Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins

Author(s): Renfeng An, Wenjin Zhang and Xuefeng Huang*

Volume 22, Issue 17, 2022

Published on: 18 April, 2022

Page: [2188 - 2212] Pages: 25

DOI: 10.2174/1389557522666220217113719

Price: $65

Abstract

Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as antitumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive research on the antitumor property of steroidal saponins has been conducted. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications, along with the structure-activity relationships of steroidal saponins and their derivatives, are summarized.

Keywords: Steroidal saponin, steroidal sapogenin, antitumor activity, mechanisms of action, structural modification, structureactivity relationships.

Graphical Abstract

[1]
Zhu, J.H.; Li, H.L.; Guo, D.; Wang, Y.; Dai, H.F.; Mei, W.L.; Peng, S.Q. Identification, characterization and expression analysis of genes involved in steroidal saponin biosynthesis in Dracaena cambodiana. J. Plant Res., 2018, 131(3), 555-562.
[http://dx.doi.org/10.1007/s10265-017-1004-7] [PMID: 29234988]
[2]
Bhatti, H.N.; Khera, R.A. Biological transformations of steroidal compounds: A review. Steroids, 2012, 77(12), 1267-1290.
[http://dx.doi.org/10.1016/j.steroids.2012.07.018] [PMID: 22910289]
[3]
Yin, H.; Zhang, M.J.; An, R.F.; Zhou, J.; Liu, W.; Morris-Natschke, S.L.; Cheng, Y.Y.; Lee, K.H.; Huang, X.F. Diosgenin derivatives as potential antitumor agents: Synthesis, cytotoxicity, and mechanism of action. J. Nat. Prod., 2021, 84(3), 616-629.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00698] [PMID: 33381964]
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[5]
Lunga, P.K.; Qin, X.J.; Yang, X.W.; Kuiate, J.R.; Du, Z.Z.; Gatsing, D. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complement. Altern. Med., 2014, 14(1), 369.
[http://dx.doi.org/10.1186/1472-6882-14-369] [PMID: 25277679]
[6]
Wang, W.; Wang, W.; Yao, G.; Ren, Q.; Wang, D.; Wang, Z.; Liu, P.; Gao, P.; Zhang, Y.; Wang, S.; Song, S. Novel sarsasapogenintriazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 151, 351-362.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.082] [PMID: 29635167]
[7]
Yang, G.X.; Huang, Y.; Zheng, L.L.; Zhang, L.; Su, L.; Wu, Y.H.; Li, J.; Zhou, L.C.; Huang, J.; Tang, Y.; Wang, R.; Ma, L. Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer’s disease agents. Eur. J. Med. Chem., 2020, 187, 111913.
[http://dx.doi.org/10.1016/j.ejmech.2019.111913] [PMID: 31837501]
[8]
Singh, M.; Hamid, A.A.; Maurya, A.K.; Prakash, O.; Khan, F.; Kumar, A.; Aiyelaagbe, O.O.; Negi, A.S.; Bawankule, D.U. Synthesis of diosgenin analogues as potential anti-inflammatory agents. J. Steroid Biochem. Mol. Biol., 2014, 143, 323-333.
[http://dx.doi.org/10.1016/j.jsbmb.2014.04.006] [PMID: 24816230]
[9]
Liu, Z.; Zheng, Q.; Chen, W.; Wu, M.; Pan, G.; Yang, K.; Li, X.; Man, S.; Teng, Y.; Yu, P.; Gao, W. Chemosensitizing effect of Paris Saponin I on Camptothecin and 10-hydroxycamptothecin in lung cancer cells via p38 MAPK, ERK, and Akt signaling pathways. Eur. J. Med. Chem., 2017, 125, 760-769.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.066] [PMID: 27721159]
[10]
Cruz, M.S.; Navoni, J.A.; da Costa Xavier, L.A.; Madalena Rocha Silva Teles, M.; Barbosa-Filho, J.M.; Almeida-Lima, J.; de Oliveira Rocha, H.A.; do Amaral, V.S. Diosgenin induces genotoxic and mutagenic effects on HepG2 cells. Food Chem. Toxicol., 2018, 120(1), 98-103.
[http://dx.doi.org/10.1016/j.fct.2018.07.011] [PMID: 29981786]
[11]
Gan, Q.; Wang, J.; Hu, J.; Lou, G.; Xiong, H.; Peng, C.; Zheng, S.; Huang, Q. The role of diosgenin in diabetes and diabetic complications. J. Steroid Biochem. Mol. Biol., 2020, 198, 105575.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105575] [PMID: 31899316]
[12]
Wu, A.G.; Teng, J.F.; Wong, V.K.; Zhou, X.G.; Qiu, W.Q.; Tang, Y.; Wu, J.M.; Xiong, R.; Pan, R.; Wang, Y.L.; Tang, B.; Ding, T.Y.; Yu, L.; Zeng, W.; Qin, D.L.; Law, B.Y. Novel steroidal saponin isolated from Trillium tschonoskii maxim. exhibits anti-oxidative effect via autophagy induction in cellular and Caenorhabditis elegans models. Phytomedicine, 2019, 65, 153088.
[http://dx.doi.org/10.1016/j.phymed.2019.153088] [PMID: 31627105]
[13]
Cai, D.; Qi, J.; Yang, Y.; Zhang, W.; Zhou, F.; Jia, X.; Guo, W.; Huang, X.; Gao, F.; Chen, H.; Li, T.; Li, G.; Wang, P.; Zhang, Y.; Lei, H. Design, synthesis and biological evaluation of diosgenin-amino acid derivatives with dual functions of neuroprotection and angiogenesis. Molecules, 2019, 24(22), 4025.
[http://dx.doi.org/10.3390/molecules24224025] [PMID: 31703284]
[14]
He, Z.; Tian, Y.; Zhang, X.; Bing, B.; Zhang, L.; Wang, H.; Zhao, W. Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Nat. Prod. Res., 2012, 26(23), 2243-2246.
[http://dx.doi.org/10.1080/14786419.2011.648192] [PMID: 22235932]
[15]
Yin, Y.; Zhao, X.C.; Wang, S.J.; Gao, P.Y.; Li, L.Z.; Ikejima, T.; Song, S.J. Synthesis and biological evaluation of novel sarsasapogenin derivatives as potential anti-tumor agents. Steroids, 2015, 93, 25-31.
[http://dx.doi.org/10.1016/j.steroids.2014.09.007] [PMID: 25456170]
[16]
Zhang, J.; Wang, X.; Yang, J.; Guo, L.; Wang, X.; Song, B.; Dong, W.; Wang, W. Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. Eur. J. Med. Chem., 2020, 186, 111897.
[http://dx.doi.org/10.1016/j.ejmech.2019.111897] [PMID: 31761382]
[17]
Li, G.L.; Xu, H.J.; Xu, S.H.; Wang, W.W.; Yu, B.Y.; Zhang, J. Synthesis of tigogenin MeON-Neoglycosides and their antitumor activity. Fitoterapia, 2018, 125, 33-40.
[http://dx.doi.org/10.1016/j.fitote.2017.12.014] [PMID: 29269236]
[18]
Elsayed, H.E.; Ebrahim, H.Y.; Haggag, E.G.; Kamal, A.M.; El Sayed, K.A. Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies. Bioorg. Med. Chem., 2017, 25(24), 6297-6312.
[http://dx.doi.org/10.1016/j.bmc.2017.09.033] [PMID: 29066046]
[19]
Min, H.Y.; Pei, H.; Hyun, S.Y.; Boo, H.J.; Jang, H.J.; Cho, J.; Kim, J.H.; Son, J.; Lee, H.Y. Potent anticancer effect of the natural steroidal saponin gracillin is produced by inhibiting glycolysis and oxidative phosphorylation-mediated bioenergetics. Cancers (Basel), 2020, 12(4), 913.
[http://dx.doi.org/10.3390/cancers12040913] [PMID: 32276500]
[20]
Guo, X.; Ding, X. Dioscin suppresses the viability of ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling pathways. Oncol. Lett., 2018, 15(6), 9537-9542.
[http://dx.doi.org/10.3892/ol.2018.8454] [PMID: 29805675]
[21]
Si, L.; Zheng, L.; Xu, L.; Yin, L.; Han, X.; Qi, Y.; Xu, Y.; Wang, C.; Peng, J. Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion. Eur. J. Pharmacol., 2016, 774, 105-117.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.009] [PMID: 26849940]
[22]
Zhao, X.; Tao, X.; Xu, L.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Peng, J. Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa cells through ROS-mediated DNA damage and the mitochondrial signaling pathway. Molecules, 2016, 21(6), 730.
[http://dx.doi.org/10.3390/molecules21060730] [PMID: 27271587]
[23]
Tao, X.; Xu, L.; Yin, L.; Han, X.; Qi, Y.; Xu, Y.; Song, S.; Zhao, Y.; Peng, J. Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis., 2017, 8(8), e2989.
[http://dx.doi.org/10.1038/cddis.2017.391] [PMID: 28796245]
[24]
Li, S.; Cheng, B.; Hou, L.; Huang, L.; Cui, Y.; Xu, D.; Shen, X.; Li, S. Dioscin inhibits colon cancer cells’ growth by reactive oxygen species-mediated mitochondrial dysfunction and p38 and JNK pathways. Anticancer Drugs, 2018, 29(3), 234-242.
[http://dx.doi.org/10.1097/CAD.0000000000000590] [PMID: 29389802]
[25]
Mao, Z.; Han, X.; Chen, D.; Xu, Y.; Xu, L.; Yin, L.; Sun, H.; Qi, Y.; Fang, L.; Liu, K.; Peng, J. Potent effects of dioscin against hepatocellular carcinoma through regulating TP53-induced glycolysis and apoptosis regulator (TIGAR)-mediated apoptosis, autophagy, and DNA damage. Br. J. Pharmacol., 2019, 176(7), 919-937.
[http://dx.doi.org/10.1111/bph.14594] [PMID: 30710454]
[26]
Ma, T.; Wang, R.P.; Zou, X. Dioscin inhibits gastric tumor growth through regulating the expression level of lncRNA HOTAIR. BMC Complement. Altern. Med., 2016, 16(1), 383.
[http://dx.doi.org/10.1186/s12906-016-1360-1] [PMID: 27751178]
[27]
Wang, Y.C.; Wu, D.W.; Wu, T.C.; Wang, L.; Chen, C.Y.; Lee, H. Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression. Int. J. Biol. Sci., 2018, 14(1), 47-56.
[http://dx.doi.org/10.7150/ijbs.22209] [PMID: 29483824]
[28]
Wu, X.; Wang, L.; Wang, H.; Dai, Y.; Ye, W.C.; Li, Y.L. Steroidal saponins from Paris polyphylla var. yunnanensis. Phytochemistry, 2012, 81, 133-143.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.034] [PMID: 22748777]
[29]
Hernández-Vázquez, J.M.V.; López-Muñoz, H.; Escobar-Sánchez, M.L.; Flores-Guzmán, F.; Weiss-Steider, B.; Hilario-Martínez, J.C.; Sandoval-Ramírez, J.; Fernández-Herrera, M.A.; Sánchez Sánchez, L. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol., 2020, 871, 172942.
[http://dx.doi.org/10.1016/j.ejphar.2020.172942] [PMID: 31972180]
[30]
Liao, W.L.; Lin, J.Y.; Shieh, J.C.; Yeh, H.F.; Hsieh, Y.H.; Cheng, Y.C.; Lee, H.J.; Shen, C.Y.; Cheng, C.W. Induction of G2/M phase arrest by diosgenin via activation of Chk1 kinase and Cdc25C regulatory pathways to promote apoptosis in human breast cancer cells. Int. J. Mol. Sci., 2019, 21(1), 172.
[http://dx.doi.org/10.3390/ijms21010172] [PMID: 31881805]
[31]
Jiang, S.; Fan, J.; Wang, Q.; Ju, D.; Feng, M.; Li, J.; Guan, Z.B.; An, D.; Wang, X.; Ye, L. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine, 2016, 23(3), 243-252.
[http://dx.doi.org/10.1016/j.phymed.2016.01.010] [PMID: 26969378]
[32]
He, Z.; Chen, H.; Li, G.; Zhu, H.; Gao, Y.; Zhang, L.; Sun, J. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine, 2014, 21(6), 871-876.
[http://dx.doi.org/10.1016/j.phymed.2014.02.002] [PMID: 24656238]
[33]
Chen, P.S.; Shih, Y.W.; Huang, H.C.; Cheng, H.W. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS One, 2011, 6(5), e20164.
[http://dx.doi.org/10.1371/journal.pone.0020164] [PMID: 21629786]
[34]
Dong, M.; Meng, Z.; Kuerban, K.; Qi, F.; Liu, J.; Wei, Y.; Wang, Q.; Jiang, S.; Feng, M.; Ye, L. Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota. Cell Death Dis., 2018, 9(10), 1039.
[http://dx.doi.org/10.1038/s41419-018-1099-3] [PMID: 30305604]
[35]
Chang, J.; Wang, H.; Wang, X.; Zhao, Y.; Zhao, D.; Wang, C.; Li, Y.; Yang, Z.; Lu, S.; Zeng, Q.; Zimmerman, J.; Shi, Q.; Wang, Y.; Yang, Y. Molecular mechanisms of Polyphyllin I-induced apoptosis and reversal of the epithelial-mesenchymal transition in human osteosarcoma cells. J. Ethnopharmacol., 2015, 170, 117-127.
[http://dx.doi.org/10.1016/j.jep.2015.05.006] [PMID: 25978954]
[36]
Zhang, D.; Liu, S.; Liu, Z.; Ma, C.; Jiang, Y.; Sun, C.; Li, K.; Cao, G.; Lin, Z.; Wang, P.; Zhang, J.; Xu, D.; Kong, F.; Zhao, S. Polyphyllin I induces cell cycle arrest in prostate cancer cells via the upregulation of IL6 and P21 expression. Medicine (Baltimore), 2019, 98(44), e17743.
[http://dx.doi.org/10.1097/MD.0000000000017743] [PMID: 31689825]
[37]
Li, G.B.; Fu, R.Q.; Shen, H.M.; Zhou, J.; Hu, X.Y.; Liu, Y.X.; Li, Y.N.; Zhang, H.W.; Liu, X.; Zhang, Y.H.; Huang, C.; Zhang, R.; Gao, N. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget, 2017, 8(6), 10359-10374.
[http://dx.doi.org/10.18632/oncotarget.14413] [PMID: 28060722]
[38]
Liu, J.; Zhang, Y.; Chen, L.; Yu, F.; Li, X.; Dan, Tao; Zhao, J.; Zhou, S. Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(6), 479-486.
[http://dx.doi.org/10.1093/abbs/gmx033] [PMID: 28449039]
[39]
Tian, Y.; Jia, S.X.; Shi, J.; Gong, G.Y.; Yu, J.W.; Niu, Y.; Yang, C.M.; Ma, X.C.; Fang, M.Y. Polyphyllin I induces apoptosis and autophagy via modulating JNK and mTOR pathways in human acute myeloid leukemia cells. Chem. Biol. Interact., 2019, 311, 108793.
[http://dx.doi.org/10.1016/j.cbi.2019.108793] [PMID: 31421117]
[40]
Yu, S.; Wang, L.; Cao, Z.; Gong, D.; Liang, Q.; Chen, H.; Fu, H.; Wang, W.; Tang, X.; Xie, Z.; He, Y.; Peng, C.; Li, Y. Anticancer effect of Polyphyllin I in colorectal cancer cells through ROS-dependent autophagy and G2/M arrest mechanisms. Nat. Prod. Res., 2018, 32(12), 1489-1492.
[http://dx.doi.org/10.1080/14786419.2017.1353512] [PMID: 28714320]
[41]
Zhang, Y.; Huang, P.; Liu, X.; Xiang, Y.; Zhang, T.; Wu, Y.; Xu, J.; Sun, Z.; Zhen, W.; Zhang, L.; Si, Y.; Liu, Y. Polyphyllin I inhibits growth and invasion of cisplatin-resistant gastric cancer cells by partially inhibiting CIP2A/PP2A/Akt signaling axis. J. Pharmacol. Sci., 2018, 137(3), 305-312.
[http://dx.doi.org/10.1016/j.jphs.2018.07.008] [PMID: 30119963]
[42]
Chang, J.; Li, Y.; Wang, X.; Hu, S.; Wang, H.; Shi, Q.; Wang, Y.; Yang, Y. Polyphyllin I suppresses human osteosarcoma growth by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Sci. Rep., 2017, 7(1), 7605.
[http://dx.doi.org/10.1038/s41598-017-07194-9] [PMID: 28790389]
[43]
Tseng, S.C.; Shen, T.S.; Wu, C.C.; Chang, I.L.; Chen, H.Y.; Hsieh, C.P.; Cheng, C.H.; Chen, C.L. Methyl protodioscin induces apoptosis in human osteosarcoma cells by caspase-dependent and MAPK signaling pathways. J. Agric. Food Chem., 2017, 65(13), 2670-2676.
[http://dx.doi.org/10.1021/acs.jafc.6b04800] [PMID: 28301149]
[44]
Ma, Y.L.; Zhang, Y.S.; Zhang, F.; Zhang, Y.Y.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food Chem. Toxicol., 2019, 132, 110655.
[http://dx.doi.org/10.1016/j.fct.2019.110655] [PMID: 31271762]
[45]
Li, X.; Qu, Z.; Jing, S.; Li, X.; Zhao, C.; Man, S.; Wang, Y.; Gao, W. Dioscin-6′-O-acetate inhibits lung cancer cell proliferation via inducing cell cycle arrest and caspase-dependent apoptosis. Phytomedicine, 2019, 53, 124-133.
[http://dx.doi.org/10.1016/j.phymed.2018.09.033] [PMID: 30668391]
[46]
Kim, W.K.; Pyee, Y.; Chung, H.J.; Park, H.J.; Hong, J.Y.; Son, K.H.; Lee, S.K. Antitumor activity of spicatoside A by modulation of autophagy and apoptosis in human colorectal cancer cells. J. Nat. Prod., 2016, 79(4), 1097-1104.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00006] [PMID: 27064730]
[47]
Wang, N.; Feng, Y.; Zhu, M.; Siu, F.M.; Ng, K.M.; Che, C.M. A novel mechanism of XIAP degradation induced by timosaponin AIII in hepatocellular carcinoma. Biochim. Biophys. Acta, 2013, 1833(12), 2890-2899.
[http://dx.doi.org/10.1016/j.bbamcr.2013.07.018] [PMID: 23906794]
[48]
Zhao, Z.; Jia, Q.; Wu, M.S.; Xie, X.; Wang, Y.; Song, G.; Zou, C.Y.; Tang, Q.; Lu, J.; Huang, G.; Wang, J.; Lin, D.C.; Koeffler, H.P.; Yin, J.Q.; Shen, J. Degalactotigonin, a natural compound from Solanum nigrum L., inhibits growth and metastasis of osteosarcoma through GSK3β inactivation-mediated repression of the Hedgehog/Gli1 pathway. Clin. Cancer Res., 2018, 24(1), 130-144.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0692] [PMID: 28951519]
[49]
Nazim, U.M.; Jeong, J.K.; Park, S.Y. Ophiopogonin B sensitizes TRAIL-induced apoptosis through activation of autophagy flux and downregulates cellular FLICE-like inhibitory protein. Oncotarget, 2017, 9(3), 4161-4172.
[http://dx.doi.org/10.18632/oncotarget.23647] [PMID: 29423112]
[50]
Zang, Q.Q.; Zhang, L.; Gao, N.; Huang, C. Ophiopogonin D inhibits cell proliferation, causes cell cycle arrest at G2/M, and induces apoptosis in human breast carcinoma MCF-7 cells. J. Integr. Med., 2016, 14(1), 51-59.
[http://dx.doi.org/10.1016/S2095-4964(16)60238-8] [PMID: 26778229]
[51]
Bi, L.; Liu, Y.; Yang, Q.; Zhou, X.; Li, H.; Liu, Y.; Li, J.; Lu, Y.; Tang, H. Paris saponin H inhibits the proliferation of glioma cells through the A1 and A3 adenosine receptor-mediated pathway. Int. J. Mol. Med., 2021, 47(4), 30.
[http://dx.doi.org/10.3892/ijmm.2021.4863] [PMID: 33537802]
[52]
Corbiere, C.; Liagre, B.; Terro, F.; Beneytout, J.L. Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res., 2004, 14(3), 188-196.
[http://dx.doi.org/10.1038/sj.cr.7290219] [PMID: 15225412]
[53]
Yin, F.; Zhou, H.; Fang, Y.; Li, C.; He, Y.; Yu, L.; Wan, H.; Yang, J. Astragaloside IV alleviates ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway. J. Ethnopharmacol., 2020, 248, 112319.
[http://dx.doi.org/10.1016/j.jep.2019.112319] [PMID: 31639488]
[54]
Russo, V.; Candeloro, P.; Malara, N.; Perozziello, G.; Iannone, M.; Scicchitano, M.; Mollace, R.; Musolino, V.; Gliozzi, M.; Carresi, C.; Morittu, V.M.; Gratteri, S.; Palma, E.; Muscoli, C.; Di Fabrizio, E.; Mollace, V. Key role of cytochrome c for apoptosis detection using raman microimaging in an animal model of brain ischemia with insulin treatment. Appl. Spectrosc., 2019, 73(10), 1208-1217.
[http://dx.doi.org/10.1177/0003702819858671] [PMID: 31219322]
[55]
Liu, Z.; Zheng, Q.; Chen, W.Z.; Man, S.L.; Teng, Y.O.; Meng, X.; Zhang, Y.M.; Yu, P.; Gao, W.Y. Paris saponin I inhibits proliferation and promotes apoptosis through down-regulating AKT activity in human non-small-cell lung cancer cells and inhibiting ERK expression in human small-cell lung cancer cells. RSC Adv., 2016, 6(75), 70816-70824.
[http://dx.doi.org/10.1039/C6RA13352E]
[56]
Sui, X.; Kong, N.; Ye, L.; Han, W.; Zhou, J.; Zhang, Q.; He, C.; Pan, H. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett., 2014, 344(2), 174-179.
[http://dx.doi.org/10.1016/j.canlet.2013.11.019] [PMID: 24333738]
[57]
Li, P.; Zhao, Q.L.; Wu, L.H.; Jawaid, P.; Jiao, Y.F.; Kadowaki, M.; Kondo, T. Isofraxidin, a potent Reactive Oxygen Species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner. Apoptosis, 2014, 19(6), 1043-1053.
[http://dx.doi.org/10.1007/s10495-014-0984-1] [PMID: 24692054]
[58]
Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 2012, 327(1-2), 48-60.
[http://dx.doi.org/10.1016/j.canlet.2011.12.012] [PMID: 22182453]
[59]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[60]
Sun, K.; Deng, W.; Zhang, S.; Cai, N.; Jiao, S.; Song, J.; Wei, L. Paradoxical roles of autophagy in different stages of tumorigenesis: Protector for normal or cancer cells. Cell Biosci., 2013, 3(1), 35-42.
[http://dx.doi.org/10.1186/2045-3701-3-35] [PMID: 24016776]
[61]
Jackson, M.P.; Hewitt, E.W. Cellular proteostasis: Degradation of misfolded proteins by lysosomes. Essays Biochem., 2016, 60(2), 173-180.
[http://dx.doi.org/10.1042/EBC20160005] [PMID: 27744333]
[62]
Li, L.; Tan, J.; Miao, Y.; Lei, P.; Zhang, Q. ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell. Mol. Neurobiol., 2015, 35(5), 615-621.
[http://dx.doi.org/10.1007/s10571-015-0166-x] [PMID: 25722131]
[63]
Li, X.; Wang, J. Mechanical tumor microenvironment and transduction: Cytoskeleton mediates cancer cell invasion and metastasis. Int. J. Biol. Sci., 2020, 16(12), 2014-2028.
[http://dx.doi.org/10.7150/ijbs.44943] [PMID: 32549750]
[64]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[65]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[66]
Liu, X.; Sun, Z.; Deng, J.; Liu, J.; Ma, K.; Si, Y.; Zhang, T.; Feng, T.; Liu, Y.; Tan, Y.; Liu, Y.; Tan, Y. Polyphyllin I inhibits invasion and epithelial-mesenchymal transition via CIP2A/PP2A/ERK signaling in prostate cancer. Int. J. Oncol., 2018, 53(3), 1279-1288.
[http://dx.doi.org/10.3892/ijo.2018.4464] [PMID: 29956727]
[67]
Itoh, Y.; Nagase, H. Matrix metalloproteinases in cancer. Essays Biochem., 2002, 38, 21-36.
[http://dx.doi.org/10.1042/bse0380021] [PMID: 12463159]
[68]
Parri, M.; Buricchi, F.; Giannoni, E.; Grimaldi, G.; Mello, T.; Raugei, G.; Ramponi, G.; Chiarugi, P. EphrinA1 activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosin contractility. J. Biol. Chem., 2007, 282(27), 19619-19628.
[http://dx.doi.org/10.1074/jbc.M701319200] [PMID: 17449913]
[69]
Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51.
[http://dx.doi.org/10.1517/14728222.2011.538682] [PMID: 21142802]
[70]
Chen, M.; Hu, C.; Guo, Y.; Jiang, R.; Jiang, H.; Zhou, Y.; Fu, H.; Wu, M.; Zhang, X. Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells in vitro and in vivo by inhibiting the EphA2/Akt signaling pathway. Oncol. Rep., 2018, 40(3), 1339-1347.
[http://dx.doi.org/10.3892/or.2018.6531] [PMID: 29956803]
[71]
Nomura, M.; Rainusso, N.; Lee, Y.C.; Dawson, B.; Coarfa, C.; Han, R.; Larson, J.L.; Shuck, R.; Kurenbekova, L.; Yustein, J.T. Tegavivint and the β-catenin/ALDH axis in chemotherapy-resistant and metastatic osteosarcoma. J. Natl. Cancer Inst., 2019, 111(11), 1216-1227.
[http://dx.doi.org/10.1093/jnci/djz026] [PMID: 30793158]
[72]
He, S.; Tang, S. WNT/β-catenin signaling in the development of liver cancers. Biomed. Pharmacother., 2020, 132, 110851.
[http://dx.doi.org/10.1016/j.biopha.2020.110851] [PMID: 33080466]
[73]
Masood-Ur-Rahman, ; Mohammad, Y.; Fazili, K.M.; Bhat, K.A.; Ara, T. Synthesis and biological evaluation of novel 3-O-tethered triazoles of diosgenin as potent antiproliferative agents. Steroids, 2017, 118, 1-8.
[http://dx.doi.org/10.1016/j.steroids.2016.11.003] [PMID: 27864018]
[74]
Sethi, A.; Singh, P.; Yadav, N.; Prakash, R.; Singh, R.P.; Yadav, P.; Banerjee, M. Synthesis of novel steroids using Mizoroki-Heck reaction, their spectroscopic analysis, anticancer activity against cervical cancer and DFT studies. J. Mol. Struct., 2020, 1204, 127512.
[http://dx.doi.org/10.1016/j.molstruc.2019.127512]
[75]
Cai, B.; Liao, A.; Lee, K.K.; Ban, J.S.; Yang, H.S.; Im, Y.J.; Chun, C. Design, synthesis of methotrexate-diosgenin conjugates and biological evaluation of their effect on methotrexate transport-resistant cells. Steroids, 2016, 116, 45-51.
[http://dx.doi.org/10.1016/j.steroids.2016.10.006] [PMID: 27770617]
[76]
Michalak, O.; Krzeczyński, P.; Cieślak, M.; Cmoch, P.; Cybulski, M.; Królewska-Golińska, K.; Kaźmierczak-Barańska, J.; Trzaskowski, B.; Ostrowska, K. Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates. J. Steroid Biochem. Mol. Biol., 2020, 198, 105573.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105573] [PMID: 32017993]
[77]
Ma, L.; Zhang, J.; Wang, X.; Yang, J.; Guo, L.; Wang, X.; Song, B.; Dong, W.; Wang, W. Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur. J. Med. Chem., 2021, 217, 113361.
[http://dx.doi.org/10.1016/j.ejmech.2021.113361] [PMID: 33740546]
[78]
Deng, G.; Zhou, B.; Wang, J.; Chen, Z.; Gong, L.; Gong, Y.; Wu, D.; Li, Y.; Zhang, H.; Yang, X. Synthesis and antitumor activity of novel steroidal imidazolium salt derivatives. Eur. J. Med. Chem., 2019, 168, 232-252.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.025] [PMID: 30822712]
[79]
Xia, X.; Chen, Y.; Wang, L.; Yang, Z.G.; Ma, X.D.; Zhao, Z.G.; Yang, H.J. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids, 2021, 166(6), 108774.
[http://dx.doi.org/10.1016/j.steroids.2020.108774] [PMID: 33285175]
[80]
Pathak, N.; Fatima, K.; Singh, S.; Mishra, D.; Gupta, A.C.; Kumar, Y.; Chanda, D.; Bawankule, D.U.; Shanker, K.; Khan, F.; Gupta, A.; Luqman, S.; Negi, A.S. Bivalent furostene carbamates as antiproliferative and antiinflammatory agents. J. Steroid Biochem. Mol. Biol., 2019, 194, 105457.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105457] [PMID: 31454535]
[81]
Huang, B.Z.; Xin, G.; Ma, L.M.; Wei, Z.L.; Shen, Y.; Zhang, R.; Zheng, H.J.; Zhang, X.H.; Niu, H.; Huang, W. Synthesis, characterization, and biological studies of diosgenyl analogs. J. Asian Nat. Prod. Res., 2017, 19(3), 272-298.
[http://dx.doi.org/10.1080/10286020.2016.1202240] [PMID: 27380052]
[82]
Mironov, M.E.; Oleshko, O.S.; Pokrovskii, M.A.; Rybalova, T.V.; Pechurov, V.K.; Pokrovskii, A.G.; Cheresis, S.V.; Mishinov, S.V.; Stupak, V.V.; Shults, E.E. 6-(4′-Aryl-1′,2′,3′-triazolyl)-spirostan-3,5-diols and 6-(4′-Aryl-1′,2′,3′-triazolyl)-7-hydroxyspirosta-1,4-dien-3-ones: Synthesis and analysis of their cytotoxicity. Steroids, 2019, 151, 108460.
[http://dx.doi.org/10.1016/j.steroids.2019.108460] [PMID: 31344410]
[83]
Hamid, A.A.; Kaushal, T.; Ashraf, R.; Singh, A.; Chand Gupta, A.; Prakash, O.; Sarkar, J.; Chanda, D.; Bawankule, D.U.; Khan, F.; Shanker, K.; Aiyelaagbe, O.O.; Negi, A.S. (22β,25R)-3β-Hydroxy-spirost-5-en-7-iminoxy-heptanoic acid exhibits anti-prostate cancer activity through caspase pathway. Steroids, 2017, 119, 43-52.
[http://dx.doi.org/10.1016/j.steroids.2017.01.001] [PMID: 28143704]
[84]
Sánchez-Sánchez, L.; Hernández-Linares, M.G.; Escobar, M.L.; López-Muñoz, H.; Zenteno, E.; Fernández-Herrera, M.A.; Guerrero-Luna, G.; Carrasco-Carballo, A.; Sandoval-Ramírez, J. Antiproliferative, cytotoxic, and apoptotic activity of steroidal oximes in cervicouterine cell lines. Molecules, 2016, 21(11), 1533.
[http://dx.doi.org/10.3390/molecules21111533] [PMID: 27854258]
[85]
Martínez-Gallegos, A.A.; Guerrero-Luna, G.; Ortiz-González, A.; Cárdenas-García, M.; Bernès, S.; Hernández-Linares, M.G. Azasteroids from diosgenin: Synthesis and evaluation of their antiproliferative activity. Steroids, 2021, 166, 108777.
[http://dx.doi.org/10.1016/j.steroids.2020.108777] [PMID: 33309534]
[86]
Martínez-Pascual, R.; Meza-Reyes, S.; Vega-Baez, J.L.; Merino-Montiel, P.; Padrón, J.M.; Mendoza, Á.; Montiel-Smith, S. Novel synthesis of steroidal oximes and lactams and their biological evaluation as antiproliferative agents. Steroids, 2017, 122, 24-33.
[http://dx.doi.org/10.1016/j.steroids.2017.03.008] [PMID: 28396219]
[87]
Cortés-Percino, A.; Vega-Báez, J.L.; Romero-López, A.; Puerta, A.; Merino-Montiel, P.; Meza-Reyes, S.; Padrón, J.M.; Montiel-Smith, S. Synthesis and evaluation of pyrimidine steroids as antiproliferative agents. Molecules, 2019, 24(20), 3676.
[http://dx.doi.org/10.3390/molecules24203676] [PMID: 31614780]
[88]
Fuentes-Aguilar, A.; Romero-Hernández, L.L.; Arenas-González, A.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Plata, G.B.; Padrón, J.M.; López, Ó.; Fernández-Bolaños, J.G. New selenosteroids as antiproliferative agents. Org. Biomol. Chem., 2017, 15(23), 5041-5054.
[http://dx.doi.org/10.1039/C7OB00458C] [PMID: 28574071]
[89]
Xu, L.; Xu, D.; Li, Z.; Gao, Y.; Chen, H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein J. Nanotechnol., 2019, 10(1), 1933-1942.
[http://dx.doi.org/10.3762/bjnano.10.189] [PMID: 31598460]
[90]
Fernández-Herrera, M.A.; López-Muñoz, H.; Hernández-Vázquez, J.M.; López-Dávila, M.; Escobar-Sánchez, M.L.; Sánchez-Sánchez, L.; Pinto, B.M.; Sandoval-Ramírez, J. Synthesis of 26-hydroxy-22-oxocholestanic frameworks from diosgenin and hecogenin and their in vitro antiproliferative and apoptotic activity on human cervical cancer CaSki cells. Bioorg. Med. Chem., 2010, 18(7), 2474-2484.
[http://dx.doi.org/10.1016/j.bmc.2010.02.051] [PMID: 20303770]
[91]
Fernández-Herrera, M.A.; López-Muñoz, H.; Hernández-Vázquez, J.M.V.; López-Dávila, M.; Mohan, S.; Escobar-Sánchez, M.L.; Sánchez-Sánchez, L.; Pinto, B.M.; Sandoval-Ramírez, J. Synthesis and biological evaluation of the glycoside (25R)-3β,16β-diacetoxy-22-oxocholest-5-en-26-yl β-d-glucopyranoside: A selective anticancer agent in cervicouterine cell lines. Eur. J. Med. Chem., 2011, 46(9), 3877-3886.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.058] [PMID: 21703733]
[92]
Ramos-Enríquez, M.A.; Vargas-Romero, K.; Rárová, L.; Strnad, M.; Iglesias-Arteaga, M.A. Synthesis and in vitro anticancer activity of 23(23′)E-benzylidenespirostanols derived from steroid sapogenins. Steroids, 2017, 128, 85-88.
[http://dx.doi.org/10.1016/j.steroids.2017.08.017] [PMID: 28887172]
[93]
Wang, W.; Wang, D.; Wang, Z.; Yao, G.; Li, X.; Gao, P.; Li, L.; Zhang, Y.; Wang, S.; Song, S. Synthesis of new sarsasapogenin derivatives with cytotoxicity and apoptosis-inducing activities in human breast cancer MCF-7 cells. Eur. J. Med. Chem., 2017, 127, 62-71.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.011] [PMID: 28038327]
[94]
Wang, W.; Zhang, Y.; Yao, G.; Wang, W.; Shang, X.; Zhang, Y.; Wang, X.; Wang, S.; Song, S. Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells. Steroids, 2018, 131, 23-31.
[http://dx.doi.org/10.1016/j.steroids.2018.01.001] [PMID: 29337037]
[95]
Fernández-Herrera, M.A.; Mohan, S.; López-Muñoz, H.; Hernández-Vázquez, J.M.V.; Pérez-Cervantes, E.; Escobar-Sánchez, M.L.; Sánchez-Sánchez, L.; Regla, I.; Pinto, B.M.; Sandoval-Ramírez, J. Synthesis of the steroidal glycoside (25R)-3β,16β-diacetoxy-12,22-dioxo-5α-cholestan-26-yl β-D-glucopyranoside and its anti-cancer properties on cervicouterine HeLa, CaSki, and ViBo cells. Eur. J. Med. Chem., 2010, 45(11), 4827-4837.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.051] [PMID: 20801554]
[96]
Gu, G.; An, L.; Fang, M.; Guo, Z. Efficient one-pot synthesis of tigogenin saponins and their antitumor activities. Carbohydr. Res., 2014, 383, 21-26.
[http://dx.doi.org/10.1016/j.carres.2013.10.015] [PMID: 24239606]
[97]
Tan, Y.H.; Xiao, X.; Yao, J.N.; Han, F.; Lou, H.Y.; Luo, H.; Liang, G.Y.; Ben-David, Y.; Pan, W.D. Syntheses and anti-cancer activities of glycosylated derivatives of diosgenin. Chem. Res. Chin. Univ., 2016, 33(1), 80-86.
[http://dx.doi.org/10.1007/s40242-016-6296-y]
[98]
Kaskiw, M.J.; Tassotto, M.L.; Th’ng, J.; Jiang, Z.H. Synthesis and cytotoxic activity of diosgenyl saponin analogues. Bioorg. Med. Chem., 2008, 16(6), 3209-3217.
[http://dx.doi.org/10.1016/j.bmc.2007.12.022] [PMID: 18164206]
[99]
Fernández-Herrera, M.A.; López-Muñoz, H.; Hernández-Vázquez, J.M.; Sánchez-Sánchez, L.; Escobar-Sánchez, M.L.; Pinto, B.M.; Sandoval-Ramírez, J. Synthesis and selective anticancer activity of steroidal glycoconjugates. Eur. J. Med. Chem., 2012, 54, 721-727.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.027] [PMID: 22770605]
[100]
Myszka, H.; Bednarczyk, D.; Najder, M.; Kaca, W. Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride and its derivatives. Carbohydr. Res., 2003, 338(2), 133-141.
[http://dx.doi.org/10.1016/S0008-6215(02)00407-X] [PMID: 12526837]
[101]
Kaskiw, M.J.; Tassotto, M.L.; Mok, M.; Tokar, S.L.; Pycko, R.; Th’ng, J.; Jiang, Z.H. Structural analogues of diosgenyl saponins: Synthesis and anticancer activity. Bioorg. Med. Chem., 2009, 17(22), 7670-7679.
[http://dx.doi.org/10.1016/j.bmc.2009.09.046] [PMID: 19819703]
[102]
Li, M.; Han, X.; Yu, B. Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydr. Res., 2003, 338(2), 117-121.
[http://dx.doi.org/10.1016/S0008-6215(02)00443-3] [PMID: 12526835]
[103]
Zhu, S.; Zhang, Y.; Li, M.; Yu, J.; Zhang, L.; Li, Y.; Yu, B. Synthesis and cytotoxicities of dioscin derivatives with decorated chacotriosyl residues. Bioorg. Med. Chem. Lett., 2006, 16(21), 5629-5632.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.019] [PMID: 16905317]
[104]
Hernández, J.C.; León, F.; Brouard, I.; Torres, F.; Rubio, S.; Quintana, J.; Estévez, F.; Bermejo, J. Synthesis of novel spirostanic saponins and their cytotoxic activity. Bioorg. Med. Chem., 2008, 16(4), 2063-2076.
[http://dx.doi.org/10.1016/j.bmc.2007.10.089] [PMID: 18023191]
[105]
Meng, X.; Pan, Y.; Liu, T.; Luo, C.; Man, S.; Zhang, Y.; Zhang, Y. Synthesis of novel diosgenyl saponin analogs and evaluation effects of rhamnose moeity on their cytotoxic activity. Carbohydr. Res., 2021, 506, 108359.
[http://dx.doi.org/10.1016/j.carres.2021.108359] [PMID: 34102543]
[106]
Fang, M.; Gu, L.; Gu, G.F.; Fang, J.Q. Facile synthesis and antitumor activities of timosaponin AIII and its analogs. J. Carbohydr. Chem., 2012, 31(3), 187-202.
[http://dx.doi.org/10.1080/07328303.2011.639966]
[107]
Gu, G.; Fang, M.; Liu, J.; Gu, L. Concise synthesis and antitumor activities of trisaccharide steroidal saponins. Carbohydr. Res., 2011, 346(15), 2406-2413.
[http://dx.doi.org/10.1016/j.carres.2011.08.026] [PMID: 21943550]
[108]
Pérez-Labrada, K.; Brouard, I.; Estévez, S.; Marrero, M.T.; Estévez, F.; Bermejo, J.; Rivera, D.G. New insights into the structure-cytotoxicity relationship of spirostan saponins and related glycosides. Bioorg. Med. Chem., 2012, 20(8), 2690-2700.
[http://dx.doi.org/10.1016/j.bmc.2012.02.026] [PMID: 22405922]
[109]
Pérez-Labrada, K.; Brouard, I.; Estévez, S.; Marrero, M.T.; Estévez, F.; Rivera, D.G. Effect of C-ring modifications on the cytotoxicity of spirostan saponins and related glycosides. Bioorg. Med. Chem., 2012, 20(14), 4522-4531.
[http://dx.doi.org/10.1016/j.bmc.2012.05.018] [PMID: 22682921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy