Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Thermal Exfoliated Graphite/Chitosan Modified Glassy Carbon Electrode for Cu(II) Ion Sensing

Author(s): Nhan T.T. Le, Hoang V. Tran*, Chinh D. Huynh, Cuong D. Nguyen and Toan V. Phi

Volume 18, Issue 7, 2022

Published on: 06 April, 2022

Page: [790 - 797] Pages: 8

DOI: 10.2174/1573411018666220228152040

Price: $65

Abstract

Aims: Here, we report a simple strategy for the preparation of thermally exfoliated graphite (EG) and its application to modify glassy carbon electrode (GCE) surfaces for electrochemical Cu2+ ion sensing.

Method: The electrochemical Cu2+ sensor was constructed by a layer modification of a glassy carbon electrode (GCE) with exfoliated graphite (EG) and chitosan (CS) as a binder, and CS also supports a large number of -NH2 functional groups for Cu2+ capture.

Result: Due to the creation of a three-dimensional (3D) structure, the EG/CS-coated GCE (EG/CS/GCE) electrode exhibited a higher sensitivity towards Cu2+ detection than that of modification by graphite/chitosan (GP/CS), chitosan (CS) or graphite intercalated compounds (GIC)/chitosan.

Conclusion: The proposed method could detect Cu2+ in the range of 10 μM to 3 mM with a detection limit of 0.5 μM and sensitivity of 43.62 μA mM-1.

Keywords: Exfoliated graphite (EG), chitosan (CS), Cu2+ detection, electrochemical, cyclic voltammetry (CV), square wave voltammetry (SWV).

Graphical Abstract

[1]
Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol., 1999, 51(6), 730-750.
[http://dx.doi.org/10.1007/s002530051457] [PMID: 10422221]
[2]
Wu, K-H.; Lo, H-M.; Wang, J-C.; Yu, S-Y.; Yan, B-D. Electrochemical detection of heavy metal pollutant using crosslinked chi-tosan/carbon nanotubes thin film electrodes. Mater. Express, 2017, 7(1), 15-24.
[http://dx.doi.org/10.1166/mex.2017.1351]
[3]
Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[4]
Si, Y.; Liu, J.; Wang, A.; Niu, S.; Wan, J. A chitosan-graphene electrochemical sensor for the determination of copper(II). Instrum. Sci. Technol., 2015, 43(3), 357-368.
[http://dx.doi.org/10.1080/10739149.2014.994126]
[5]
Mo, Z.; Liu, H.; Hu, R.; Gou, H.; Li, Z.; Guo, R. Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+. Ionics, 2018, 24, 1505-1513.
[http://dx.doi.org/10.1007/s11581-017-2309-1]
[6]
(a)Adhami, K.; Asadollahzadeh, H.; Ghazizadeh, M. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-based dispersive liquid-liquid microextraction technique, and flame atomic absorption spectrophotometry. J. Food Composit. Anal, 2020, 103457.
(b)Imran, K.; Harinath, Y.; Naik, B.R.; Kumar, N.S.; Seshaiah, K. A new hybrid sorbent 2,2′-pyridil functionalized SBA-15 (Pyl-SBA-15) synthesis and its applications in solid phase extraction of Cu(II) from water samples. J. Environ. Chem. Eng., 2019, 7(3), 103170.
(c)Dedelaite, L.; Kizilkaya, S.; Incebay, H.; Ciftci, H.; Ersoz, M.; Yazicigil, Z.; Oztekin, Y.; Ramanaviciene, A.; Ramanavicius, A. Electro-chemical determination of Cu(II) ions using glassy carbon electrode modified by some nanomaterials and 3-nitroaniline. Colloids Surfaces A., 2015, 483, 279-284.
(d)Baghban, N.; Yilmaz, E.; Soylak, M. Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection. J. Mol. Liq., 2017, 234, 260-267.
(e)Guin, P.S.; Das, S.; Mandal, P.C. Electrochemical reduction of quinones in different media: A review. Inter. J. Electrochem., 2011, 2011, Article id: 816202.
(f)Oztekin, Y.; Yazicigil, Z.; Ramanaviciene, A. Square wave voltammetry based on determination of copper (II) ions by polyluteolin- and polykaempferol-modified electrodes. Talanta, 2011, 85, 1020-1027.
[7]
Sayen, S.; Gérardin, C.; Rodehüser, L.; Walcarius, A. Electrochemical detection of copper(II) at an electrode modified by a carnosine-silica hybrid material. Electroanalysis, 2003, 15(5-6), 422-430.
[http://dx.doi.org/10.1002/elan.200390049]
[8]
Tran, H.V.; Huynh, C.D.; Le, T.D.; Hoang, H.S. Hydroxyapatite nano-rods/chitosan modified glassy carbon electrode for Cu(II) ions de-termination. Electron. Mater. Lett., 2020, 16, 396-403.
[http://dx.doi.org/10.1007/s13391-020-00222-3]
[9]
Kitte, S.A.; Li, S.; Nsabimana, A.; Gao, W.; Lai, J.; Liu, Z.; Xu, G. Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta, 2019, 191, 485-490.
[http://dx.doi.org/10.1016/j.talanta.2018.08.066] [PMID: 30262089]
[10]
Filipkowska, U. Adsorption and desorption efficiency of Black 8 and Black 5 onto Chitin and Chitosan. In: Progress on Chemistry and Application of Chitin and Its Derivatives, Monograph; Jaworska, MM, Ed.;, 2007, 12, pp. 57-63.
[11]
Tran, H. V.; Tran, M. T.; Phi, T. V. Glassy carbon electrode modified with luteolin extracted from myoporum bontiodes: A new approach for development of the electrochemical Cu2+ sensor. Multifunct. Mat., 2021, 4(3), Article id: 035004.
[12]
Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep., 2009, 473(5-6), 51-87.
[http://dx.doi.org/10.1016/j.physrep.2009.02.003]
[13]
(a)Tran, H.V.; Piro, B.; Reisberg, S.; Tran, L.D.; Duc, H.T.; Pham, M.C. Label free and reagentless electrochemical detection of mi-croRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens. Bioelectron., 2013, 49, 164-169.
(b)Keteklahijani, Y.Z.; Sharif, F.; Roberts, E.P.L.; Sundararaj, U. Enhanced sensitivity of dopamine biosensors: an electrochemical ap-proach based on nanocomposite electrodes comprising polyaniline, nitrogen-doped graphene, and DNA functionalized carbon nanotubes. J. Electrochem. Soc., 2019, 166, B1415.
[14]
Çiftçi, H.; Tamer, U.; Metin, A.U.; Alver, E.; Kizir, N. Electrochemical copper (II) sensor based on chitosan covered gold nanoparticles. J. Appl. Electrochem., 2014, 44, 563-571.
[15]
Xu, J.; Li, Z.; Yue, X.; Xie, F.; Xiong, S. Electrochemical detection of Cu(ii) using amino-functionalized MgFe2O4/Reduced graphene ox-ide composite. Anal. Methods, 2018, 10, 2026-2033.
[http://dx.doi.org/10.1039/C8AY00452H]
[16]
Flores, E.; Pizarro, J.; Godoy, F.; Segura, R.; Gómez, A.; Agurto, N.; Sepúlveda, P. An electrochemical sensor for the determination of Cu(II) using a modified electrode with ferrocenyl crown ether compound by square wave anodic stripping voltammetry. Sens. Actuators B Chem., 2017, 251, 433-439.
[http://dx.doi.org/10.1016/j.snb.2017.05.058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy