Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Design, Synthesis, Molecular Docking and In vitro Biological Evaluation of Benzamide Derivatives as Novel Glucokinase Activators

Author(s): A.A. Kazi* and V.A. Chatpalliwar

Volume 18, Issue 1, 2022

Published on: 06 April, 2022

Page: [61 - 75] Pages: 15

DOI: 10.2174/1573408018666220218093451

Price: $65

Abstract

Background: Glucokinase (GK) is a cytoplasmic enzyme that metabolizes glucose to glucose- 6-phosphate and supports adjusting blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a leading role in governing the glucose-stimulated secretion of insulin, and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for treating patients with type 2 diabetes mellitus (T2DM).

Objectives: The present work has been designed to discover some novel substituted benzamide derivatives.

Methods: This work involved designing novel benzamide derivatives and their screening by docking studies to determine the binding interactions for the best-fit conformations in the binding site of the GK enzyme. Based on the results of docking studies, the selected molecules were synthesized and tested for in vitro GK enzyme assay. The structures of newly synthesized products were confirmed by IR, NMR, and mass spectroscopy.

Results: Amongst the designed derivatives, compounds 4c, 4d, 4e, 5h, 5j, 5l, 5m, 5n, 5p, and 5r have shown better binding energy than the native ligand present in the enzyme structure. The synthesized compounds were subjected to in vitro GK enzyme assay. Out of all, compounds 4c, 4d, 5h, 5l, and 5n showed more GK activation than control.

Conclusion: From the present results, we have concluded that the synthesized derivatives can activate the human GK enzyme effectively, which can be helpful in the treatment of T2DM.

Keywords: Glucokinase activators, type 2 diabetes mellitus, benzamide-sulfonamide derivatives, 1V4S, cytoplasmic enzyme, pancreatic β-cells.

Graphical Abstract

[1]
Jiménez PG, Martín-Carmona J, Hernández EL. Diabetes mellitus. Med 2020; 13(16): 883-90.
[http://dx.doi.org/10.1016/j.med.2020.09.010]
[2]
Kazi AA, Blonde L. Classification of diabetes mellitus. Clin Lab Med 2001; 21(1): 1-13.
[http://dx.doi.org/10.5005/jp/books/12855_84] [PMID: 11321930]
[3]
Pang M, Li Y, Gu W, Sun Z, Wang Z, Li L. Recent advances in epigenetics of macrovascular complications in diabetes mellitus. Heart Lung Circ 2021; 30(2): 186-96.
[http://dx.doi.org/10.1016/j.hlc.2020.07.015] [PMID: 32873490]
[4]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11): e442.
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[5]
Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol 2006; 100(5-6): 481-99.
[http://dx.doi.org/10.1179/136485906X97417] [PMID: 16899150]
[6]
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 2016; 24(5): 547-53.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[7]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. In: Nat Rev Endocrinol. 2018; 14: pp. (2)88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[8]
Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab 2015; 66(Suppl. 2): 14-20.
[http://dx.doi.org/10.1159/000371628] [PMID: 26045324]
[9]
Behera PM, Behera DK, Satpati S, et al. Molecular modeling and identification of novel glucokinase activators through stepwise virtual screening. J Mol Graph Model 2015; 57: 122-30.
[http://dx.doi.org/10.1016/j.jmgm.2015.01.012] [PMID: 25723349]
[10]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[11]
Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39(3): 481-97.
[http://dx.doi.org/10.1016/j.ecl.2010.05.011] [PMID: 20723815]
[12]
Stanescu DE, Lord K, Lipman TH. The epidemiology of type 1 diabetes in children. Endocrinol Metab Clin North Am 2012; 41(4): 679-94.
[http://dx.doi.org/10.1016/j.ecl.2012.08.001] [PMID: 23099264]
[13]
Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2331-9.
[http://dx.doi.org/10.1016/S0140-6736(16)30582-7] [PMID: 27302272]
[14]
Laakso M. Epidemiology of type 2 diabetes. Type 2 Diabetes 1-11.2007;
[http://dx.doi.org/10.3109/9780849379581-2]
[15]
Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 2004; 12(3): 429-38.
[http://dx.doi.org/10.1016/j.str.2004.02.005] [PMID: 15016359]
[16]
Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 2008; 414(1): 1-18.
[http://dx.doi.org/10.1042/BJ20080595] [PMID: 18651836]
[17]
Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 2009; 66(1): 27-42.
[http://dx.doi.org/10.1007/s00018-008-8322-9] [PMID: 18726182]
[18]
Irwin DM, Tan H. Evolution of glucose utilization: glucokinase and glucokinase regulator protein. Mol Phylogenet Evol 2014; 70(1): 195-203.
[http://dx.doi.org/10.1016/j.ympev.2013.09.016] [PMID: 24075984]
[19]
Coghlan M, Leighton B. Glucokinase activators in diabetes management. Expert Opin Investig Drugs 2008; 17(2): 145-67.
[http://dx.doi.org/10.1517/13543784.17.2.145] [PMID: 18230050]
[20]
Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov Today 2009; 14(15-16): 784-92.
[http://dx.doi.org/10.1016/j.drudis.2009.05.013] [PMID: 19520181]
[21]
Matschinsky FM, Zelent B, Doliba N, et al. Glucokinase activators for diabetes therapy: May 2010 status report. Diabetes Care 2011; 34(Suppl. 2): S236-43.
[http://dx.doi.org/10.2337/dc11-s236] [PMID: 21525462]
[22]
Matschinsky FM, Porte D. Glucokinase activators (GKAs) promise a new pharmacotherapy for diabetics. F1000 Med Rep 2010; 2(1): 43.
[http://dx.doi.org/10.3410/M2-43] [PMID: 20948841]
[23]
Filipski KJ, Futatsugi K, Pfefferkorn JA, Stevens BD. Glucokinase activators. Pharm Pat Anal 2012; 1(3): 301-11.
[http://dx.doi.org/10.4155/ppa.12.26] [PMID: 24236843]
[24]
Charaya N, Pandita D, Grewal AS, Lather V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput Biol Chem 2018; 73: 221-9.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.018] [PMID: 29518630]
[25]
Park K, Lee BM, Hyun KH, Han T, Lee DH, Choi HH. Design and synthesis of acetylenyl benzamide derivatives as novel glucokinase activators for the treatment of T2DM. ACS Med Chem Lett 2015; 6(3): 296-301.
[http://dx.doi.org/10.1021/ml5004712] [PMID: 25815149]
[26]
Li YQ, Zhang YL, Hu SQ, et al. Design, synthesis and biological evaluation of novel glucokinase activators. Chin Chem Lett 2011; 22(1): 73-6.
[http://dx.doi.org/10.1016/j.cclet.2010.07.023]
[27]
Grewal AS, Kharb R, Prasad DN, Dua JS, Lather V. N-pyridin-2-yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation. Chem Biol Drug Des 2019; 93(3): 364-72.
[http://dx.doi.org/10.1111/cbdd.13423] [PMID: 30369030]
[28]
Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem 2014; 14(7): 585-602.
[http://dx.doi.org/10.2174/1389557514666140722082713] [PMID: 25052034]
[29]
Agrawal M, Kharkar P, Moghe S, et al. Discovery of thiazolyl-phthalazinone acetamides as potent glucose uptake activators via high-throughput screening. Bioorg Med Chem Lett 2013; 23(20): 5740-3.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.067] [PMID: 23992862]
[30]
Sidduri A, Grimsby JS, Corbett WL, et al. 2,3-Disubstituted acrylamides as potent glucokinase activators. Bioorg Med Chem Lett 2010; 20(19): 5673-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.029] [PMID: 20805029]
[31]
Ishikawa M, Nonoshita K, Ogino Y, et al. Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators. Bioorg Med Chem Lett 2009; 19(15): 4450-4.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.038] [PMID: 19540111]
[32]
Pfefferkorn JA, Guzman-Perez A, Oates PJ, et al. Designing glucokinase activators with reduced hypoglycemia risk: Discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4- Yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus. MedChemComm 2011; 2(9): 828-39.
[http://dx.doi.org/10.1039/c1md00116g]
[33]
Kohn TJ, Du X, Lai S, et al. 5-Alkyl-2-urea-substituted pyridines: Identification of efficacious glucokinase activators with improved properties. ACS Med Chem Lett 2016; 7(7): 666-70.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00145] [PMID: 27437074]
[34]
Sarabu R, Berthel SJ, Kester RF, Tilley JW. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin Ther Pat 2008; 18(7): 759-68.
[http://dx.doi.org/10.1517/13543776.18.7.759]
[35]
Castelhano AL, Dong H, Fyfe MCT, et al. Glucokinase-activating ureas. Bioorg Med Chem Lett 2005; 15(5): 1501-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.083] [PMID: 15713416]
[36]
Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent developments in medicinal chemistry of allosteric activators of human glucokinase for type 2 diabetes mellitus therapeutics. Curr Pharm Des 2020; 26(21): 2510-52.
[http://dx.doi.org/10.2174/1381612826666200414163148] [PMID: 32286938]
[37]
Houze JB, Dransfield P, Pattaropong V, et al. Urea compounds as GKa activators and their preparation. WO Patent WO20130863 97A1, 2013.
[38]
Murray A, Lau J, Jeppesen L, et al. Preparation of heteroaryl ureas and their use as glucokinase activators. EU Patent EP2444397, 2005.
[39]
Polisetti D R, Kodra J T, Lau J, et al. Preparation of thiazolyl aryl ureas as activators of glucokinase 2004.
[40]
Khadse SC, Amnerkar ND, Dighole KS, et al. Hetero-substituted sulfonamido-benzamide hybrids as glucokinase activators: Design, synthesis, molecular docking and in silico ADME evaluation. J Mol Struct 2020; 1222: 128916.
[http://dx.doi.org/10.1016/j.molstruc.2020.128916]
[41]
Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992; 114(25): 10024-35.
[http://dx.doi.org/10.1021/ja00051a040]
[42]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015; 1263(1263): 243-50.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[43]
San Diego. Accelrys software inc discovery studio modeling environment, Release 35. Accelrys Softw. Inc. 2012.
[44]
Khan SL, Siddiqui FA, Jain SP, Sonwane GM. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) main protease (Mpro) from Nigella sativa (Black Seed) by molecular docking study. Coronaviruses 2020; 2(3): 384-402.
[http://dx.doi.org/10.2174/2666796701999200921094103]
[45]
Chaudhari RN, Khan SL, Chaudhary RS, Jain SP, Siddiqui FA. B-Sitosterol: Isolation from Muntingia calabura linn bark extract, structural elucidation and molecular docking studies as potential inhibitor of SARS-CoV-2 Mpro (COVID-19). Asian J Pharm Clin Res 2020; 13(5): 204-9.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i5.37909]
[46]
Khan SL, Siddiqui FA, Shaikh MS, Nema NV, Shaikh AA. Discovery of potential inhibitors of the receptor-binding domain (RBD) of pandemic disease-causing SARS-CoV-2 spike glycoprotein from triphala through molecular docking. Curr Chinese Chem 2022; 2(1): e220321192390.
[http://dx.doi.org/10.2174/2666001601666210322121802]
[47]
Khan SL, Sonwane GM, Siddiqui FA, Jain SP, Kale MA, Borkar VS. Discovery of naturally occurring flavonoids as human cytochrome P450 (CYP3A4) inhibitors with the aid of computational chemistry. Indo Glob J Pharm Sci 2020; 10(04): 58-69.
[http://dx.doi.org/10.35652/IGJPS.2020.10409]
[48]
Ji XY, Wang HQ, Hao LH, et al. Synthesis and antiviral activity of N-phenylbenzamide derivatives, a novel class of enterovirus 71 inhibitors. Molecules 2013; 18(3): 3630-40.
[http://dx.doi.org/10.3390/molecules18033630] [PMID: 23519203]
[49]
Stec J, Huang Q, Pieroni M, et al. Synthesis, biological evaluation, and structure-activity relationships of N-benzoyl-2-hydroxybenzamides as agents active against P. falciparum (K1 strain), trypanosomes, and leishmania. J Med Chem 2012; 55(7): 3088-100.
[http://dx.doi.org/10.1021/jm2015183] [PMID: 22352841]
[50]
Min Q, Cai X, Sun W, et al. Identification of mangiferin as a potential glucokinase activator by structure-based virtual ligand screening. Sci Rep 2017; 7: 44681.
[http://dx.doi.org/10.1038/srep44681] [PMID: 28317897]
[51]
Park K, Lee BM, Hyun KH, et al. Discovery of 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 2014; 22(7): 2280-93.
[http://dx.doi.org/10.1016/j.bmc.2014.02.009] [PMID: 24588963]
[52]
Park K, Lee BM, Kim YH, et al. Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2013; 23(2): 537-42.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.018] [PMID: 23218712]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy