Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Mini-Review Article

Bone Metabolism Alterations in Systemic Sclerosis: An Insight into Bone Disease in SSc: From the Radiographic Findings to their Potential Pathogenesis and Outcome

Author(s): Stefania Sciacca*, Addolorata Corrado, Cinzia Rotondo and Francesco Paolo Cantatore

Volume 18, Issue 4, 2022

Published on: 13 May, 2022

Page: [286 - 297] Pages: 12

DOI: 10.2174/1573397118666220218112703

Price: $65

Abstract

Previous research has shown conflicting reports about the effect of systemic sclerosis (SSc) on bone metabolism, especially considering bone mineral density (BMD), bone microarchitecture, and risk of fracture. The objective of this review is to analyze data from previous articles to investigate the differences in BMD and fracture risk between SSc and non-SSc populations and to discuss potential underlying mechanisms. The main factors investigated have been BMD (mean and standard deviation), t-scores and z-scores at the lumbar spine, femoral neck, and total hip measured by dual-energy X-ray absorptiometry (DEXA), bone remodeling markers, fracture prevalence, and incidence, trabecular bone score (TBS), musculoskeletal involvement with particular correlation to SSc skin subtype and extent, disease duration, serological pattern, and vitamin D levels. Since microvascular alterations evaluated through nailfold videocapillaroscopy (NVC) of SSc patients have recently been correlated with decreased BMD and bone microarchitecture, the vascular impairment in SSc has been proposed as a remarkable contributing element in bone remodeling, and the role of hypoxia has been investigated.

Keywords: Systemic sclerosis, calcinosis, bone mineral density, risk fracture, acroosteolysis, osteoporosis, bone turnover markers, vitamin D.

Graphical Abstract

[1]
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of systemic sclerosis. Front Immunol 2015; 6: 272.
[http://dx.doi.org/10.3389/fimmu.2015.00272] [PMID: 26106387]
[2]
Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94(6): 646-50.
[http://dx.doi.org/10.1016/0002-9343(93)90218-E] [PMID: 8506892]
[3]
Pagkopoulou E, Arvanitaki A, Daoussis D, Garyfallos A, Kitas G, Dimitroulas T. Comorbidity burden in systemic sclerosis: Beyond disease-specific complications. Rheumatol Int 2019; 39(9): 1507-17.
[http://dx.doi.org/10.1007/s00296-019-04371-z] [PMID: 31300848]
[4]
Omair MA, Pagnoux C, McDonald-Blumer H, Johnson SR. Low bone density in systemic sclerosis. A systematic review. J Rheumatol 2013; 40(11): 1881-90.
[http://dx.doi.org/10.3899/jrheum.130032] [PMID: 24037552]
[5]
Rios Fernández R, Fernández Roldán C, Callejas Rubio JL, Ortego Centeno N, Vitamin D. Vitamin D deficiency in a cohort of patients with systemic scleroderma from the south of Spain. J Rheumatol 2010; 37(6): 1355-5.
[http://dx.doi.org/10.3899/jrheum.091143] [PMID: 20516041]
[6]
Frediani B, Baldi F, Falsetti P, et al. Clinical determinants of bone mass and bone ultrasonometry in patients with systemic sclerosis. Clin Exp Rheumatol 2004; 22(3): 313-8.
[PMID: 15144125]
[7]
Di Munno O, Mazzantini M, Massei P, et al. Reduced bone mass and normal calcium metabolism in systemic sclerosis with and without calcinosis. Clin Rheumatol 1995; 14(4): 407-12.
[http://dx.doi.org/10.1007/BF02207673] [PMID: 7586976]
[8]
Dovio A, Data V, Carignola R, et al. Circulating osteoprotegerin and soluble RANK ligand in systemic sclerosis. J Rheumatol 2008; 35(11): 2206-13.
[http://dx.doi.org/10.3899/jrheum.080192] [PMID: 18843778]
[9]
Sampaio-Barros PD, Costa-Paiva L, Filardi S, Sachetto Z, Samara AM, Marques-Neto JF. Prognostic factors of low bone mineral density in systemic sclerosis. Clin Exp Rheumatol 2005; 23(2): 180-4.
[PMID: 15895887]
[10]
Thietart S, Louati K, Gatfosse M, et al. Overview of osteo-articular involvement in systemic sclerosis: Specific risk factors, clinico-sonographic evaluation, and comparison with healthy women from the French OFELY cohort. Best Pract Res Clin Rheumatol 2018; 32(4): 591-604.
[http://dx.doi.org/10.1016/j.berh.2019.01.008] [PMID: 31174827]
[11]
Alexandersson BT, Geirsson AJ, Olafsson I, Franzson L, Sigurdsson G, Gudbjornsson B. Bone mineral density and bone turnover in systemic sclerosis. Laeknabladid 2007; 93(7-8): 535-41.
[PMID: 17823496]
[12]
Souza RB, Borges CT, Takayama L, Aldrighi JM, Pereira RM. Systemic sclerosis and bone loss: The role of the disease and body composition. Scand J Rheumatol 2006; 35(5): 384-7.
[http://dx.doi.org/10.1080/03009740600704296] [PMID: 17062439]
[13]
Chen J, Lei L, Pan J, Zhao C. A meta-analysis of fracture risk and bone mineral density in patients with systemic sclerosis. Clin Rheumatol 2020; 39(4): 1181-9.
[http://dx.doi.org/10.1007/s10067-019-04847-0] [PMID: 31838641]
[14]
Ruaro B, Casabella A, Paolino S, et al. Correlation between bone quality and microvascular damage in systemic sclerosis patients. Rheumatology (Oxford) 2018; 57(9): 1548-54.
[http://dx.doi.org/10.1093/rheumatology/key130] [PMID: 29788459]
[15]
Kilic G, Kilic E, Akgul O, Ozgocmen S. Increased risk for bone loss in women with systemic sclerosis: A comparative study with rheumatoid arthritis. Int J Rheum Dis 2016; 19(4): 405-11.
[http://dx.doi.org/10.1111/1756-185X.12242] [PMID: 24283757]
[16]
Yuen SY, Rochwerg B, Ouimet J, Pope JE. Patients with scleroderma may have increased risk of osteoporosis. A comparison to rheumatoid arthritis and noninflammatory musculoskeletal conditions. J Rheumatol 2008; 35(6): 1073-8.
[PMID: 18412305]
[17]
Avouac J, Koumakis E, Toth E, et al. Increased risk of osteoporosis and fracture in women with systemic sclerosis: A comparative study with rheumatoid arthritis. Arthritis Care Res (Hoboken) 2012; 64(12): 1871-8.
[http://dx.doi.org/10.1002/acr.21761] [PMID: 22730393]
[18]
Taylan A, Birlik M, Kenar G, et al. Osteoprotegrin interacts with biomarkers and cytokines that have roles in osteoporosis, skin fibrosis, and vasculopathy in systemic sclerosis: A potential multifaceted relationship between OPG/RANKL/TRAIL and Wnt inhibitors. Mod Rheumatol 2019; 29(4): 619-24.
[http://dx.doi.org/10.1080/14397595.2018.1500736] [PMID: 30001654]
[19]
Corrado A, Colia R, Mele A, et al. Relationship between body mass composition, bone mineral density, skin fibrosis and 25(OH) vitamin D serum levels in systemic sclerosis. PLoS One 2015; 10(9): e0137912.
[http://dx.doi.org/10.1371/journal.pone.0137912] [PMID: 26375284]
[20]
Marighela TF, Genaro PS, Pinheiro MM, Szejnfeld VL, Kayser C. Risk factors for body composition abnormalities in systemic sclerosis. Clin Rheumatol 2013; 32(7): 1037-44.
[http://dx.doi.org/10.1007/s10067-013-2235-1] [PMID: 23549639]
[21]
Mok CC, Chan PT, Chan KL, Ma KM. Prevalence and risk factors of low bone mineral density in Chinese patients with systemic sclerosis: A case control study. Rheumatology (Oxford) 2013; 52(2): 296-303.
[http://dx.doi.org/10.1093/rheumatology/kes240] [PMID: 23006511]
[22]
Ibn Yacoub Y, Amine B, Laatiris A, Wafki F, Znat F, Hajjaj-Hassouni N. Bone density in Moroccan women with systemic scleroderma and its relationships with disease-related parameters and vitamin D status. Rheumatol Int 2012; 32(10): 3143-8.
[http://dx.doi.org/10.1007/s00296-011-2150-1] [PMID: 21947376]
[23]
Shinjo SK, Bonfá E, de Falco Caparbo V, Pereira RM. Low bone mass in juvenile onset sclerosis systemic: The possible role for 25-hydroxyvitamin D insufficiency. Rheumatol Int 2011; 31(8): 1075-80.
[http://dx.doi.org/10.1007/s00296-010-1421-6] [PMID: 20336459]
[24]
Omair MA, McDonald-Blumer H, Johnson SR. Bone disease in systemic sclerosis: Outcomes and associations. Clin Exp Rheumatol 2014; 32(6) (Suppl. 86): S-28-32.
[PMID: 24321499]
[25]
Atteritano M, Sorbara S, Bagnato G, et al. Bone mineral density, bone turnover markers and fractures in patients with systemic sclerosis: A case control study. PLoS One 2013; 8(6): e66991.
[http://dx.doi.org/10.1371/journal.pone.0066991] [PMID: 23818972]
[26]
Koumakis E, Avouac J, Winzenrieth R, et al. Trabecular bone score in female patients with systemic sclerosis: Comparison with rheumatoid arthritis and influence of glucocorticoid exposure. J Rheumatol 2015; 42(2): 228-35.
[http://dx.doi.org/10.3899/jrheum.140752] [PMID: 25448793]
[27]
Fauny M, Bauer E, Albuisson E, et al. Vertebral fracture prevalence and measurement of the scanographic bone attenuation coefficient on CT-scan in patients with systemic sclerosis. Rheumatol Int 2018; 38(10): 1901-10.
[http://dx.doi.org/10.1007/s00296-018-4139-5] [PMID: 30132216]
[28]
Lai CC, Wang SH, Chen WS, et al. Increased risk of osteoporotic fractures in patients with systemic sclerosis: A nationwide population-based study. Ann Rheum Dis 2015; 74(7): 1347-52.
[http://dx.doi.org/10.1136/annrheumdis-2013-204832] [PMID: 24532679]
[29]
Kanis JA, Cooper C, Rizzoli R, Reginster JY. Scientific advisory board of the european society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO) and the committees of scientific advisors and national societies of the International Osteoporosis Foundation (IOF). Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif Tissue Int 2019; 104(3): 235-8.
[http://dx.doi.org/10.1007/s00223-018-00512-x] [PMID: 30796490]
[30]
Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 2017; 63(2): 464-74.
[http://dx.doi.org/10.1373/clinchem.2016.259085] [PMID: 27940448]
[31]
Hunzelmann N, Risteli J, Risteli L, et al. Circulating type I collagen degradation products: a new serum marker for clinical severity in patients with scleroderma? Br J Dermatol 1998; 139(6): 1020-5.
[http://dx.doi.org/10.1046/j.1365-2133.1998.02558.x] [PMID: 9990365]
[32]
Allanore Y, Borderie D, Lemaréchal H, Cherruau B, Ekindjian OG, Kahan A. Correlation of serum collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. J Rheumatol 2003; 30(1): 68-73.
[PMID: 12508392]
[33]
Istok R, Czirják L, Lukác J, Stancíková M, Rovenský J. Increased urinary pyridinoline cross-link compounds of collagen in patients with systemic sclerosis and Raynaud’s phenomenon. Rheumatology (Oxford) 2001; 40(2): 140-6.
[http://dx.doi.org/10.1093/rheumatology/40.2.140] [PMID: 11257149]
[34]
Wang RN, Green J, Wang Z, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1(1): 87-105.
[http://dx.doi.org/10.1016/j.gendis.2014.07.005] [PMID: 25401122]
[35]
Montagnana M, Lippi G, Danese E, Guidi GC. The role of osteoprotegerin in cardiovascular disease. Ann Med 2013; 45(3): 254-64.
[http://dx.doi.org/10.3109/07853890.2012.727019] [PMID: 23110639]
[36]
Forde H, Harper E, Davenport C, et al. The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: A review of the evidence. Atherosclerosis 2016; 247: 87-96.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.002] [PMID: 26878368]
[37]
Zhou M, Li S, Pathak JL. Pro-inflammatory cytokines and osteocytes. Curr Osteoporos Rep 2019; 17(3): 97-104.
[http://dx.doi.org/10.1007/s11914-019-00507-z] [PMID: 30915637]
[38]
Fernández-Roldán C, Genre F, López-Mejías R, et al. Sclerostin serum levels in patients with systemic autoimmune diseases. Bonekey Rep 2016; 5: 775.
[http://dx.doi.org/10.1038/bonekey.2016.2] [PMID: 26909149]
[39]
Daoussis D, Papachristou D J, Dimitroulas T, et al. Dickkopf-1 is downregulated early and universally in the skin of patients with systemic sclerosis despite normal circulating levels. Clin Exp Rheumatol 2018; (36)113(4): 45-9.
[40]
Ruaro B, Casabella A, Paolino S, et al. Dickkopf-1 (Dkk-1) serum levels in systemic sclerosis and rheumatoid arthritis patients: Correlation with the Trabecular Bone Score (TBS). Clin Rheumatol 2018; 37(11): 3057-62.
[http://dx.doi.org/10.1007/s10067-018-4322-9] [PMID: 30291470]
[41]
van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA. Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr 2001; 11(1-3): 199-226.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v11.i1-3.100] [PMID: 11693961]
[42]
Berardi S, Giardullo L, Corrado A, Cantatore FP. Vitamin D and connective tissue diseases. Inflamm Res 2020; 69(5): 453-62.
[http://dx.doi.org/10.1007/s00011-020-01337-x] [PMID: 32172354]
[43]
Sampaio-Barros MM, Takayama L, Sampaio-Barros PD, Bonfá E, Pereira RM. Low vitamin D serum levels in diffuse systemic sclerosis: A correlation with worst quality of life and severe capillaroscopic findings. Rev Bras Reumatol Engl Ed 2016; 56(4): 337-44.
[http://dx.doi.org/10.1016/j.rbre.2016.05.006] [PMID: 27476627]
[44]
Braun-Moscovici Y, Furst DE, Markovits D, et al. Vitamin D, parathyroid hormone, and acroosteolysis in systemic sclerosis. J Rheumatol 2008; 35(11): 2201-5.
[http://dx.doi.org/10.3899/jrheum.071171] [PMID: 18843781]
[45]
Samelson EJ, Broe KE, Xu H, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): A prospective study. Lancet Diabetes Endocrinol 2019; 7(1): 34-43.
[http://dx.doi.org/10.1016/S2213-8587(18)30308-5] [PMID: 30503163]
[46]
Horváth Á, Végh E, Pusztai A, et al. Complex assessment of bone mineral density, fracture risk, vitamin D status, and bone metabolism in Hungarian systemic sclerosis patients. Arthritis Res Ther 2019; 21(1): 274.
[http://dx.doi.org/10.1186/s13075-019-2072-y] [PMID: 31823821]
[47]
Sampaio-Barros MM, Alvarenga JC, Takayama L, Assad APL, Sampaio-Barros PD, Pereira RMR. Distal radius and tibia bone microarchitecture impairment in female patients with diffuse systemic sclerosis. Osteoporos Int 2019; 30(8): 1679-91.
[http://dx.doi.org/10.1007/s00198-019-04965-0] [PMID: 31030240]
[48]
Marot M, Valéry A, Esteve E, et al. Prevalence and predictive factors of osteoporosis in systemic sclerosis patients: A case-control study. Oncotarget 2015; 6(17): 14865-73.
[http://dx.doi.org/10.18632/oncotarget.3806] [PMID: 25944694]
[49]
Shevroja E, Lamy O, Kohlmeier L, Koromani F, Rivadeneira F, Hans D. Use of Trabecular Bone Score (TBS) as a complementary approach to dual-energy X-ray absorptiometry (DXA) for fracture risk assessment in clinical practice. J Clin Densitom 2017; 20(3): 334-45.
[http://dx.doi.org/10.1016/j.jocd.2017.06.019] [PMID: 28734710]
[50]
Shah AA, Wigley FM. Often forgotten manifestations of systemic sclerosis. Rheum Dis Clin North Am 2008; 34(1): 221-38. ix.
[http://dx.doi.org/10.1016/j.rdc.2007.10.002] [PMID: 18329542]
[51]
Avouac J, Mogavero G, Guerini H, et al. Predictive factors of hand radiographic lesions in systemic sclerosis: A prospective study. Ann Rheum Dis 2011; 70(4): 630-3.
[http://dx.doi.org/10.1136/ard.2010.134304] [PMID: 21131648]
[52]
Siao-Pin S, Damian LO, Muntean LM, Rednic S. Acroosteolysis in systemic sclerosis: An insight into hypoxia-related pathogenesis. Exp Ther Med 2016; 12(5): 3459-63.
[http://dx.doi.org/10.3892/etm.2016.3782] [PMID: 27882179]
[53]
Knowles HJ, Athanasou NA. Acute hypoxia and osteoclast activity: A balance between enhanced resorption and increased apoptosis. J Pathol 2009; 218(2): 256-64.
[http://dx.doi.org/10.1002/path.2534] [PMID: 19291710]
[54]
Nakagawa M, Kaneda T, Arakawa T, et al. Vascular Endothelial Growth Factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 2000; 473(2): 161-4.
[http://dx.doi.org/10.1016/S0014-5793(00)01520-9] [PMID: 10812066]
[55]
Flower VA, Barratt SL, Ward S, Pauling JD. The role of vascular endothelial growth factor in systemic sclerosis. Curr Rheumatol Rev 2019; 15(2): 99-109.
[http://dx.doi.org/10.2174/1573397114666180809121005] [PMID: 30091416]
[56]
Park JK, Fava A, Carrino J, Del Grande F, Rosen A, Boin F. Association of acroosteolysis with enhanced osteoclastogenesis and higher blood levels of vascular endothelial growth factor in systemic sclerosis. Arthritis Rheumatol 2016; 68(1): 201-9.
[http://dx.doi.org/10.1002/art.39424] [PMID: 26361270]
[57]
Meyer O. CREST syndrome. Ann Med Interne (Paris) 2002; 153(3): 183-8.
[PMID: 12218901]
[58]
Gutierrez A Jr, Wetter DA. Calcinosis cutis in autoimmune connective tissue diseases. Dermatol Ther 2012; 25(2): 195-206.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01492.x] [PMID: 22741938]
[59]
Pachman LM, Veis A, Stock S, et al. Composition of calcifications in children with juvenile dermatomyositis: Association with chronic cutaneous inflammation. Arthritis Rheum 2006; 54(10): 3345-50.
[http://dx.doi.org/10.1002/art.22158] [PMID: 17009308]
[60]
Elhai M, Guerini H, Bazeli R, et al. Ultrasonographic hand features in systemic sclerosis and correlates with clinical, biologic, and radio-graphic findings. Arthritis Care Res (Hoboken) 2012; 64(8): 1244-9.
[PMID: 22422556]
[61]
Cruz-Domínguez MP, García-Collinot G, Saavedra MA, et al. Clinical, biochemical, and radiological characterization of the calcinosis in a cohort of Mexican patients with systemic sclerosis. Clin Rheumatol 2017; 36(1): 111-7.
[http://dx.doi.org/10.1007/s10067-016-3412-9] [PMID: 27718018]
[62]
Sujau I, Ng CT, Sthaneshwar P, et al. Clinical and autoantibody profile in systemic sclerosis: Baseline characteristics from a West Malaysian cohort. Int J Rheum Dis 2015; 18(4): 459-65.
[http://dx.doi.org/10.1111/1756-185X.12322] [PMID: 24618222]
[63]
Pai S, Hsu V. Are there risk factors for scleroderma-related calcinosis? Mod Rheumatol 2018; 28(3): 518-22.
[http://dx.doi.org/10.1080/14397595.2017.1349594] [PMID: 28722530]
[64]
Baron M, Pope J, Robinson D, et al. Calcinosis is associated with digital ischaemia in systemic sclerosis-a longitudinal study. Rheumatology (Oxford) 2016; 55(12): 2148-55.
[http://dx.doi.org/10.1093/rheumatology/kew313] [PMID: 27593964]
[65]
Morgan ND, Shah AA, Mayes MD, et al. Clinical and serological features of systemic sclerosis in a multicenter African American cohort: Analysis of the genome research in African American scleroderma patients clinical database. Medicine (Baltimore) 2017; 96(51): e8980.
[http://dx.doi.org/10.1097/MD.0000000000008980] [PMID: 29390428]
[66]
Valenzuela A, Baron M, Herrick AL, et al. Calcinosis is associated with digital ulcers and osteoporosis in patients with systemic sclerosis: A scleroderma clinical trials consortium study. Semin Arthritis Rheum 2016; 46(3): 344-9.
[http://dx.doi.org/10.1016/j.semarthrit.2016.05.008] [PMID: 27371996]
[67]
Boulman N, Slobodin G, Rozenbaum M, Rosner I. Calcinosis in rheumatic diseases. Semin Arthritis Rheum 2005; 34(6): 805-12.
[http://dx.doi.org/10.1016/j.semarthrit.2005.01.016] [PMID: 15942915]
[68]
Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981; 26(1 Pt 1): 99-105.
[http://dx.doi.org/10.1016/0092-8674(81)90037-4] [PMID: 7034958]
[69]
Davies CA, Jeziorska M, Freemont AJ, Herrick AL. Expression of osteonectin and matrix Gla protein in scleroderma patients with and without calcinosis. Rheumatology (Oxford) 2006; 45(11): 1349-55.
[http://dx.doi.org/10.1093/rheumatology/kei277] [PMID: 17050587]
[70]
Davies CA, Herrick AL, Cordingley L, Freemont AJ, Jeziorska M. Expression of advanced glycation end products and their receptor in skin from patients with systemic sclerosis with and without calcinosis. Rheumatology (Oxford) 2009; 48(8): 876-82.
[http://dx.doi.org/10.1093/rheumatology/kep151] [PMID: 19542215]
[71]
Niida S, Kondo T, Hiratsuka S, et al. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proc Natl Acad Sci USA 2005; 102(39): 14016-21.
[http://dx.doi.org/10.1073/pnas.0503544102] [PMID: 16172397]
[72]
Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Arnett TR. Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 2010; 28(5): 374-80.
[http://dx.doi.org/10.1002/cbf.1660] [PMID: 20556743]
[73]
Montesi M, Jähn K, Bonewald L, Stea S, Bordini B, Beraudi A. Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Mol Med Rep 2016; 14(5): 4248-54.
[http://dx.doi.org/10.3892/mmr.2016.5790] [PMID: 27748851]
[74]
Hinoi E, Ochi H, Takarada T, et al. Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. J Bone Miner Res 2012; 27(4): 938-49.
[http://dx.doi.org/10.1002/jbmr.1538] [PMID: 22190281]
[75]
Genetos DC, Toupadakis CA, Raheja LF, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 2010; 110(2): 457-67.
[http://dx.doi.org/10.1002/jcb.22559] [PMID: 20336693]
[76]
Stegen S, Stockmans I, Moermans K, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat Commun 2018; 9(1): 2557.
[http://dx.doi.org/10.1038/s41467-018-04679-7] [PMID: 29967369]
[77]
O’Reilly S, Ciechomska M, Cant R, van Laar JM. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 2014; 289(14): 9952-60.
[http://dx.doi.org/10.1074/jbc.M113.545822] [PMID: 24550394]
[78]
Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011; 2(12): 1117-33.
[http://dx.doi.org/10.1177/1947601911423654] [PMID: 22866203]
[79]
Distler JH, Akhmetshina A, Schett G, Distler O. Monocyte chemoattractant proteins in the pathogenesis of systemic sclerosis. Rheumatology (Oxford) 2009; 48(2): 98-103.
[http://dx.doi.org/10.1093/rheumatology/ken401] [PMID: 18984611]
[80]
Yamamoto T. Pathogenic role of CCL2/MCP-1 in scleroderma. Front Biosci 2008; 13(13): 2686-95.
[http://dx.doi.org/10.2741/2875] [PMID: 17981743]
[81]
Bellando Randone S, George J, Mazzotta C, et al. Angiostatic and angiogenic chemokines in systemic sclerosis: An overview. J Scleroderma Relat Disord 2016; 2(1): 1-10.
[http://dx.doi.org/10.5301/jsrd.5000226]
[82]
Mulholland BS, Forwood MR, Morrison NA. Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr Osteoporos Rep 2019; 17(6): 538-47.
[http://dx.doi.org/10.1007/s11914-019-00545-7] [PMID: 31713180]
[83]
Valenzuela A, Song P, Chung L. Calcinosis in scleroderma. Curr Opin Rheumatol 2018; 30(6): 554-61.
[http://dx.doi.org/10.1097/BOR.0000000000000539] [PMID: 30124603]
[84]
Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of osteoporosis: A mini-review. Gerontology 2016; 62(2): 128-37.
[http://dx.doi.org/10.1159/000431091] [PMID: 26088283]
[85]
Arnson Y, Amital H, Agmon-Levin N, et al. Serum 25-OH vitamin D concentrations are linked with various clinical aspects in patients with systemic sclerosis: A retrospective cohort study and review of the literature. Autoimmun Rev 2011; 10(8): 490-4.
[http://dx.doi.org/10.1016/j.autrev.2011.02.002] [PMID: 21320645]
[86]
Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol 2009; 200(2): 207-21.
[http://dx.doi.org/10.1677/JOE-08-0241] [PMID: 19036760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy