Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Editorial

Nanoscale Carriers for Enhanced Delivery of Nucleotide- and Peptide- Reagents to Plants

Author(s): Amir Hameed* and Wacław Orczyk

Volume 29, Issue 4, 2022

Published on: 25 March, 2022

Page: [281 - 283] Pages: 3

DOI: 10.2174/0929866529666220225101218

Next »
[1]
Zhu, H.; Li, C.; Gao, C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 661-677.
[http://dx.doi.org/10.1038/s41580-020-00288-9] [PMID: 32973356]
[2]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[3]
Mujtaba, M.; Wang, D.; Carvalho, L.B.; Oliveira, J.L.; Pereira, E.S.A.; Sharif, R.; Jogaiah, S.; Paidi, M.K.; Wang, L.; Ali, Q.; Fraceto, L.F. Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-cas for plant protection: current trends and future directions. ACS Agri. Sci. Technol., 2021, 1(5), 417-435.
[http://dx.doi.org/10.1021/acsagscitech.1c00146]
[4]
Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Tuteja, S.K.; Kim, K-H. Nanovehicles for plant modifications towards pest-and disease-resistance traits. Trends Plant Sci., 2020, 25(2), 198-212.
[http://dx.doi.org/10.1016/j.tplants.2019.10.007] [PMID: 31780333]
[5]
Mujtaba, M.; Khawar, K.M.; Camara, M.C.; Carvalho, L.B.; Fraceto, L.F.; Morsi, R.E.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Ullah, H.; Wang, D. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int. J. Biol. Macromol., 2020, 154, 683-697.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.128] [PMID: 32194112]
[6]
Singh, R.P.; Handa, R.; Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release, 2021, 329, 1234-1248.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.051] [PMID: 33122001]
[7]
Saurabh, S.; Vidyarthi, A.S.; Prasad, D. RNA interference: concept to reality in crop improvement. Planta, 2014, 239(3), 543-564.
[http://dx.doi.org/10.1007/s00425-013-2019-5] [PMID: 24402564]
[8]
Hameed, A.; Tahir, M.N.; Asad, S.; Bilal, R.; Van Eck, J.; Jander, G.; Mansoor, S. RNAi-mediated simultaneous resistance against three RNA viruses in potato. Mol. Biotechnol., 2017, 59(2-3), 73-83.
[http://dx.doi.org/10.1007/s12033-017-9995-9] [PMID: 28194691]
[9]
Hameed, A.; Bilal, R.; Latif, F.; Van Eck, J.; Jander, G.; Mansoor, S. RNAi-mediated silencing of endogenous Vlnv gene confers stable reduction of cold-induced sweetening in potato (Solanum tuberosum L. cv. Désirée). Plant Biotechnol. Rep., 2018, 12(3), 175-185.
[http://dx.doi.org/10.1007/s11816-018-0482-y]
[10]
Ghag, S.B. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiol. Mol. Plant Pathol., 2017, 100, 242-254.
[http://dx.doi.org/10.1016/j.pmpp.2017.10.003]
[11]
Wang, M.; Jin, H. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol., 2017, 25(1), 4-6.
[http://dx.doi.org/10.1016/j.tim.2016.11.011] [PMID: 27923542]
[12]
Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants, 2017, 3(2), 16207.
[http://dx.doi.org/10.1038/nplants.2016.207] [PMID: 28067898]
[13]
Kwak, S-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol., 2019, 14(5), 447-455.
[http://dx.doi.org/10.1038/s41565-019-0375-4] [PMID: 30804482]
[14]
Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; Gao, C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(8), 686-688.
[http://dx.doi.org/10.1038/nbt.2650] [PMID: 23929338]
[15]
Ng, K.K.; Motoda, Y.; Watanabe, S.; Sofiman Othman, A.; Kigawa, T.; Kodama, Y.; Numata, K. Intracellular delivery of proteins via fusion peptides in intact plants. PLoS One, 2016, 11(4), e0154081.
[http://dx.doi.org/10.1371/journal.pone.0154081] [PMID: 27100681]
[16]
Terada, K.; Gimenez-Dejoz, J.; Miyagi, Y.; Oikawa, K.; Tsuchiya, K.; Numata, K. Artificial cell-penetrating peptide containing periodic α-aminoisobutyric acid with long-term internalization efficiency in human and plant cells. ACS Biomater. Sci. Eng., 2020, 6(6), 3287-3298.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00182] [PMID: 33463179]
[17]
Zhang, K.; Chooi, W.H.; Liu, S.; Chin, J.S.; Murray, A.; Nizetic, D.; Cheng, D.; Chew, S.Y. Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering. Biomaterials, 2020, 256, 120225.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120225] [PMID: 32738650]
[18]
Yuan, W.; Lu, Z.; Wang, H.; Li, C.M. Stimuli‐free reversible and controllable loading and release of proteins under physiological conditions by exponentially growing nanoporous multilayered structure. Adv. Funct. Mater., 2012, 22(9), 1932-1939.
[http://dx.doi.org/10.1002/adfm.201102308]
[19]
Yuan, W.; Lu, Z.; Liu, J.; Wang, H.; Li, C.M. ZnO nanowire array-templated LbL self-assembled polyelectrolyte nanotube arrays and application for charged drug delivery. Nanotechnology, 2013, 24(4), 045605.
[http://dx.doi.org/10.1088/0957-4484/24/4/045605] [PMID: 23299408]
[20]
Yuan, W.; Weng, G.M.; Lipton, J.; Li, C.M.; Van Tassel, P.R.; Taylor, A.D. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv. Colloid Interface Sci., 2020, 282, 102200.
[http://dx.doi.org/10.1016/j.cis.2020.102200] [PMID: 32585489]

© 2025 Bentham Science Publishers | Privacy Policy