): 1876-92.
[http://dx.doi.org/10.1002/pro.3496] [PMID: 30109749]
[456]
Novac N, Heinzel T. Nuclear receptors: Overview and classification. Curr Drug Targets Inflamm Allergy 2004; 3(4): 335-46.
[http://dx.doi.org/10.2174/1568010042634541] [PMID: 15584884]
[457]
Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev 2006; 58(4): 685-704.
[http://dx.doi.org/10.1124/pr.58.4.2] [PMID: 17132848]
[458]
Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999; 97(2): 161-3.
[http://dx.doi.org/10.1016/S0092-8674(00)80726-6] [PMID: 10219237]
[459]
Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. BioEssays 2000; 22(8): 717-27.
[http://dx.doi.org/10.1002/1521-1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I] [PMID: 10918302]
[460]
Thornton JW, DeSalle R. A new method to localize and test the significance of incongruence: Detecting domain shuffling in the nuclear receptor superfamily. Syst Biol 2000; 49(2): 183-201.
[http://dx.doi.org/10.1093/sysbio/49.2.183] [PMID: 12118404]
[461]
Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab 2015; 29(4): 607-19.
[http://dx.doi.org/10.1016/j.beem.2015.07.004] [PMID: 26303087]
[462]
Timiras PS. Distribution, development and function of thyroid hormone receptors in the brain. Proc West Pharmacol Soc 1979; 22: 371-4.
[PMID: 229491]
[463]
Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75(4): 275-93.
[http://dx.doi.org/10.1016/j.pneurobio.2005.03.002] [PMID: 15882777]
[464]
Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 2012; 217(2): 473-83.
[http://dx.doi.org/10.1007/s00429-011-0359-0] [PMID: 22075950]
[465]
Warden A, Truitt J, Merriman M, et al. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 2016; 6(1): 27618.
[http://dx.doi.org/10.1038/srep27618] [PMID: 27283430]
[466]
Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 2014; 13(3): 197-216.
[http://dx.doi.org/10.1038/nrd4100] [PMID: 24577401]
[467]
Cook DN, Kang HS, Jetten AM. Retinoic acid-related orphan receptors (RORs): Regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl Receptor Res 2015; 2: 2.
[http://dx.doi.org/10.11131/2015/101185] [PMID: 26878025]
[468]
Huang C, Wang J, Hu W, et al. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett 2016; 590(18): 3233-42.
[http://dx.doi.org/10.1002/1873-3468.12373] [PMID: 27545319]
[469]
Hucke S, Herold M, Liebmann M, et al. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathol 2016; 132(3): 413-31.
[http://dx.doi.org/10.1007/s00401-016-1593-6] [PMID: 27383204]
[470]
Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson JA. Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci USA 2002; 99(21): 13878-83.
[http://dx.doi.org/10.1073/pnas.172510899] [PMID: 12368482]
[471]
Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE. Neuron-specific vitamin D signaling attenuates microglia activation and CNS autoimmunity. Front Neurol 2020; 11: 19.
[http://dx.doi.org/10.3389/fneur.2020.00019] [PMID: 32082243]
[472]
Huang JK, Jarjour AA, Nait Oumesmar B, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 2011; 14(1): 45-53.
[http://dx.doi.org/10.1038/nn.2702] [PMID: 21131950]
[473]
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta 2012; 1821(1): 21-56.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.014] [PMID: 22020178]
[474]
Anderson GW, Larson RJ, Oas DR, et al. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J Biol Chem 1998; 273(26): 16391-9.
[http://dx.doi.org/10.1074/jbc.273.26.16391] [PMID: 9632703]
[475]
Qiu Y, Krishnan V, Pereira FA, Tsai SY, Tsai MJ. Chicken ovalbumin upstream promoter-transcription factors and their regulation. J Steroid Biochem Mol Biol 1996; 56(1-6 Spec No): 81-5.
[http://dx.doi.org/10.1016/0960-0760(95)00225-1] [PMID: 8603050]
[476]
Yamanishi K, Doe N, Sumida M, et al. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain. PLoS One 2015; 10(3): e0119021.
[http://dx.doi.org/10.1371/journal.pone.0119021] [PMID: 25774879]
[477]
Wilson TE, Fahrner TJ, Milbrandt J. The orphan receptors NGFIB and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol 1993; 13(9): 5794-804.
[PMID: 8395013]
[478]
Giguère V, McBroom LD, Flock G. Determinants of target gene specificity for ROR alpha 1: Monomeric DNA binding by an orphan nuclear receptor. Mol Cell Biol 1995; 15(5): 2517-26.
[http://dx.doi.org/10.1128/MCB.15.5.2517] [PMID: 7739535]
[479]
Harding HP, Lazar MA. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol 1995; 15(9): 4791-802.
[http://dx.doi.org/10.1128/MCB.15.9.4791] [PMID: 7651396]
[480]
Charles JP, Shinoda T, Chinzei Y. Characterization and DNA-binding properties of GRF, a novel monomeric binding orphan receptor related to GCNF and betaFTZ-F1. Eur J Biochem 1999; 266(1): 181-90.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00842.x] [PMID: 10542063]
[481]
Paulsen RF, Granas K, Johnsen H, Rolseth V, Sterri S. Three related brain nuclear receptors, NGFI-B, Nurr1, and NOR-1, as transcriptional activators. J Mol Neurosci 1995; 6(4): 249-55.
[http://dx.doi.org/10.1007/BF02736784] [PMID: 8860236]
[482]
Büdefeld T, Tobet SA, Majdic G. Steroidogenic factor 1 and the central nervous system. J Neuroendocrinol 2012; 24(1): 225-35.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02174.x] [PMID: 21668533]
[483]
Hattori T, Iizuka K, Horikawa Y, Takeda J. LRH-1 heterozygous knockout mice are prone to mild obesity. Endocr J 2014; 61(5): 471-80.
[http://dx.doi.org/10.1507/endocrj.EJ14-0017] [PMID: 24531913]
[484]
Fayard E, Auwerx J, Schoonjans K. LRH-1: An orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004; 14(5): 250-60.
[http://dx.doi.org/10.1016/j.tcb.2004.03.008] [PMID: 15130581]
[485]
Dhillon H, Zigman JM, Ye C, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 2006; 49(2): 191-203.
[http://dx.doi.org/10.1016/j.neuron.2005.12.021] [PMID: 16423694]
[486]
Metlakunta AS, Sahu M, Yasukawa H, et al. Neuronal suppressor of cytokine signaling-3 deficiency enhances hypothalamic leptin-dependent phosphatidylinositol 3-kinase signaling. Am J Physiol Regul Integr Comp Physiol 2011; 300(5): R1185-93.
[http://dx.doi.org/10.1152/ajpregu.00794.2010] [PMID: 21325649]
[487]
Dhillon SS, Belsham DD. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways. Regul Pept 2011; 167(2-3): 192-200.
[http://dx.doi.org/10.1016/j.regpep.2011.01.005] [PMID: 21262273]
[488]
Dhillon SS, McFadden SA, Chalmers JA, Centeno ML, Kim GL, Belsham DD. Cellular leptin resistance impairs the leptin-mediated suppression of neuropeptide Y secretion in hypothalamic neurons. Endocrinology 2011; 152(11): 4138-47.
[http://dx.doi.org/10.1210/en.2011-0178] [PMID: 21914774]
[489]
Chen F, Cooney AJ, Wang Y, Law SW, O’Malley BW. Cloning of a novel orphan receptor (GCNF) expressed during germ cell development. Mol Endocrinol 1994; 8(10): 1434-44.
[PMID: 7854358]
[490]
Sabour D, Xu X, Chung AC, et al. Germ cell nuclear factor regulates gametogenesis in developing gonads. PLoS One 2014; 9(8): e103985.
[http://dx.doi.org/10.1371/journal.pone.0103985] [PMID: 25140725]
[491]
Cooney AJ, Hummelke GC, Herman T, Chen F, Jackson KJ. Germ cell nuclear factor is a response element-specific repressor of transcription. Biochem Biophys Res Commun 1998; 245(1): 94-100.
[http://dx.doi.org/10.1006/bbrc.1998.8391] [PMID: 9535790]
[492]
Gu P, Le Menuet D, Chung AC, Cooney AJ. Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression. Mol Cell Biol 2006; 26(24): 9471-83.
[http://dx.doi.org/10.1128/MCB.00898-06] [PMID: 17030610]
[493]
Gu P, Le Menuet D, Chung AC, Cooney AJ. Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression. Mol Cell Biol 2009; 29(7): 1987.
[http://dx.doi.org/10.1128/MCB.00019-09] [PMID: 19279189]
[494]
Penvose A, Keenan JL, Bray D, Ramlall V, Siggers T. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun 2019; 10(1): 2514.
[http://dx.doi.org/10.1038/s41467-019-10264-3] [PMID: 31175293]
[495]
Sever R, Glass CK. Signaling by nuclear receptors. Cold Spring Harb Perspect Biol 2013; 5(3): a016709.
[http://dx.doi.org/10.1101/cshperspect.a016709] [PMID: 23457262]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy