摘要
最典型的恶性脑肿瘤,多形性胶质母细胞瘤(GBM),尽管采用了密集的多模式干预,似乎有一个严峻的结果。文献表明,具有生物活性的植物分子可能通过调节多种信号通路发挥抗癌特性。小檗碱是一种异喹啉生物碱,在药理上有多种应用,可对抗癌症等严重疾病。机制上,抑制细胞增殖和侵袭,抑制肿瘤血管生成,诱导细胞凋亡。黄连素对GBM的抗肿瘤作用日益被人们所认识。这篇综述揭示了黄连素在各种癌症中的调控信号机制,提出了其作为GBM治疗剂的潜在作用。
关键词: 多形性胶质母细胞瘤,植物分子,小檗碱,自噬,凋亡,恶性脑肿瘤。
[1]
Maghrouni, A.; Givari, M.; Jalili-Nik, M.; Mollazadeh, H.; Bibak, B.; Sadeghi, M.M.; Afshari, A.R.; Johnston, T.P.; Sahebkar, A. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int. Immunopharmacol., 2021, 93, 107403.
[http://dx.doi.org/10.1016/j.intimp.2021.107403] [PMID: 33581502]
[http://dx.doi.org/10.1016/j.intimp.2021.107403] [PMID: 33581502]
[2]
Afshari, A.R.; Mollazadeh, H.; Mohtashami, E.; Soltani, A.; Soukhtanloo, M.; Hosseini, A.; Jalili-Nik, M.; Vahedi, M.M.; Roshan, M.K.; Sahebkar, A. Protective role of natural products in glioblastoma multiforme: A focus on nitric oxide pathway. Curr. Med. Chem., 2021, 28(2), 377-400.
[http://dx.doi.org/10.2174/0929867327666200130104757] [PMID: 32000638]
[http://dx.doi.org/10.2174/0929867327666200130104757] [PMID: 32000638]
[3]
Soukhtanloo, M.; Mohtashami, E.; Maghrouni, A.; Mollazadeh, H.; Mousavi, S.H.; Roshan, M.K.; Tabatabaeizadeh, S.A.; Hosseini, A.; Vahedi, M.M.; Jalili-Nik, M.; Afshari, A.R. Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacol. Rep., 2020, 72(2), 285-295.
[http://dx.doi.org/10.1007/s43440-020-00081-7] [PMID: 32152926]
[http://dx.doi.org/10.1007/s43440-020-00081-7] [PMID: 32152926]
[4]
Mohtashami, E.; Shafaei-Bajestani, N.; Mollazadeh, H.; Mousavi, S.H.; Jalili-Nik, M.; Sahebkar, A.; Afshari, A.R. The current state of potential therapeutic modalities for glioblastoma multiforme: A clinical review. Curr. Drug Metab., 2020, 21(8), 564-578.
[http://dx.doi.org/10.2174/1389200221666200714101038] [PMID: 32664839]
[http://dx.doi.org/10.2174/1389200221666200714101038] [PMID: 32664839]
[5]
Jalili-Nik, M.; Sadeghi, M.M.; Mohtashami, E.; Mollazadeh, H.; Afshari, A.R.; Sahebkar, A. Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid Med Cell Longev., 2020, 2020, 3237983.
[http://dx.doi.org/10.1155/2020/3237983] [PMID: 32454937]
[http://dx.doi.org/10.1155/2020/3237983] [PMID: 32454937]
[6]
Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, A.R.; Salehi, S.; Samini, F.; Rajabzadeh, G.; Gorji, A. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: An in vitro study. Mol. Neurobiol., 2020, 57(8), 3391-3411.
[http://dx.doi.org/10.1007/s12035-020-01922-5] [PMID: 32430842]
[http://dx.doi.org/10.1007/s12035-020-01922-5] [PMID: 32430842]
[7]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[8]
Afshari, A.R.; Karimi Roshan, M.; Soukhtanloo, M.; Ghorbani, A.; Rahmani, F.; Jalili-Nik, M.; Vahedi, M.M.; Hoseini, A.; Sadeghnia, H.R.; Mollazadeh, H.; Mousavi, S.H. Cytotoxic effects of auraptene against a human malignant glioblastoma cell line. Avicenna J. Phytomed., 2019, 9(4), 334-346.
[PMID: 31309072]
[PMID: 31309072]
[9]
Afshari, A.R.; Jalili-Nik, M.; Soukhtanloo, M.; Ghorbani, A.; Sadeghnia, H.R.; Mollazadeh, H.; Karimi Roshan, M.; Rahmani, F.; Sabri, H.; Vahedi, M.M.; Mousavi, S.H. Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: Role of reactive oxygen species (ROS). EXCLI J., 2019, 18, 576-590.
[PMID: 31611741]
[PMID: 31611741]
[10]
Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138.
[http://dx.doi.org/10.2174/0929867327666201111145212] [PMID: 33176632]
[http://dx.doi.org/10.2174/0929867327666201111145212] [PMID: 33176632]
[11]
Jalili-Nik, M.; Sabri, H.; Zamiri, E.; Soukhtanloo, M.; Roshan, M.K.; Hosseini, A.; Mollazadeh, H.; Vahedi, M.M.; Afshari, A.R.; Mousavi, S.H. Cytotoxic effects of ferula latisecta on human glioma U87 cells. Drug Res. (Stuttg.), 2019, 69(12), 665-670.
[http://dx.doi.org/10.1055/a-0986-6543] [PMID: 31499542]
[http://dx.doi.org/10.1055/a-0986-6543] [PMID: 31499542]
[12]
Guamán Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I.J.M. Berberine, an epiphany against cancer. Molecules., 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[13]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[14]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[15]
Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702.
[http://dx.doi.org/10.2147/CMAR.S242329] [PMID: 32099466]
[http://dx.doi.org/10.2147/CMAR.S242329] [PMID: 32099466]
[16]
Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887.
[http://dx.doi.org/10.3389/fphar.2021.653887] [PMID: 33981233]
[http://dx.doi.org/10.3389/fphar.2021.653887] [PMID: 33981233]
[17]
Zhao, J.V.; Yeung, W.F.; Chan, Y.H.; Vackova, D.; Leung, J.Y.Y.; Ip, D.K.M.; Zhao, J.; Ho, W.K.; Tse, H.F.; Schooling, C.M. Effect of berberine on cardiovascular disease risk factors: A mechanistic randomized controlled trial. Nutrients, 2021, 13(8), 2550.
[http://dx.doi.org/10.3390/nu13082550] [PMID: 34444711]
[http://dx.doi.org/10.3390/nu13082550] [PMID: 34444711]
[18]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[19]
Pirro, M.; Mannarino, M.R.; Bianconi, V.; Simental-Mendía, L.E.; Bagaglia, F.; Mannarino, E.; Sahebkar, A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2016, 110, 76-88.
[http://dx.doi.org/10.1016/j.phrs.2016.04.021] [PMID: 27157250]
[http://dx.doi.org/10.1016/j.phrs.2016.04.021] [PMID: 27157250]
[20]
Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A novel therapeutic strategy for cancer. IUBMB Life, 2020, 72(10), 2065-2079.
[http://dx.doi.org/10.1002/iub.2350] [PMID: 32735398]
[http://dx.doi.org/10.1002/iub.2350] [PMID: 32735398]
[21]
Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[22]
Tan, W.; Li, Y.; Chen, M.; Wang, Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int. J. Nanomedicine, 2011, 6, 1773-1777.
[http://dx.doi.org/10.2147/IJN.S22683] [PMID: 21931477]
[http://dx.doi.org/10.2147/IJN.S22683] [PMID: 21931477]
[23]
Meeran, S.M.; Katiyar, S.; Katiyar, S.K. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol. Appl. Pharmacol., 2008, 229(1), 33-43.
[http://dx.doi.org/10.1016/j.taap.2007.12.027] [PMID: 18275980]
[http://dx.doi.org/10.1016/j.taap.2007.12.027] [PMID: 18275980]
[24]
Yi, T.; Zhuang, L.; Song, G.; Zhang, B.; Li, G.; Hu, T. Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells. Nutr. Cancer, 2015, 67(3), 523-531.
[http://dx.doi.org/10.1080/01635581.2015.1004733] [PMID: 25837881]
[http://dx.doi.org/10.1080/01635581.2015.1004733] [PMID: 25837881]
[25]
Lin, J.P.; Yang, J.S.; Lee, J.H.; Hsieh, W.T.; Chung, J.G. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol., 2006, 12(1), 21-28.
[http://dx.doi.org/10.3748/wjg.v12.i1.21] [PMID: 16440412]
[http://dx.doi.org/10.3748/wjg.v12.i1.21] [PMID: 16440412]
[26]
Jeong, H.W.; Hsu, K.C.; Lee, J-W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, W.S.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E955-E964.
[http://dx.doi.org/10.1152/ajpendo.90599.2008] [PMID: 19208854]
[http://dx.doi.org/10.1152/ajpendo.90599.2008] [PMID: 19208854]
[27]
Zhu, J.; Cao, D.; Guo, C.; Liu, M.; Tao, Y.; Zhou, J.; Wang, F.; Zhao, Y.; Wei, J.; Zhang, Y.; Fang, W.; Li, Y. Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling. Cell. Mol. Neurobiol., 2019, 39(6), 751-768.
[http://dx.doi.org/10.1007/s10571-019-00675-7] [PMID: 31020571]
[http://dx.doi.org/10.1007/s10571-019-00675-7] [PMID: 31020571]
[28]
Chitra, P.; Saiprasad, G.; Manikandan, R.; Sudhandiran, G. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicol. Lett., 2013, 219(2), 178-193.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.009] [PMID: 23523906]
[http://dx.doi.org/10.1016/j.toxlet.2013.03.009] [PMID: 23523906]
[29]
Mollazadeh, H.; Afshari, A.R.; Hosseinzadeh, H. Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis: - Black cumin and cancer. J. Pharmacopuncture, 2017, 20(3), 158-172.
[http://dx.doi.org/10.3831/KPI.2017.20.019] [PMID: 30087792]
[http://dx.doi.org/10.3831/KPI.2017.20.019] [PMID: 30087792]
[30]
Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Panda, K.C.; Das, S.; Jena, M.; Bhutia, S.K. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother. Res., 2021, 35(8), 4194-4214.
[http://dx.doi.org/10.1002/ptr.7082] [PMID: 33749909]
[http://dx.doi.org/10.1002/ptr.7082] [PMID: 33749909]
[31]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(6805), 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[32]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76(11), 1075-1079.
[http://dx.doi.org/10.1055/s-0030-1249961] [PMID: 20486070]
[http://dx.doi.org/10.1055/s-0030-1249961] [PMID: 20486070]
[33]
Kim, J-S.; Oh, D.; Yim, M-J.; Park, J-J.; Kang, K-R.; Cho, I-A.; Moon, S.M.; Oh, J.S.; You, J.S.; Kim, C.S.; Kim, D.K.; Lee, S.Y.; Lee, G.J.; Im, H.J.; Kim, S.G. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells. Oncol. Rep., 2015, 33(4), 1775-1782.
[http://dx.doi.org/10.3892/or.2015.3768] [PMID: 25634589]
[http://dx.doi.org/10.3892/or.2015.3768] [PMID: 25634589]
[34]
Jabbarzadeh Kaboli, P.; Rahmat, A.; Ismail, P.; Ling, K-H. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol., 2014, 740, 584-595.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.025] [PMID: 24973693]
[http://dx.doi.org/10.1016/j.ejphar.2014.06.025] [PMID: 24973693]
[35]
Patil, J.B.; Kim, J.; Jayaprakasha, G.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharmacol., 2010, 645(1-3), 70-78.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.037] [PMID: 20691179]
[http://dx.doi.org/10.1016/j.ejphar.2010.07.037] [PMID: 20691179]
[36]
Seo, Y.S.; Yim, M.J.; Kim, B.H.; Kang, K.R.; Lee, S.Y.; Oh, J.S.; You, J.S.; Kim, S.G.; Yu, S.J.; Lee, G.J.; Kim, D.K.; Kim, C.S.; Kim, J.S.; Kim, J.S. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncol. Rep., 2015, 34(6), 3025-3034.
[http://dx.doi.org/10.3892/or.2015.4312] [PMID: 26503508]
[http://dx.doi.org/10.3892/or.2015.4312] [PMID: 26503508]
[37]
Okubo, S.; Uto, T.; Goto, A.; Tanaka, H.; Nishioku, T.; Yamada, K.; Shoyama, Y. Berberine induces apoptotic cell death via activation of caspase-3 and -8 in HL-60 human leukemia cells: Nuclear localization and structure-activity relationships. Am. J. Chin. Med., 2017, 45(7), 1497-1511.
[http://dx.doi.org/10.1142/S0192415X17500811] [PMID: 29025293]
[http://dx.doi.org/10.1142/S0192415X17500811] [PMID: 29025293]
[38]
Mohammadlou, M.; Abdollahi, M.; Hemati, M.; Baharlou, R.; Doulabi, E.M.; Pashaei, M.; Ghahremanfard, F.; Faranoush, M.; Kokhaei, P. Apoptotic effect of berberine via Bcl-2, ROR1, and mir-21 in patients with B-chronic lymphocytic leukemia. Phytother. Res., 2021, 35(4), 2025-2033.
[http://dx.doi.org/10.1002/ptr.6945] [PMID: 33174291]
[http://dx.doi.org/10.1002/ptr.6945] [PMID: 33174291]
[39]
Hwang, J-M.; Kuo, H-C.; Tseng, T-H.; Liu, J-Y.; Chu, C-Y. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch. Toxicol., 2006, 80(2), 62-73.
[http://dx.doi.org/10.1007/s00204-005-0014-8] [PMID: 16189662]
[http://dx.doi.org/10.1007/s00204-005-0014-8] [PMID: 16189662]
[40]
Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39.
[http://dx.doi.org/10.1186/1476-4598-10-39] [PMID: 21496227]
[http://dx.doi.org/10.1186/1476-4598-10-39] [PMID: 21496227]
[41]
Zhu, Y.; Ma, N.; Li, H.X.; Tian, L.; Ba, Y.F.; Hao, B. Berberine induces apoptosis and DNA damage in MG63 human osteosarcoma cells. Mol. Med. Rep., 2014, 10(4), 1734-1738.
[http://dx.doi.org/10.3892/mmr.2014.2405] [PMID: 25050485]
[http://dx.doi.org/10.3892/mmr.2014.2405] [PMID: 25050485]
[42]
Gao, X.; Zhang, C.; Wang, Y.; Zhang, P.; Zhang, J.; Hong, T. Berberine and cisplatin exhibit synergistic anticancer effects on osteosarcoma MG-63 cells by inhibiting the MAPK pathway. Molecules, 2021, 26(6), 1666.
[http://dx.doi.org/10.3390/molecules26061666] [PMID: 33802664]
[http://dx.doi.org/10.3390/molecules26061666] [PMID: 33802664]
[43]
Yang, X.; Huang, N. Berberine induces selective apoptosis through the AMPK-mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol. Med. Rep., 2013, 8(2), 505-510.
[http://dx.doi.org/10.3892/mmr.2013.1506] [PMID: 23732865]
[http://dx.doi.org/10.3892/mmr.2013.1506] [PMID: 23732865]
[44]
Ramesh, G.; Das, S.; Bola Sadashiva, S.R. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence. J. Pharm. Pharmacol., 2020, 72(12), 1893-1908.
[http://dx.doi.org/10.1111/jphp.13354] [PMID: 32815562]
[http://dx.doi.org/10.1111/jphp.13354] [PMID: 32815562]
[45]
Zheng, F.; Tang, Q.; Wu, J.; Zhao, S.; Liang, Z.; Li, L.; Wu, W.; Hann, S. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J. Exp. Clin. Cancer Res., 2014, 33(1), 36.
[http://dx.doi.org/10.1186/1756-9966-33-36] [PMID: 24766860]
[http://dx.doi.org/10.1186/1756-9966-33-36] [PMID: 24766860]
[46]
Park, S.H.; Sung, J.H.; Kim, E.J.; Chung, N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz. J. Med. Biol. Res., 2015, 48(2), 111-119.
[http://dx.doi.org/10.1590/1414-431x20144293] [PMID: 25517919]
[http://dx.doi.org/10.1590/1414-431x20144293] [PMID: 25517919]
[47]
Jin, H.; Ko, Y.S.; Park, S.W.; Chang, K.C.; Kim, H.J. 13-Ethylberberine induces apoptosis through the mitochondria-related apoptotic pathway in radiotherapy-resistant breast cancer cells. Molecules, 2019, 24(13), 2448.
[http://dx.doi.org/10.3390/molecules24132448] [PMID: 31277363]
[http://dx.doi.org/10.3390/molecules24132448] [PMID: 31277363]
[48]
Wang, Y.; Liu, Q.; Liu, Z.; Li, B.; Sun, Z.; Zhou, H.; Zhang, X.; Gong, Y.; Shao, C. Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat. Res., 2012, 734(1-2), 20-29.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.04.005] [PMID: 22561209]
[http://dx.doi.org/10.1016/j.mrfmmm.2012.04.005] [PMID: 22561209]
[49]
Hu, H.Y.; Li, K.P.; Wang, X.J.; Liu, Y.; Lu, Z.G.; Dong, R.H.; Guo, H.B.; Zhang, M.X. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166.
[http://dx.doi.org/10.1038/aps.2012.161] [PMID: 23247593]
[http://dx.doi.org/10.1038/aps.2012.161] [PMID: 23247593]
[50]
Lin, J.P.; Yang, J.S.; Wu, C.C.; Lin, S.S.; Hsieh, W.T.; Lin, M.L.; Yu, F.S.; Yu, C.S.; Chen, G.W.; Chang, Y.H.; Chung, J.G. Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro. In Vivo, 2008, 22(2), 223-230.
[PMID: 18468407]
[PMID: 18468407]
[51]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis*. Annu. Rev. Genet., 2009, 43(1), 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[52]
Gottlieb, E.; Armour, S.M.; Harris, M.H.; Thompson, C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ., 2003, 10(6), 709-717.
[http://dx.doi.org/10.1038/sj.cdd.4401231] [PMID: 12761579]
[http://dx.doi.org/10.1038/sj.cdd.4401231] [PMID: 12761579]
[53]
Li, J.; Gu, L.; Zhang, H.; Liu, T.; Tian, D.; Zhou, M.; Zhou, S. Berberine represses DAXX gene transcription and induces cancer cell apoptosis. Lab. Invest., 2013, 93(3), 354-364.
[http://dx.doi.org/10.1038/labinvest.2012.172] [PMID: 23295648]
[http://dx.doi.org/10.1038/labinvest.2012.172] [PMID: 23295648]
[54]
Lopes, T.Z.; de Moraes, F.R.; Tedesco, A.C.; Arni, R.K.; Rahal, P.; Calmon, M.F. Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed. Pharmacother., 2020, 123, 109794.
[http://dx.doi.org/10.1016/j.biopha.2019.109794] [PMID: 31874443]
[http://dx.doi.org/10.1016/j.biopha.2019.109794] [PMID: 31874443]
[55]
Liu, L.; Fan, J.; Ai, G.; Liu, J.; Luo, N.; Li, C.; Cheng, Z. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol. Res., 2019, 52(1), 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[56]
Li, J.; Liu, F.; Jiang, S.; Liu, J.; Chen, X.; Zhang, S.; Zhao, H. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol. Lett., 2018, 15(5), 7409-7414.
[http://dx.doi.org/10.3892/ol.2018.8249] [PMID: 29725453]
[http://dx.doi.org/10.3892/ol.2018.8249] [PMID: 29725453]
[57]
Pan, Y.; Zhang, F.; Zhao, Y.; Shao, D.; Zheng, X.; Chen, Y.; He, K.; Li, J.; Chen, L. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J. Cancer, 2017, 8(9), 1679-1689.
[http://dx.doi.org/10.7150/jca.19106] [PMID: 28775788]
[http://dx.doi.org/10.7150/jca.19106] [PMID: 28775788]
[58]
El Khalki, L.; Maire, V.; Dubois, T.; Zyad, A. Berberine impairs the survival of triple negative breast cancer cells: Cellular and molecular analyses. Molecules, 2020, 25(3), 506.
[http://dx.doi.org/10.3390/molecules25030506] [PMID: 31991634]
[http://dx.doi.org/10.3390/molecules25030506] [PMID: 31991634]
[59]
Kuo, C-L.; Chi, C-W.; Liu, T-Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo, 2005, 19(1), 247-252.
[PMID: 15796182]
[PMID: 15796182]
[60]
Li, J.; Li, O.; Kan, M.; Zhang, M.; Shao, D.; Pan, Y.; Zheng, H.; Zhang, X.; Chen, L.; Liu, S. Berberine induces apoptosis by suppressing the arachidonic acid metabolic pathway in hepatocellular carcinoma. Mol. Med. Rep., 2015, 12(3), 4572-4577.
[http://dx.doi.org/10.3892/mmr.2015.3926] [PMID: 26081696]
[http://dx.doi.org/10.3892/mmr.2015.3926] [PMID: 26081696]
[61]
Kuo, H-P.; Lee, Y-J.; Hsu, C-Y.; Lee, S-L.; Hsu, S-C.; Chuang, T-C.; Liu, J-Y.; Kuo, C-L.; Ho, C-T.; Kao, M-C. Growth-suppressive effect of berberine on endometrial carcinoma cells: Role of mitochondrial and PI3K/Akt pathway. J. Funct. Foods, 2015, 17, 600-609.
[http://dx.doi.org/10.1016/j.jff.2015.06.006]
[http://dx.doi.org/10.1016/j.jff.2015.06.006]
[62]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[63]
Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064.
[http://dx.doi.org/10.1038/srep26064] [PMID: 27263652]
[http://dx.doi.org/10.1038/srep26064] [PMID: 27263652]
[64]
Lane, D. Designer combination therapy for cancer. Nat. Biotechnol., 2006, 24(2), 163-164.
[http://dx.doi.org/10.1038/nbt0206-163] [PMID: 16465160]
[http://dx.doi.org/10.1038/nbt0206-163] [PMID: 16465160]
[65]
You, H.Y.; Xie, X.M.; Zhang, W.J.; Zhu, H.L.; Jiang, F.Z. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In Vitro Cell. Dev. Biol. Anim., 2016, 52(8), 857-863.
[http://dx.doi.org/10.1007/s11626-016-0044-y] [PMID: 27142767]
[http://dx.doi.org/10.1007/s11626-016-0044-y] [PMID: 27142767]
[66]
Kou, Y.; Tong, B.; Wu, W.; Liao, X.; Zhao, M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/mTOR signaling pathway in gastric cancer. Front. Pharmacol., 2020, 11, 616251.
[http://dx.doi.org/10.3389/fphar.2020.616251] [PMID: 33362566]
[http://dx.doi.org/10.3389/fphar.2020.616251] [PMID: 33362566]
[67]
Guo, N.; Yan, A.; Gao, X.; Chen, Y.; He, X.; Hu, Z.; Mi, M.; Tang, X.; Gou, X. Berberine sensitizes rapamycin-mediated human hepatoma cell death in vitro. Mol. Med. Rep., 2014, 10(6), 3132-3138.
[http://dx.doi.org/10.3892/mmr.2014.2608] [PMID: 25310356]
[http://dx.doi.org/10.3892/mmr.2014.2608] [PMID: 25310356]
[68]
Zhou, F.; Hu, J.; Dai, N.; Song, L.; Lin, T.; Liu, J.; Li, K.; Peng, Z.; He, Y.; Liao, D. Berberine and ginsenoside Rg3 act synergistically via the MAPK/ERK pathway in nasopharyngeal carcinoma cells. J. Funct. Foods, 2020, 66, 103802.
[http://dx.doi.org/10.1016/j.jff.2020.103802]
[http://dx.doi.org/10.1016/j.jff.2020.103802]
[69]
Kim, D.W.; Ahan, S.H.; Kim, T.Y. Enhancement of arsenic trioxide (As2O3)-mediated apoptosis using berberine in human neuroblastoma SH-SY5Y cells. J. Korean Neurosurg. Soc., 2007, 42(5), 392-399.
[http://dx.doi.org/10.3340/jkns.2007.42.5.392] [PMID: 19096576]
[http://dx.doi.org/10.3340/jkns.2007.42.5.392] [PMID: 19096576]
[70]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[71]
Diaz-Moralli, S.; Tarrado-Castellarnau, M.; Miranda, A.; Cascante, M. Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther., 2013, 138(2), 255-271.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.011] [PMID: 23356980]
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.011] [PMID: 23356980]
[72]
Goel, B.; Tripathi, N.; Bhardwaj, N.; Jain, S.K. Small molecule CDK inhibitors for the therapeutic management of cancer. Curr. Top. Med. Chem., 2020, 20(17), 1535-1563.
[http://dx.doi.org/10.2174/1568026620666200516152756] [PMID: 32416692]
[http://dx.doi.org/10.2174/1568026620666200516152756] [PMID: 32416692]
[73]
Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther., 2006, 5(2), 296-308.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0448] [PMID: 16505103]
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0448] [PMID: 16505103]
[74]
Yan, K.; Zhang, C.; Feng, J.; Hou, L.; Yan, L.; Zhou, Z.; Liu, Z.; Liu, C.; Fan, Y.; Zheng, B.; Xu, Z. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. Eur. J. Pharmacol., 2011, 661(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.021] [PMID: 21545798]
[http://dx.doi.org/10.1016/j.ejphar.2011.04.021] [PMID: 21545798]
[75]
James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7.
[http://dx.doi.org/10.1002/mc.20690] [PMID: 21061266]
[http://dx.doi.org/10.1002/mc.20690] [PMID: 21061266]
[76]
Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur. J. Pharmacol., 2012, 688(1-3), 14-21.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.004] [PMID: 22617025]
[http://dx.doi.org/10.1016/j.ejphar.2012.05.004] [PMID: 22617025]
[77]
Li, L.; Wang, X.; Sharvan, R.; Gao, J.; Qu, S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed. Pharmacother., 2017, 95, 1225-1231.
[http://dx.doi.org/10.1016/j.biopha.2017.09.010] [PMID: 28931215]
[http://dx.doi.org/10.1016/j.biopha.2017.09.010] [PMID: 28931215]
[78]
Kalaiarasi, A.; Anusha, C.; Sankar, R.; Rajasekaran, S.; John Marshal, J.; Muthusamy, K.; Ravikumar, V. Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line. J. Agric. Food Chem., 2016, 64(50), 9542-9550.
[http://dx.doi.org/10.1021/acs.jafc.6b04453] [PMID: 27936791]
[http://dx.doi.org/10.1021/acs.jafc.6b04453] [PMID: 27936791]
[79]
Wang, Y.; Zhang, S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed. Pharmacother., 2018, 103, 1287-1293.
[http://dx.doi.org/10.1016/j.biopha.2018.04.161] [PMID: 29864910]
[http://dx.doi.org/10.1016/j.biopha.2018.04.161] [PMID: 29864910]
[80]
Zhang, Y.; Liu, X.; Yu, M.; Xu, M.; Xiao, Y.; Ma, W.; Huang, L.; Li, X.; Ye, X. Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Life Sci., 2020, 260, 118413.
[http://dx.doi.org/10.1016/j.lfs.2020.118413] [PMID: 32926933]
[http://dx.doi.org/10.1016/j.lfs.2020.118413] [PMID: 32926933]
[81]
Liu, Z.; Liu, Q.; Xu, B.; Wu, J.; Guo, C.; Zhu, F.; Yang, Q.; Gao, G.; Gong, Y.; Shao, C. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat. Res., 2009, 662(1-2), 75-83.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.12.009] [PMID: 19159633]
[http://dx.doi.org/10.1016/j.mrfmmm.2008.12.009] [PMID: 19159633]
[82]
Samad, M.A.; Saiman, M.Z.; Abdul Majid, N.; Karsani, S.A.; Yaacob, J.S. Berberine inhibits telomerase activity and induces cell cycle arrest and telomere erosion in colorectal cancer cell line, HCT 116. Molecules, 2021, 26(2), 376.
[http://dx.doi.org/10.3390/molecules26020376] [PMID: 33450878]
[http://dx.doi.org/10.3390/molecules26020376] [PMID: 33450878]
[83]
Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol., 2021, 59(1), 21-30.
[http://dx.doi.org/10.1080/13880209.2020.1865407] [PMID: 33417512]
[http://dx.doi.org/10.1080/13880209.2020.1865407] [PMID: 33417512]
[84]
Ren, M.; Yang, L.; Li, D.; Yang, L.; Su, Y.; Su, X. Cell cycle regulation by berberine in human melanoma A375 cells. Bull. Exp. Biol. Med., 2020, 169(4), 491-496.
[http://dx.doi.org/10.1007/s10517-020-04916-4] [PMID: 32915362]
[http://dx.doi.org/10.1007/s10517-020-04916-4] [PMID: 32915362]
[85]
Jantová, S.; Cipák, L.; Cernáková, M.; Kost’álová, D. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J. Pharm. Pharmacol., 2003, 55(8), 1143-1149.
[http://dx.doi.org/10.1211/002235703322277186] [PMID: 12956905]
[http://dx.doi.org/10.1211/002235703322277186] [PMID: 12956905]
[86]
Wang, Z.C.; Wang, J.; Chen, H.; Tang, J.; Bian, A.W.; Liu, T.; Yu, L.F.; Yi, Z.; Yang, F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg. Med. Chem. Lett., 2020, 30(2), 126821.
[http://dx.doi.org/10.1016/j.bmcl.2019.126821] [PMID: 31812467]
[http://dx.doi.org/10.1016/j.bmcl.2019.126821] [PMID: 31812467]
[87]
Loo, Y.S.; Madheswaran, T.; Rajendran, R.; Bose, R.J. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J. Drug Deliv. Sci. Technol., 2020, 57, 101756.
[http://dx.doi.org/10.1016/j.jddst.2020.101756]
[http://dx.doi.org/10.1016/j.jddst.2020.101756]
[88]
Pierpaoli, E.; Arcamone, A.G.; Buzzetti, F.; Lombardi, P.; Salvatore, C.; Provinciali, M. Antitumor effect of novel berberine derivatives in breast cancer cells. Biofactors, 2013, 39(6), 672-679.
[http://dx.doi.org/10.1002/biof.1131] [PMID: 24000115]
[http://dx.doi.org/10.1002/biof.1131] [PMID: 24000115]
[89]
Zhuo, Y.; Chen, Q.; Chen, B.; Zhan, X.; Qin, X.; Huang, J.; Lv, X. Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest. Int. J. Clin. Pharmacol. Ther., 2017, 55(1), 32-40.
[http://dx.doi.org/10.5414/CP202534] [PMID: 27719740]
[http://dx.doi.org/10.5414/CP202534] [PMID: 27719740]
[90]
Ponnusamy, L.; Kothandan, G.; Manoharan, R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(11), 165897.
[http://dx.doi.org/10.1016/j.bbadis.2020.165897] [PMID: 32682817]
[http://dx.doi.org/10.1016/j.bbadis.2020.165897] [PMID: 32682817]
[91]
Du, J.; Sun, Y.; Lu, Y.Y.; Lau, E.; Zhao, M.; Zhou, Q.M.; Su, S.B. Berberine and evodiamine act synergistically against human breast cancer MCF-7 cells by inducing cell cycle arrest and apoptosis. Anticancer Res., 2017, 37(11), 6141-6151.
[PMID: 29061795]
[PMID: 29061795]
[92]
Hashemi-Niasari, F.; Rabbani-Chadegani, A.; Razmi, M.; Fallah, S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2018, 106, 858-867.
[http://dx.doi.org/10.1016/j.biopha.2018.07.019] [PMID: 30119256]
[http://dx.doi.org/10.1016/j.biopha.2018.07.019] [PMID: 30119256]
[93]
Mittal, A.; Tabasum, S.; Singh, R.P. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine, 2014, 21(3), 340-347.
[http://dx.doi.org/10.1016/j.phymed.2013.09.002] [PMID: 24176840]
[http://dx.doi.org/10.1016/j.phymed.2013.09.002] [PMID: 24176840]
[94]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[95]
Ma, W.; Zhu, M.; Yang, L.; Yang, T.; Zhang, Y. Synergistic effect of TPD7 and berberine against leukemia jurkat cell growth through regulating ephrin-B2 signaling. Phytother. Res., 2017, 31(9), 1392-1399.
[http://dx.doi.org/10.1002/ptr.5866] [PMID: 28703366]
[http://dx.doi.org/10.1002/ptr.5866] [PMID: 28703366]
[96]
Wen, C.; Wu, L.; Fu, L.; Zhang, X.; Zhou, H. Berberine enhances the anti-tumor activity of tamoxifen in drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells. Mol. Med. Rep., 2016, 14(3), 2250-2256.
[http://dx.doi.org/10.3892/mmr.2016.5490] [PMID: 27432642]
[http://dx.doi.org/10.3892/mmr.2016.5490] [PMID: 27432642]
[97]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[98]
Liu, J.; Zhu, Z.; Liu, Y.; Wei, L.; Li, B.; Mao, F.; Zhang, J.; Wang, Y.; Liu, Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci., 2020, 242, 117228.
[http://dx.doi.org/10.1016/j.lfs.2019.117228] [PMID: 31881227]
[http://dx.doi.org/10.1016/j.lfs.2019.117228] [PMID: 31881227]
[99]
Yu, R.; Zhang, Z.Q.; Wang, B.; Jiang, H.X.; Cheng, L.; Shen, L.M. Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int., 2014, 14(1), 49.
[http://dx.doi.org/10.1186/1475-2867-14-49] [PMID: 24991192]
[http://dx.doi.org/10.1186/1475-2867-14-49] [PMID: 24991192]
[100]
Han, B.; Wang, K.; Tu, Y.; Tan, L.; He, C. Low-dose berberine attenuates the anti-breast cancer activity of chemotherapeutic agents via induction of autophagy and antioxidation. Dose Response, 2020, 18(4), 1559325820939751.
[http://dx.doi.org/10.1177/1559325820939751] [PMID: 33100936]
[http://dx.doi.org/10.1177/1559325820939751] [PMID: 33100936]
[101]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem., 2010, 111(6), 1426-1436.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[102]
Liu, J.; Liu, P.; Xu, T.; Chen, Z.; Kong, H.; Chu, W.; Wang, Y.; Liu, Y. Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des. Devel. Ther., 2020, 14, 1813-1823.
[http://dx.doi.org/10.2147/DDDT.S239247] [PMID: 32494123]
[http://dx.doi.org/10.2147/DDDT.S239247] [PMID: 32494123]
[103]
Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother., 2020, 128, 110245.
[http://dx.doi.org/10.1016/j.biopha.2020.110245] [PMID: 32454290]
[http://dx.doi.org/10.1016/j.biopha.2020.110245] [PMID: 32454290]
[104]
La, X.; Zhang, L.; Li, Z.; Yang, P.; Wang, Y. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget, 2017, 8(13), 20909-20924.
[http://dx.doi.org/10.18632/oncotarget.14959] [PMID: 28157699]
[http://dx.doi.org/10.18632/oncotarget.14959] [PMID: 28157699]
[105]
Peng, P.L.; Kuo, W.H.; Tseng, H.C.; Chou, F.P. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: The contribution of autophagic cell death. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(2), 529-542.
[http://dx.doi.org/10.1016/j.ijrobp.2007.08.034] [PMID: 18207031]
[http://dx.doi.org/10.1016/j.ijrobp.2007.08.034] [PMID: 18207031]
[106]
Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 2017, 20(2), 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[107]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[108]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[109]
Jie, S.; Li, H.; Tian, Y.; Guo, D.; Zhu, J.; Gao, S.; Jiang, L. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. J. Gastroenterol. Hepatol., 2011, 26(1), 179-185.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06389.x] [PMID: 21175812]
[http://dx.doi.org/10.1111/j.1440-1746.2010.06389.x] [PMID: 21175812]
[110]
Tsang, C.M.; Cheung, K.C.; Cheung, Y.C.; Man, K.; Lui, V.W.; Tsao, S.W.; Feng, Y. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochim. Biophys. Acta, 2015, 1852(3), 541-551.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.004] [PMID: 25496992]
[http://dx.doi.org/10.1016/j.bbadis.2014.12.004] [PMID: 25496992]
[111]
Chu, S.C.; Yu, C.C.; Hsu, L.S.; Chen, K.S.; Su, M.Y.; Chen, P.N. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol. Pharmacol., 2014, 86(6), 609-623.
[http://dx.doi.org/10.1124/mol.114.094037] [PMID: 25217495]
[http://dx.doi.org/10.1124/mol.114.094037] [PMID: 25217495]
[112]
Yang, X.; Yang, B.; Cai, J.; Zhang, C.; Zhang, Q.; Xu, L.; Qin, Q.; Zhu, H.; Ma, J.; Tao, G.; Cheng, H.; Sun, X. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol. Ther., 2013, 14(11), 1068-1073.
[http://dx.doi.org/10.4161/cbt.26426] [PMID: 24025355]
[http://dx.doi.org/10.4161/cbt.26426] [PMID: 24025355]
[113]
Zhang, C.; Yang, X.; Zhang, Q.; Yang, B.; Xu, L.; Qin, Q.; Zhu, H.; Liu, J.; Cai, J.; Tao, G.; Ma, J.; Ge, X.; Zhang, S.; Cheng, H.; Sun, X. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1α expression. Acta Otolaryngol., 2014, 134(2), 185-192.
[http://dx.doi.org/10.3109/00016489.2013.850176] [PMID: 24325635]
[http://dx.doi.org/10.3109/00016489.2013.850176] [PMID: 24325635]
[114]
Fu, L.; Chen, W.; Guo, W.; Wang, J.; Tian, Y.; Shi, D.; Zhang, X.; Qiu, H.; Xiao, X.; Kang, T.; Huang, W.; Wang, S.; Deng, W. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One, 2013, 8(7), e69240.
[http://dx.doi.org/10.1371/journal.pone.0069240] [PMID: 23869238]
[http://dx.doi.org/10.1371/journal.pone.0069240] [PMID: 23869238]
[115]
Gao, J.L.; Shi, J.M.; Lee, S.M.; Zhang, Q.W.; Wang, Y.T. Angiogenic pathway inhibition of Corydalis yanhusuo and berberine in human umbilical vein endothelial cells. Oncol. Res., 2009, 17(11-12), 519-526.
[http://dx.doi.org/10.3727/096504009789745575] [PMID: 19806782]
[http://dx.doi.org/10.3727/096504009789745575] [PMID: 19806782]
[116]
Yahuafai, J.; Asai, T.; Oku, N.; Siripong, P. Anticancer efficacy of the combination of berberine and PEGylated liposomal doxorubicin in meth a sarcoma-bearing mice. Biol. Pharm. Bull., 2018, 41(7), 1103-1106.
[http://dx.doi.org/10.1248/bpb.b17-00989] [PMID: 29962406]
[http://dx.doi.org/10.1248/bpb.b17-00989] [PMID: 29962406]
[117]
Kim, S.; Oh, S-J.; Lee, J.; Han, J.; Jeon, M.; Jung, T.; Lee, S.K.; Bae, S.Y.; Kim, J.; Gil, W.H.; Kim, S.W.; Lee, J.E.; Nam, S.J. Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells. Cell. Physiol. Biochem., 2013, 32(5), 1541-1550.
[http://dx.doi.org/10.1159/000356591] [PMID: 24335179]
[http://dx.doi.org/10.1159/000356591] [PMID: 24335179]
[118]
Hamsa, T.P.; Kuttan, G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem. Toxicol., 2012, 35(1), 57-70.
[http://dx.doi.org/10.3109/01480545.2011.589437] [PMID: 22145808]
[http://dx.doi.org/10.3109/01480545.2011.589437] [PMID: 22145808]
[119]
Pierpaoli, E.; Damiani, E.; Orlando, F.; Lucarini, G.; Bartozzi, B.; Lombardi, P.; Salvatore, C.; Geroni, C.; Donati, A.; Provinciali, M. Antiangiogenic and antitumor activities of berberine derivative NAX014 compound in a transgenic murine model of HER2/neu-positive mammary carcinoma. Carcinogenesis, 2015, 36(10), 1169-1179.
[http://dx.doi.org/10.1093/carcin/bgv103] [PMID: 26168818]
[http://dx.doi.org/10.1093/carcin/bgv103] [PMID: 26168818]
[120]
Pierpaoli, E.; Piacenza, F.; Fiorillo, G.; Lombardi, P.; Orlando, F.; Salvatore, C.; Geroni, C.; Provinciali, M. Antimetastatic and antitumor activities of orally administered NAX014 compound in a murine model of HER2-positive breast cancer. Int. J. Mol. Sci., 2021, 22(5), 2653.
[http://dx.doi.org/10.3390/ijms22052653] [PMID: 33800754]
[http://dx.doi.org/10.3390/ijms22052653] [PMID: 33800754]
[121]
Luo, Y.; Tian, G.; Zhuang, Z.; Chen, J.; You, N.; Zhuo, L.; Liang, B.; Song, Y.; Zang, S.; Liu, J.; Yang, J.; Ge, W.; Shi, J. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am. J. Transl. Res., 2019, 11(5), 2668-2682.
[PMID: 31217846]
[PMID: 31217846]
[122]
Meirson, T.; Gil-Henn, H.; Samson, A.O. Invasion and metastasis: The elusive hallmark of cancer. Oncogene, 2020, 39(9), 2024-2026.
[http://dx.doi.org/10.1038/s41388-019-1110-1] [PMID: 31745295]
[http://dx.doi.org/10.1038/s41388-019-1110-1] [PMID: 31745295]
[123]
Na, T-Y.; Schecterson, L.; Mendonsa, A.M.; Gumbiner, B.M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 5931-5937.
[http://dx.doi.org/10.1073/pnas.1918167117] [PMID: 32127478]
[http://dx.doi.org/10.1073/pnas.1918167117] [PMID: 32127478]
[124]
Kaszak, I.; Witkowska-Piłaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Ngosa Toka, F.; Jurka, P. Role of cadherins in cancer-a review. Int. J. Mol. Sci., 2020, 21(20), 7624.
[http://dx.doi.org/10.3390/ijms21207624] [PMID: 33076339]
[http://dx.doi.org/10.3390/ijms21207624] [PMID: 33076339]
[125]
Mishra, R.; Nathani, S.; Varshney, R.; Sircar, D.; Roy, P. Berberine reverses epithelial-mesenchymal transition and modulates histone methylation in osteosarcoma cells. Mol. Biol. Rep., 2020, 47(11), 8499-8511.
[http://dx.doi.org/10.1007/s11033-020-05892-8] [PMID: 33074411]
[http://dx.doi.org/10.1007/s11033-020-05892-8] [PMID: 33074411]
[126]
Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive effects of berberine on intestinal tumor development in Apcmin/+ mice. BMC Gastroenterol., 2013, 13(1), 163.
[http://dx.doi.org/10.1186/1471-230X-13-163] [PMID: 24279644]
[http://dx.doi.org/10.1186/1471-230X-13-163] [PMID: 24279644]
[127]
Kim, S.; You, D.; Jeong, Y.; Yu, J.; Kim, S.W.; Nam, S.J.; Lee, J.E. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. Phytomedicine, 2018, 50, 43-49.
[http://dx.doi.org/10.1016/j.phymed.2018.08.004] [PMID: 30466991]
[http://dx.doi.org/10.1016/j.phymed.2018.08.004] [PMID: 30466991]
[128]
Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134.
[http://dx.doi.org/10.1038/nrc.2017.118] [PMID: 29326430]
[http://dx.doi.org/10.1038/nrc.2017.118] [PMID: 29326430]
[129]
Derynck, R.; Weinberg, R.A. EMT and cancer: More than meets the eye. Dev. Cell, 2019, 49(3), 313-316.
[http://dx.doi.org/10.1016/j.devcel.2019.04.026] [PMID: 31063750]
[http://dx.doi.org/10.1016/j.devcel.2019.04.026] [PMID: 31063750]
[130]
Saitoh, M. Involvement of partial EMT in cancer progression. J. Biochem., 2018, 164(4), 257-264.
[http://dx.doi.org/10.1093/jb/mvy047] [PMID: 29726955]
[http://dx.doi.org/10.1093/jb/mvy047] [PMID: 29726955]
[131]
Ho, Y-T.; Yang, J-S.; Li, T-C.; Lin, J-J.; Lin, J-G.; Lai, K-C.; Ma, C.Y.; Wood, W.G.; Chung, J.G. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9. Cancer Lett., 2009, 279(2), 155-162.
[http://dx.doi.org/10.1016/j.canlet.2009.01.033] [PMID: 19251361]
[http://dx.doi.org/10.1016/j.canlet.2009.01.033] [PMID: 19251361]
[132]
Li, W.; Li, Q.; Kang, S.; Same, M.; Zhou, Y.; Sun, C. CancerDetector: Ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res., 2018, 46(15), e89.
[http://dx.doi.org/10.1093/nar/gky423] [PMID: 29897492]
[http://dx.doi.org/10.1093/nar/gky423] [PMID: 29897492]
[133]
Liu, L.; Sun, L.; Zheng, J.; Cui, L. Berberine modulates Keratin 17 to inhibit cervical cancer cell viability and metastasis. J. Recept. Signal Transduct. Res., 2021, 41(6), 521-531.
[http://dx.doi.org/10.1080/10799893.2020.1830110] [PMID: 33045871]
[http://dx.doi.org/10.1080/10799893.2020.1830110] [PMID: 33045871]
[134]
Kim, S.; Choi, J.H.; Kim, J.B.; Nam, S.J.; Yang, J-H.; Kim, J-H.; Lee, J.E. Berberine suppresses TNF-α-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules, 2008, 13(12), 2975-2985.
[http://dx.doi.org/10.3390/molecules13122975] [PMID: 19052522]
[http://dx.doi.org/10.3390/molecules13122975] [PMID: 19052522]
[135]
Liu, J.F.; Lai, K.C.; Peng, S.F.; Maraming, P.; Huang, Y.P.; Huang, A.C.; Chueh, F.S.; Huang, W.W.; Chung, J.G. Berberine inhibits human melanoma A375.S2 cell migration and invasion via affecting the FAK, uPA, and NF-κB signaling pathways and inhibits PLX4032 resistant A375.S2 cell migration in vitro. Molecules, 2018, 23(8), 2019.
[http://dx.doi.org/10.3390/molecules23082019] [PMID: 30104528]
[http://dx.doi.org/10.3390/molecules23082019] [PMID: 30104528]
[136]
Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71.
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[137]
Li, Y.; Wang, T.; Sun, Y.; Huang, T.; Li, C.; Fu, Y.; Li, Y.; Li, C. p53-mediated PI3K/AKT/mTOR pathway played a role in PtoxDpt-induced EMT inhibition in liver cancer cell lines. Oxid. Med. Cell. Longev., 2019, 2019, 2531493.
[http://dx.doi.org/10.1155/2019/2531493] [PMID: 31191795]
[http://dx.doi.org/10.1155/2019/2531493] [PMID: 31191795]
[138]
Karimi Roshan, M.; Soltani, A.; Soleimani, A.; Rezaie Kahkhaie, K.; Afshari, A.R.; Soukhtanloo, M. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie, 2019, 165, 229-234.
[http://dx.doi.org/10.1016/j.biochi.2019.08.003] [PMID: 31401189]
[http://dx.doi.org/10.1016/j.biochi.2019.08.003] [PMID: 31401189]
[139]
Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT factors and metabolic pathways in cancer. Front. Oncol., 2020, 10, 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[140]
Kou, Y.; Li, L.; Li, H.; Tan, Y.; Li, B.; Wang, K.; Du, B. Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells. Biochem. Biophys. Res. Commun., 2016, 479(2), 290-296.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.061] [PMID: 27639645]
[http://dx.doi.org/10.1016/j.bbrc.2016.09.061] [PMID: 27639645]
[141]
Hamsa, T.P.; Kuttan, G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother. Res., 2012, 26(4), 568-578.
[http://dx.doi.org/10.1002/ptr.3586] [PMID: 21953764]
[http://dx.doi.org/10.1002/ptr.3586] [PMID: 21953764]
[142]
Wu, C-.M.; Li, T-.M.; Tan, T-.W.; Fong, Y-.C.; Tang, C-.H. Berberine reduces the metastasis of chondrosarcoma by modulating the α ν β 3 integrin and the PKC δ, c-Src, and AP-1 signaling pathways. Evid Based Complement Alternat Med, 2013, 2013, 423164.
[http://dx.doi.org/10.1155/2013/423164] [PMID: 24027594]
[http://dx.doi.org/10.1155/2013/423164] [PMID: 24027594]
[143]
Ma, W.; Zhu, M.; Zhang, D.; Yang, L.; Yang, T.; Li, X.; Zhang, Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 2017, 25, 45-51.
[http://dx.doi.org/10.1016/j.phymed.2016.12.013] [PMID: 28190470]
[http://dx.doi.org/10.1016/j.phymed.2016.12.013] [PMID: 28190470]
[144]
Liu, B.; Wang, G.; Yang, J.; Pan, X.; Yang, Z.; Zang, L. Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes. PLoS One, 2011, 6(6), e21416.
[http://dx.doi.org/10.1371/journal.pone.0021416] [PMID: 21738655]
[http://dx.doi.org/10.1371/journal.pone.0021416] [PMID: 21738655]
[145]
Liu, X.; Ji, Q.; Ye, N.; Sui, H.; Zhou, L.; Zhu, H.; Fan, Z.; Cai, J.; Li, Q. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE 2 mediated JAK2/STAT3 signaling pathway. PLoS One, 2015, 10(5), e0123478.
[http://dx.doi.org/10.1371/journal.pone.0123478] [PMID: 25954974]
[http://dx.doi.org/10.1371/journal.pone.0123478] [PMID: 25954974]
[146]
Tang, F.; Wang, D.; Duan, C.; Huang, D.; Wu, Y.; Chen, Y.; Wang, W.; Xie, C.; Meng, J.; Wang, L.; Wu, B.; Liu, S.; Tian, D.; Zhu, F.; He, Z.; Deng, F.; Cao, Y. Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. J. Biol. Chem., 2009, 284(40), 27456-27466.
[http://dx.doi.org/10.1074/jbc.M109.033795] [PMID: 19651779]
[http://dx.doi.org/10.1074/jbc.M109.033795] [PMID: 19651779]
[147]
Peng, P.L.; Hsieh, Y.S.; Wang, C.J.; Hsu, J.L.; Chou, F.P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol. Appl. Pharmacol., 2006, 214(1), 8-15.
[http://dx.doi.org/10.1016/j.taap.2005.11.010] [PMID: 16387334]
[http://dx.doi.org/10.1016/j.taap.2005.11.010] [PMID: 16387334]
[148]
Qi, H.W.; Xin, L.Y.; Xu, X.; Ji, X.X.; Fan, L.H. Epithelial-to-mesenchymal transition markers to predict response of Berberine in suppressing lung cancer invasion and metastasis. J. Transl. Med., 2014, 12(1), 22.
[http://dx.doi.org/10.1186/1479-5876-12-22] [PMID: 24456611]
[http://dx.doi.org/10.1186/1479-5876-12-22] [PMID: 24456611]
[149]
Li, X.; Zhao, S.J.; Shi, H.L.; Qiu, S.P.; Xie, J.Q.; Wu, H.; Zhang, B.B.; Wang, Z.T.; Yuan, J.Y.; Wu, X.J. Berberine hydrochloride IL-8 dependently inhibits invasion and IL-8-independently promotes cell apoptosis in MDA-MB-231 cells. Oncol. Rep., 2014, 32(6), 2777-2788.
[http://dx.doi.org/10.3892/or.2014.3520] [PMID: 25335112]
[http://dx.doi.org/10.3892/or.2014.3520] [PMID: 25335112]
[150]
Kuo, H.P.; Chuang, T.C.; Tsai, S.C.; Tseng, H.H.; Hsu, S.C.; Chen, Y.C.; Kuo, C.L.; Kuo, Y.H.; Liu, J.Y.; Kao, M.C. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J. Agric. Food Chem., 2012, 60(38), 9649-9658.
[http://dx.doi.org/10.1021/jf302832n] [PMID: 22950834]
[http://dx.doi.org/10.1021/jf302832n] [PMID: 22950834]
[151]
Yan, L.; Yan, K.; Kun, W.; Xu, L.; Ma, Q.; Tang, Y.; Jiao, W.; Gu, G.; Fan, Y.; Xu, Z. Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase. Tumour Biol., 2013, 34(1), 215-221.
[http://dx.doi.org/10.1007/s13277-012-0531-z] [PMID: 23065570]
[http://dx.doi.org/10.1007/s13277-012-0531-z] [PMID: 23065570]
[152]
Yount, G.; Qian, Y.; Moore, D.; Basila, D.; West, J.; Aldape, K.; Arvold, N.; Shalev, N.; Haas-Kogan, D. Berberine sensitizes human glioma cells, but not normal glial cells, to ionizing radiation in vitro. J. Exp. Ther. Oncol., 2004, 4(2), 137-143.
[PMID: 15500008]
[PMID: 15500008]
[153]
Effects of statins on brain tumors: A review.Seminars in cancer biology y; Afshari, A.R.; Mollazadeh, H.; Henney,N.C.; Jamialahmad, T.; Sahebkar, A., Eds.; Elsevier, 2020.
[154]
Guamán Ortiz, L.M.; Croce, A.L.; Aredia, F.; Sapienza, S.; Fiorillo, G.; Syeda, T.M.; Buzzetti, F.; Lombardi, P.; Scovassi, A.I. Effect of new berberine derivatives on colon cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(10), 824-833.
[http://dx.doi.org/10.1093/abbs/gmv077] [PMID: 26341980]
[http://dx.doi.org/10.1093/abbs/gmv077] [PMID: 26341980]
[155]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[156]
Agnarelli, A.; Natali, M.; Garcia-Gil, M.; Pesi, R.; Tozzi, M.G.; Ippolito, C.; Bernardini, N.; Vignali, R.; Batistoni, R.; Bianucci, A.M.; Marracci, S. Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci. Rep., 2018, 8(1), 10599.
[http://dx.doi.org/10.1038/s41598-018-28952-3] [PMID: 30006630]
[http://dx.doi.org/10.1038/s41598-018-28952-3] [PMID: 30006630]
[157]
Eom, K-S.; Hong, J-M.; Youn, M-J.; So, H-S.; Park, R.; Kim, J-M.; Kim, T.Y. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol. Pharm. Bull., 2008, 31(4), 558-562.
[http://dx.doi.org/10.1248/bpb.31.558] [PMID: 18379040]
[http://dx.doi.org/10.1248/bpb.31.558] [PMID: 18379040]
[158]
Tong, L.; Xie, C.; Wei, Y.; Qu, Y.; Liang, H.; Zhang, Y.; Xu, T.; Qian, X.; Qiu, H.; Deng, H. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release. Front. Oncol., 2019, 9, 364.
[http://dx.doi.org/10.3389/fonc.2019.00364] [PMID: 31139563]
[http://dx.doi.org/10.3389/fonc.2019.00364] [PMID: 31139563]
[159]
Sun, Y.; Yu, J.; Liu, X.; Zhang, C.; Cao, J.; Li, G.; Liu, X.; Chen, Y.; Huang, H. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed. Pharmacother., 2018, 102, 699-710.
[http://dx.doi.org/10.1016/j.biopha.2018.03.132] [PMID: 29604589]
[http://dx.doi.org/10.1016/j.biopha.2018.03.132] [PMID: 29604589]
[160]
Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378.
[http://dx.doi.org/10.18632/oncotarget.3629] [PMID: 25812084]
[http://dx.doi.org/10.18632/oncotarget.3629] [PMID: 25812084]
[161]
Zhou, G.; Wang, J.; Zhao, M.; Xie, T.X.; Tanaka, N.; Sano, D.; Patel, A.A.; Ward, A.M.; Sandulache, V.C.; Jasser, S.A.; Skinner, H.D.; Fitzgerald, A.L.; Osman, A.A.; Wei, Y.; Xia, X.; Songyang, Z.; Mills, G.B.; Hung, M.C.; Caulin, C.; Liang, J.; Myers, J.N. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell, 2014, 54(6), 960-974.
[http://dx.doi.org/10.1016/j.molcel.2014.04.024] [PMID: 24857548]
[http://dx.doi.org/10.1016/j.molcel.2014.04.024] [PMID: 24857548]
[162]
Li, N.; Huang, D.; Lu, N.; Luo, L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol. Rep., 2015, 34(6), 2821-2826.
[http://dx.doi.org/10.3892/or.2015.4288] [PMID: 26398719]
[http://dx.doi.org/10.3892/or.2015.4288] [PMID: 26398719]
[163]
Park, J.J.; Seo, S.M.; Kim, E.J.; Lee, Y.J.; Ko, Y.G.; Ha, J.; Lee, M. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem. Biophys. Res. Commun., 2012, 426(4), 461-467.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.091] [PMID: 22943849]
[http://dx.doi.org/10.1016/j.bbrc.2012.08.091] [PMID: 22943849]
[164]
Rottenberg, H.; Hoek, J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell, 2017, 16(5), 943-955.
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[165]
Liu, Z.; Chen, Y.; Gao, H.; Xu, W.; Zhang, C.; Lai, J.; Liu, X.; Sun, Y.; Huang, H. Berberine inhibits cell proliferation by interfering with wild-type and mutant P53 in human glioma cells. OncoTargets Ther., 2020, 13, 12151-12162.
[http://dx.doi.org/10.2147/OTT.S279002] [PMID: 33262612]
[http://dx.doi.org/10.2147/OTT.S279002] [PMID: 33262612]
[166]
Palma, T.V.; Lenz, L.S.; Bottari, N.B.; Pereira, A.; Schetinger, M.R.C.; Morsch, V.M.; Ulrich, H.; Pillat, M.M.; de Andrade, C.M. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol. Biol. Rep., 2020, 47(6), 4393-4400.
[http://dx.doi.org/10.1007/s11033-020-05500-9] [PMID: 32410137]
[http://dx.doi.org/10.1007/s11033-020-05500-9] [PMID: 32410137]
[167]
Chen, T.C.; Lai, K.C.; Yang, J.S.; Liao, C.L.; Hsia, T.C.; Chen, G.W.; Lin, J.J.; Lin, H.J.; Chiu, T.H.; Tang, Y.J.; Chung, J.G. Involvement of reactive oxygen species and caspase-dependent pathway in berberine-induced cell cycle arrest and apoptosis in C6 rat glioma cells. Int. J. Oncol., 2009, 34(6), 1681-1690.
[PMID: 19424587]
[PMID: 19424587]
[168]
Eom, K.S.; Kim, H-J.; So, H-S.; Park, R.; Kim, T.Y. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[169]
Tang, W-C.; Lee, K-H. Inhibitory effects of Berberine on the migratory and invasive abilities of cancer cells. Cancer Microenviron., 2015, 2
[170]
Qu, H.; Song, X.; Song, Z.; Jiang, X.; Gao, X.; Bai, L.; Wu, J.; Na, L.; Yao, Z. Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int., 2020, 20(1), 592.
[http://dx.doi.org/10.1186/s12935-020-01693-y] [PMID: 33298057]
[http://dx.doi.org/10.1186/s12935-020-01693-y] [PMID: 33298057]
[171]
Fu, S.; Xie, Y.; Tuo, J.; Wang, Y.; Zhu, W.; Wu, S.; Yan, G.; Hu, H. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells. MedChemComm, 2015, 6(1), 164-173.
[http://dx.doi.org/10.1039/C4MD00264D] [PMID: 26811742]
[http://dx.doi.org/10.1039/C4MD00264D] [PMID: 26811742]
[172]
Yan, Y.; Xu, Z.; Dai, S.; Qian, L.; Sun, L.; Gong, Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J. Exp. Clin. Cancer Res., 2016, 35(1), 23.
[http://dx.doi.org/10.1186/s13046-016-0303-5] [PMID: 26830677]
[http://dx.doi.org/10.1186/s13046-016-0303-5] [PMID: 26830677]
[173]
Zhuang, W.; Qin, Z.; Liang, Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(5), 341-351.
[http://dx.doi.org/10.1093/abbs/gmp028] [PMID: 19430698]
[http://dx.doi.org/10.1093/abbs/gmp028] [PMID: 19430698]
[174]
Kanzawa, T.; Germano, I.M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ., 2004, 11(4), 448-457.
[http://dx.doi.org/10.1038/sj.cdd.4401359] [PMID: 14713959]
[http://dx.doi.org/10.1038/sj.cdd.4401359] [PMID: 14713959]
[175]
Wang, J.; Yang, S.; Cai, X.; Dong, J.; Chen, Z.; Wang, R.; Zhang, S.; Cao, H.; Lu, D.; Jin, T.; Nie, Y.; Hao, J.; Fan, D. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer. Oncotarget, 2016, 7(46), 76076-76086.
[http://dx.doi.org/10.18632/oncotarget.12589] [PMID: 27738318]
[http://dx.doi.org/10.18632/oncotarget.12589] [PMID: 27738318]
[176]
Puputti, M.; Tynninen, O.; Sihto, H.; Blom, T.; Mäenpää, H.; Isola, J.; Paetau, A.; Joensuu, H.; Nupponen, N.N. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol. Cancer Res., 2006, 4(12), 927-934.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0085] [PMID: 17189383]
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0085] [PMID: 17189383]
[177]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[178]
Lin, T.H.; Kuo, H.C.; Chou, F.P.; Lu, F.J. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[179]
Maiti, P.; Plemmons, A.; Dunbar, G.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One, 2019, 14(12), e0225660.
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[180]
Onishi, M.; Ichikawa, T.; Kurozumi, K.; Date, I. Angiogenesis and invasion in glioma. Brain Tumor Pathol., 2011, 28(1), 13-24.
[http://dx.doi.org/10.1007/s10014-010-0007-z] [PMID: 21221826]
[http://dx.doi.org/10.1007/s10014-010-0007-z] [PMID: 21221826]
[181]
Li, D.; Finley, S.D. Mechanistic insights into the heterogeneous response to anti‐VEGF treatment in tumors. Integr. Biol., 2021, 10(4), 253-269.
[http://dx.doi.org/10.1039/C8IB00019K]
[http://dx.doi.org/10.1039/C8IB00019K]
[182]
Jin, F.; Xie, T.; Huang, X.; Zhao, X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol., 2018, 56(1), 665-671.
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[183]
Wang, X.; Wang, R.; Xing, D.; Su, H.; Ma, C.; Ding, Y.; Du, L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci., 2005, 77(24), 3058-3067.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[184]
Sobolova, K.; Hrabinova, M.; Hepnarova, V.; Kucera, T.; Kobrlova, T.; Benkova, M.; Janockova, J.; Dolezal, R.; Prchal, L.; Benek, O.; Mezeiova, E.; Jun, D.; Soukup, O.; Korabecny, J. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem., 2020, 203, 112593.
[http://dx.doi.org/10.1016/j.ejmech.2020.112593] [PMID: 32688201]
[http://dx.doi.org/10.1016/j.ejmech.2020.112593] [PMID: 32688201]
[185]
Ma, X.; Jiang, Y.; Wu, A.; Chen, X.; Pi, R.; Liu, M.; Liu, Y. Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One, 2010, 5(10), e13489.
[http://dx.doi.org/10.1371/journal.pone.0013489] [PMID: 20976070]
[http://dx.doi.org/10.1371/journal.pone.0013489] [PMID: 20976070]
[186]
Zhang, D.M.; Liu, H.Y.; Xie, L.; Liu, X.D. Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells. Acta Pharmacol. Sin., 2007, 28(4), 573-578.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00521.x] [PMID: 17376298]
[http://dx.doi.org/10.1111/j.1745-7254.2007.00521.x] [PMID: 17376298]
[187]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[188]
Wang, Q.S.; Li, K.; Gao, L.N.; Zhang, Y.; Lin, K.M.; Cui, Y.L. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater. Sci., 2020, 8(10), 2853-2865.
[http://dx.doi.org/10.1039/C9BM02006C] [PMID: 32270794]
[http://dx.doi.org/10.1039/C9BM02006C] [PMID: 32270794]
[189]
Singh, D.P.; Chopra, K. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur. J. Pharmacol., 2013, 720(1-3), 98-106.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.043] [PMID: 24177287]
[http://dx.doi.org/10.1016/j.ejphar.2013.10.043] [PMID: 24177287]
[190]
Gao, Z.S.; Zhang, C.J.; Xia, N.; Tian, H.; Li, D.Y.; Lin, J.Q.; Mei, X.F.; Wu, C. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater., 2021, 126, 211-223.
[http://dx.doi.org/10.1016/j.actbio.2021.03.018] [PMID: 33722788]
[http://dx.doi.org/10.1016/j.actbio.2021.03.018] [PMID: 33722788]
[191]
Wang, S.; An, J.; Dong, W.; Wang, X.; Sheng, J.; Jia, Y.; He, Y.; Ma, X.; Wang, J.; Yu, D.; Jia, X.; Wang, B.; Yu, W.; Liu, K.; Zhao, Y.; Wu, Y.; Zhu, W.; Pan, Y. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int. J. Nanomedicine, 2020, 15, 7951-7965.
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[192]
Yu, F.; Ao, M.; Zheng, X.; Li, N.; Xia, J.; Li, Y.; Li, D.; Hou, Z.; Qi, Z.; Chen, X.D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv., 2017, 24(1), 825-833.
[http://dx.doi.org/10.1080/10717544.2017.1321062] [PMID: 28509588]
[http://dx.doi.org/10.1080/10717544.2017.1321062] [PMID: 28509588]