Research Article

抗甲型流感病毒2-脲烟酰胺衍生物的设计、合成及生物活性研究

卷 29, 期 26, 2022

发表于: 17 May, 2022

页: [4610 - 4627] 页: 18

弟呕挨: 10.2174/0929867329666220224114627

价格: $65

摘要

背景:病毒对现有抑制剂的耐药性和神经氨酸酶抑制剂的时效性限制了可用于预防和治疗严重流感感染的抗病毒药物的数量。因此,迫切需要开发预防和治疗流感感染的新药。 目的:设计合成新型2-脲烟酰胺衍生物,并评价其抗鸡病毒性肝炎病毒的活性。此外,我们预测了这些化合物对PA-PB1亚基的抑制能力,并预测了这些化合物与RNA聚合酶蛋白(PDB ID 3CM8)的对接姿态。 方法:采用经典的有机化学方法合成新设计的化合物,并对其抑制RNP和抗甲型流感病毒的能力进行体外测试。此外,将合成的23个分子对产生的药效团Hypo1进行作用,预测RNA聚合酶的活性靶标PA-PB1亚基。使用Discovery Studio 2016中的ADMET模块计算ADMET药代动力学参数。对接结果帮助我们展示了这些化合物与3CM8之间可能的相互作用。 结果:合成的2-脲烟酰胺衍生物具有较强的抗流感抑制作用。目标化合物7b和7c具有明显的抗病毒活性,有望成为新型抗病毒抑制剂先导化合物。此外,根据预测结果和对接结果,化合物7b显示了良好的ADME特性,可能是一种针对PA-PB1亚基的RNA聚合酶抑制剂。 结论:该研究揭示了一系列新的化合物,可能有助于寻找一种有效的药物对抗流感病毒。

关键词: 流感病毒,RNA依赖的RNA聚合酶,2-脲烟酰胺衍生物,抗病毒抑制剂,PA-PB1亚基,RNP活性抑制。

« Previous
[1]
Ju, H.; Zhang, J.; Huang, B.; Kang, D.; Huang, B.; Liu, X.; Zhan, P. Inhibitors of influenza virus polymerase acidic (PA) endonuclease: contemporary developments and perspectives. J. Med. Chem., 2017, 60(9), 3533-3551.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01227] [PMID: 28118010]
[2]
Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; Xu, X.; Lu, H.; Zhu, W.; Gao, Z.; Xiang, N.; Shen, Y.; He, Z.; Gu, Y.; Zhang, Z.; Yang, Y.; Zhao, X.; Zhou, L.; Li, X.; Zou, S.; Zhang, Y.; Li, X.; Yang, L.; Guo, J.; Dong, J.; Li, Q.; Dong, L.; Zhu, Y.; Bai, T.; Wang, S.; Hao, P.; Yang, W.; Zhang, Y.; Han, J.; Yu, H.; Li, D.; Gao, G.F.; Wu, G.; Wang, Y.; Yuan, Z.; Shu, Y. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med., 2013, 368(20), 1888-1897.
[http://dx.doi.org/10.1056/NEJMoa1304459] [PMID: 23577628]
[3]
Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009, 459(7249), 931-939.
[http://dx.doi.org/10.1038/nature08157] [PMID: 19525932]
[4]
Bright, R.A.; Shay, D.K.; Shu, B.; Cox, N.J.; Klimov, A.I. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA, 2006, 295(8), 891-894.
[http://dx.doi.org/10.1001/jama.295.8.joc60020] [PMID: 16456087]
[5]
Collins, P.J.; Haire, L.F.; Lin, Y.P.; Liu, J.; Russell, R.J.; Walker, P.A.; Skehel, J.J.; Martin, S.R.; Hay, A.J.; Gamblin, S.J. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature, 2008, 453(7199), 1258-1261.
[http://dx.doi.org/10.1038/nature06956] [PMID: 18480754]
[6]
Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med., 2009, 360(10), 953-956.
[http://dx.doi.org/10.1056/NEJMp0900648] [PMID: 19258250]
[7]
Du, J.; Cross, T.A.; Zhou, H.X. Recent progress in structure-based anti-influenza drug design. Drug Discov. Today, 2012, 17(19-20), 1111-1120.
[http://dx.doi.org/10.1016/j.drudis.2012.06.002] [PMID: 22704956]
[8]
Dunning, J.; Baillie, J.K.; Cao, B.; Hayden, F.G. Antiviral combinations for severe influenza. Lancet Infect. Dis., 2014, 14(12), 1259-1270.
[http://dx.doi.org/10.1016/S1473-3099(14)70821-7] [PMID: 25213733]
[9]
Sidwell, R.W.; Smee, D.F. Peramivir (BCX-1812, RWJ-270201): potential new therapy for influenza. Expert Opin. Investig. Drugs, 2002, 11(6), 859-869.
[http://dx.doi.org/10.1517/13543784.11.6.859] [PMID: 12036429]
[10]
Cheng, C.K.; Tsai, C.H.; Shie, J.J.; Fang, J.M. From neuraminidase inhibitors to conjugates: a step towards better anti-influenza drugs? Future Med. Chem., 2014, 6(7), 757-774.
[http://dx.doi.org/10.4155/fmc.14.30] [PMID: 24941871]
[11]
Watanabe, T.; Kawaoka, Y. Influenza virus-host interactomes as a basis for antiviral drug development. Curr. Opin. Virol., 2015, 14, 71-78.
[http://dx.doi.org/10.1016/j.coviro.2015.08.008] [PMID: 26364134]
[12]
Kormuth, K.A.; Lakdawala, S.S. Emerging antiviral resistance. Nat. Microbiol., 2020, 5(1), 4-5.
[http://dx.doi.org/10.1038/s41564-019-0639-7] [PMID: 31857727]
[13]
Xiao, M.; Xu, L.; Lin, D.; Lian, W.; Cui, M.; Zhang, M.; Yan, X.; Li, S.; Zhao, J.; Ye, J.; Liu, A.; Hu, A. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur. J. Med. Chem., 2021, 213, 113161.
[http://dx.doi.org/10.1016/j.ejmech.2021.113161] [PMID: 33540229]
[14]
Li, L.; Chang, S.H.; Xiang, J.F.; Li, Q.; Liang, H.H.; Tang, Y.L.; Liu, Y.F. NMR identification of anti-influenza lead compound targeting at PAC subunit of H5N1 polymerase. Chin. Chem. Lett., 2012, 23(1), 89-92.
[http://dx.doi.org/10.1016/j.cclet.2011.09.006]
[15]
Amarelle, L.; Lecuona, E.; Sznajder, J.I. Anti-influenza treatment: drugs currently used and under development. Arch. Bronconeumol., 2017, 53(1), 19-26.
[http://dx.doi.org/10.1016/j.arbr.2016.11.020] [PMID: 27519544]
[16]
Huang, T.S.; Palese, P.; Krystal, M. Determination of influenza virus proteins required for genome replication. J. Virol., 1990, 64(11), 5669-5673.
[http://dx.doi.org/10.1128/jvi.64.11.5669-5673.1990] [PMID: 2214032]
[17]
Kashiwagi, T.; Hara, K.; Nakazono, Y.; Uemura, Y.; Imamura, Y.; Hamada, N.; Watanabe, H. The N-terminal fragment of a PB2 subunit from the influenza A virus (A/Hong Kong/156/1997 H5N1) effectively inhibits RNP activity and viral replication. PLoS One, 2014, 9(12), e114502/1-e114502/17.
[http://dx.doi.org/10.1371/journal.pone.0114502]
[18]
Yuan, S.; Wen, L.; Zhou, J. Inhibitors of influenza a virus polymerase. ACS Infect. Dis., 2018, 4(3), 218-223.
[http://dx.doi.org/10.1021/acsinfecdis.7b00265] [PMID: 29355011]
[19]
Kao, R.Y.; Yang, D.; Lau, L.S.; Tsui, W.H.W.; Hu, L.; Dai, J.; Chan, M.P.; Chan, C.M.; Wang, P.; Zheng, B.J.; Sun, J.; Huang, J.D.; Madar, J.; Chen, G.; Chen, H.; Guan, Y.; Yuen, K.Y. Identification of influenza A nucleoprotein as an antiviral target. Nat. Biotechnol., 2010, 28(6), 600-605.
[http://dx.doi.org/10.1038/nbt.1638] [PMID: 20512121]
[20]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[21]
Li, T.C.; Chan, M.C.; Lee, N. Clinical implications of antiviral resistance in influenza. Viruses, 2015, 7(9), 4929-4944.
[http://dx.doi.org/10.3390/v7092850] [PMID: 26389935]
[22]
Titova, Y.A.; Fedorova, O.V. Favipiravir-a modern antiviral drug: synthesis and modifications. Chem. Heterocycl. Compd., 2020, 56(6), 1-4.
[http://dx.doi.org/10.1007/s10593-020-02715-3] [PMID: 32836314]
[23]
Gribble, G.W.; Fletcher, G.L.; Ketcha, D.M.; Rajopadhye, M. Metalated heterocycles in the synthesis of ellipticine analogues: A new route to the 10H-pyrido[2,3-b]carbazole ring system. J. Org. Chem., 1989, 54(14), 3264-3269.
[http://dx.doi.org/10.1021/jo00275a008]
[24]
Spiessens, L.I.M.; Anteunis, M.J.O. Preparation and structural assignments of some isomeric 2,3-disubstituted pyridines. Bull. Soc. Chim. Belg., 1980, 89(3), 205-231.
[http://dx.doi.org/10.1002/bscb.19840930306]
[25]
Robins, R.K.; Hitchings, G.H. Condensed pyrimidine systems. XII. Synthesis of some 4- and 2,4-substituted pyrido[2,3-d]pyrimidines. J. Am. Chem. Soc., 1955, 77(8), 2256-2260.
[http://dx.doi.org/10.1021/ja01613a069]
[26]
Fodor, E.; Devenish, L.; Engelhardt, O.G.; Palese, P.; Brownlee, G.G.; García-Sastre, A. Rescue of influenza A virus from recombinant DNA. J. Virol., 1999, 73(11), 9679-9682.
[http://dx.doi.org/10.1128/JVI.73.11.9679-9682.1999] [PMID: 10516084]
[27]
Fodor, E.; Crow, M.; Mingay, L.J.; Deng, T.; Sharps, J.; Fechter, P.; Brownlee, G.G. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol., 2002, 76(18), 8989-9001.
[http://dx.doi.org/10.1128/JVI.76.18.8989-9001.2002] [PMID: 12186883]
[28]
Li, O.T.W.; Chan, M.C.W.; Leung, C.S.W.; Chan, R.W.Y.; Guan, Y.; Nicholls, J.M.; Poon, L.L.M. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS One, 2009, 4(5), e5658.
[http://dx.doi.org/10.1371/journal.pone.0005658] [PMID: 19462010]
[29]
Lo, C.Y.; Li, O.T.W.; Tang, W.P.; Hu, C.; Wang, G.X.; Ngo, J.C.K.; Wan, D.C.C.; Poon, L.L.M.; Shaw, P.C. Identification of influenza polymerase inhibitors targeting C-terminal domain of PA through surface plasmon resonance screening. Sci. Rep., 2018, 8(1), 2280.
[http://dx.doi.org/10.1038/s41598-018-20772-9] [PMID: 29396435]
[30]
Wang, Y.; Yan, W.; Chen, Q.; Huang, W.; Yang, Z.; Li, X.; Wang, X. Inhibition viral RNP and anti-inflammatory activity of coumarins against influenza virus. Biomed. Pharmacother., 2017, 87, 583-588.
[http://dx.doi.org/10.1016/j.biopha.2016.12.117] [PMID: 28081470]
[31]
Zhang, T.; Xiao, M.; Wong, C.K.; Mok, K.C.; Zhao, X.; Ti, H.; Shaw, P.C.; Sheng, J.S. A traditional multi-herb formulation, exerts anti-influenza effects in vitro and in vivo via neuraminidase inhibition and immune regulation. BMC Complement. Altern. Med., 2018, 18(1), 150.
[http://dx.doi.org/10.1186/s12906-018-2216-7] [PMID: 29739459]
[32]
Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; Loregian, A.; Goracci, L.; Tabarrini, O. A broad anti-influenza hybrid small molecule that potently disrupts the interaction of polymerase acidic protein–basic protein 1 (PA-PB1) subunits. J. Med. Chem., 2015, 58(9), 3830-3842.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00012] [PMID: 25856229]
[33]
Massari, S.; Bertagnin, C.; Pismataro, M.C.; Donnadio, A.; Nannetti, G.; Felicetti, T.; Di Bona, S.; Nizi, M.G.; Tensi, L.; Manfroni, G.; Loza, M.I.; Sabatini, S.; Cecchetti, V.; Brea, J.; Goracci, L.; Loregian, A.; Tabarrini, O. Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur. J. Med. Chem., 2021, 209, 112944.
[http://dx.doi.org/10.1016/j.ejmech.2020.112944] [PMID: 33328103]
[34]
Lepri, S.; Nannetti, G.; Muratore, G.; Cruciani, G.; Ruzziconi, R.; Mercorelli, B.; Palù, G.; Loregian, A.; Goracci, L. Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J. Med. Chem., 2014, 57(10), 4337-4350.
[http://dx.doi.org/10.1021/jm500300r] [PMID: 24785979]
[35]
Massari, S.; Goracci, L.; Desantis, J.; Tabarrini, O. Polymerase acidic protein–basic protein 1 (PA–PB1) protein–protein interaction as a target for next-generation anti-influenza therapeutics. J. Med. Chem., 2016, 59(17), 7699-7718.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01474] [PMID: 27046062]
[36]
Desantis, J.; Nannetti, G.; Massari, S.; Barreca, M.L.; Manfroni, G.; Cecchetti, V.; Palù, G.; Goracci, L.; Loregian, A.; Tabarrini, O. Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity. Eur. J. Med. Chem., 2017, 138, 128-139.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.015] [PMID: 28666191]
[37]
Tintori, C.; Laurenzana, I.; Fallacara, A.L.; Kessler, U.; Pilger, B.; Stergiou, L.; Botta, M. High-throughput docking for the identification of new influenza A virus polymerase inhibitors targeting the PA-PB1 protein-protein interaction. Bioorg. Med. Chem. Lett., 2014, 24(1), 280-282.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.019] [PMID: 24314669]
[38]
D’Agostino, I.; Giacchello, I.; Nannetti, G.; Fallacara, A.L.; Deodato, D.; Musumeci, F.; Grossi, G.; Palù, G.; Cau, Y.; Trist, I.M.; Loregian, A.; Schenone, S.; Botta, M. Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction. Eur. J. Med. Chem., 2018, 157, 743-758.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.032] [PMID: 30142611]
[39]
He, X.; Zhou, J.; Bartlam, M.; Zhang, R.; Ma, J.; Lou, Z.; Li, X.; Li, J.; Joachimiak, A.; Zeng, Z.; Ge, R.; Rao, Z.; Liu, Y. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature, 2008, 454(7208), 1123-1126.
[http://dx.doi.org/10.1038/nature07120] [PMID: 18615018]
[40]
Yuan, S.; Chu, H.; Ye, J.; Singh, K.; Ye, Z.; Zhao, H.; Kao, R.Y.T.; Chow, B.K.C.; Zhou, J.; Zheng, B.J. Identification of a novel small-molecule compound targeting the influenza A virus polymerase PB1-PB2 interface. Antiviral Res., 2017, 137, 58-66.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.005] [PMID: 27840201]
[41]
Tkachuk, V.; Merkulova, V.; Omelchenko, I.; Arrault, A.; Hordiyenko, O. Cyclic acyl amidines as unexpected C4-donors for fully substituted pyridine ring formation in the base mediated reaction with malononitrile. Tetrahedron Lett., 2019, 60(30), 1959-1963.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.038]
[42]
Zhu, Y.; Chen, X.; Ran, T.; Niu, J.; Zhao, S.; Lu, T.; Tang, W. Design, synthesis and biological evaluation of urea-based benzamides derivatives as HDAC inhibitors. Med. Chem. Res., 2017, 26(11), 2879-2888.
[http://dx.doi.org/10.1007/s00044-017-1987-6]
[43]
Kodama, K.; Morita, R.; Hirose, T. Formation of ternary inclusion crystal and enantioseparation of alkyl aryl sulfoxides by the salt of urea-modified L-phenylalanine and an achiral amine. Cryst. Growth Des., 2016, 16(9), 5206-5213.
[http://dx.doi.org/10.1021/acs.cgd.6b00768]
[44]
Liu, Y.Y.; Feng, X.Y.; Jia, W.Q.; Jing, Z.; Xu, W.R.; Cheng, X.C. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations. Comput. Biol. Chem., 2019, 78, 190-204.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.002] [PMID: 30557817]
[45]
Mondal, S.K.; Mondal, N.B.; Banerjee, S.; Mazumder, U.K. Determination of drug-like properties of a novel antileishmanial compound: In vitro absorption, distribution, metabolism, and excretion studies. Indian J. Pharmacol., 2009, 41(4), 176-181.
[http://dx.doi.org/10.4103/0253-7613.56075] [PMID: 20523869]
[46]
Yasmin, S.; Mhlongo, N.N.; Soliman, M.E.; Saraswathi, G.R.; Jayaprakash, V. Comparative design, in silico docking and predictive ADME/TOX properties of some novel 2, 4-hydroxy derivatives of thiazolidine-2,4-diones as PPARγ modulator. J. Pharm. Chem, 2017, 4(2), 11-19.
[http://dx.doi.org/10.14805/jphchem.2017.art74]
[47]
Reich, S.; Guilligay, D.; Pflug, A.; Malet, H.; Berger, I.; Crépin, T.; Hart, D.; Lunardi, T.; Nanao, M.; Ruigrok, R.W.H.; Cusack, S. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature, 2014, 516(7531), 361-366.
[http://dx.doi.org/10.1038/nature14009] [PMID: 25409151]
[48]
Aier, I.; Varadwaj, P.K.; Raj, U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep., 2016, 6(1), 34984.
[http://dx.doi.org/10.1038/srep34984] [PMID: 27713574]
[49]
Obayashi, E.; Yoshida, H.; Kawai, F.; Shibayama, N.; Kawaguchi, A.; Nagata, K.; Tame, J.R.H.; Park, S.Y. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature, 2008, 454(7208), 1127-1131.
[http://dx.doi.org/10.1038/nature07225] [PMID: 18660801]
[50]
Yuan, S.; Chan, H.C.S.; Filipek, S.; Vogel, H. PyMOL and inkscape bridge the data and the data visualization. Structure, 2016, 24(12), 2041-2042.
[http://dx.doi.org/10.1016/j.str.2016.11.012] [PMID: 27926832]
[51]
Trist, I.M.L.; Nannetti, G.; Tintori, C.; Fallacara, A.L.; Deodato, D.; Mercorelli, B.; Palù, G.; Wijtmans, M.; Gospodova, T.; Edink, E.; Verheij, M.; de Esch, I.; Viteva, L.; Loregian, A.; Botta, M. 4,6-diphenyl pyridines as promising novel anti-influenza agents targeting the PA-PB1 protein-protein interaction: structure-activity relationships exploration with the aid of molecular modeling. J. Med. Chem., 2016, 59(6), 2688-2703.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01935] [PMID: 26924568]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy