Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

In Search of HIV Entry Inhibitors Using Molecular Docking, ADME, and Toxicity Studies of Some Thiazolidinone-Pyrazine Derivatives Against CXCR4 Co-receptor

Author(s): Shital M. Patil*, Kalyani D. Asgaonkar, Bhairavi Bakhle, Kshitija Abhang, Ayush Khater, Muskan Singh and Trupti S. Chitre

Volume 20, Issue 2, 2022

Published on: 17 March, 2022

Page: [152 - 162] Pages: 11

DOI: 10.2174/1570162X20666220214123331

Price: $65

Abstract

Background: Entry inhibitors prevent the binding of human immunodeficiency virus protein to the chemokine receptor CXCR4 and are used along with conventional anti-HIV therapy. They aid in restoring immunity and can prevent the development of HIV-TB co-infection.

Aims: In the present study, various thiazolidinone-pyrazine derivatives earlier studied for NNRT inhibition activity were gauged for their entry inhibitor potential.

Objective: The objective of the study is to perform molecular docking, ADME, toxicity studies of some thiazolidinone-pyrazine derivatives as entry inhibitors targeting CXCR4 co-receptors.

Methods: In-silico docking studies were performed using AutoDock Vina software and compounds were further studied for ADME and toxicity using SwissADME and pkCSM software, respectively.

Results: Taking into consideration the docking results, pharmacokinetic behaviour and toxicity profile, four molecules (compounds 1, 9, 11, and 16) have shown potential as entry inhibitors.

Conclusion: These compounds have shown potential as both NNRTI and entry inhibitors and hence can be used in management of immune compromised diseases like TB-HIV coinfection.

Keywords: Anti-HIV, entry inhibitors, thiazolidinone-pyrazine, docking, CXCR4, AutoDock Vina, SwissADME, pkCSM.

Graphical Abstract

[1]
WHO Report 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids Accessed on 17th July 2018.
[2]
Ismail H, Joanna S, Alia T, et al. QSAR and molecular docking studies of indole-based analogs as HIV-1attachment inhibitors. J Mol Struct 2019; 1193: 429-43.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.056]
[3]
Virani S, Liang Z, Yoon Y, Shim H, Mooring SR. Synthesis and evaluation of 2,5-diamino and 2,5-dianilinomethyl pyridine analogues as potential CXCR4 antagonists. Bioorg Med Chem Lett 2019; 29(2): 220-4.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.052] [PMID: 30514601]
[4]
Ji Y, Shu M, Lin Y, et al. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists. J Mol Struct 2013; 1045: 35-41.
[http://dx.doi.org/10.1016/j.molstruc.2013.03.062]
[5]
Brelot A, Chakrabarti LA. CCR5 revisited: How mechanisms of HIV entry govern AIDS pathogenesis. J Mol Biol 2018; 430(17): 2557-89.
[http://dx.doi.org/10.1016/j.jmb.2018.06.027] [PMID: 29932942]
[6]
Kobayakawa T, Konno K, Ohashi N, et al. Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Bioorg Med Chem Lett 2019; 29(5): 719-23.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.011] [PMID: 30665681]
[7]
Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine 2019; 45: 624-9.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.020] [PMID: 31227439]
[8]
Rodríguez-Muñoz J, Moreno S. Strategies for the cure of HIV infection. Estrategias de curación de la infección por VIH. Enferm Infecc Microbiol Clin 2019; 37(4): 265-73.
[http://dx.doi.org/10.1016/j.eimc.2018.01.007]
[9]
Gu SX, Xiao T, Zhu YY, Liu GY, Chen FE. Recent progress in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside reverse transcriptase inhibitor binding pocket. Eur J Med Chem 2019; 174: 277-91.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.054] [PMID: 31051402]
[10]
Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 2013; 98(2): 158-70.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.017] [PMID: 23541872]
[11]
Asgaonkar KD, Patil SM, Chitre TS, et al. Comparative docking studies: a drug design tool for some pyrazine- thiazolidinone based derivatives for anti-HIV activity. Curr Computeraided Drug Des 2019; 15(3): 252-8.
[http://dx.doi.org/10.2174/1573409915666181219125944] [PMID: 30569873]
[12]
Chitre TS, Asgaonkar KD, Miniyar PB, et al. Synthesis and docking studies of pyrazine-thiazolidinone hybrid scaffold targeting dormant tuberculosis. Bioorg Med Chem Lett 2016; 26(9): 2224-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.055] [PMID: 27017114]
[13]
Chitre TS, Patil SM, Sujalegaonkar AG, et al. Non nucleoside reverse transcriptase inhibitors, molecular docking studies and antitubercular activity of thiazolidin-4-one derivatives. Curr Computeraided Drug Des 2019; 15(5): 433-44.
[http://dx.doi.org/10.2174/1573409915666181221102903] [PMID: 30574853]
[14]
Yang H, Sun L, Wang Z, Li W, Liu G, Tang Y. ADMETopt: A web server for ADMET optimization in drug design via scaffold hopping. J Chem Inf Model 2018; 58(10): 2051-6.
[http://dx.doi.org/10.1021/acs.jcim.8b00532] [PMID: 30251842]
[15]
Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 2002; 527(1-3): 255-62.
[http://dx.doi.org/10.1016/S0014-5793(02)03143-5] [PMID: 12220670]
[16]
RCSB PDB – 3OE6: Crystal structure of the CXCR4 chemokine receptor in complex with a small molecule antagonist IT1t in I222 spacegroup Available from: https://www.rcsb.org/structure/3OE6 (Accessed June 10, 2019).
[17]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[18]
SWISS ADME. Available from: http://www.swissadme.ch/ (Accessed Nov. 1, 2021).
[19]
pkCSM. Available from: http://biosig.unimelb.edu.au/pkcsm/ prediction (Accessed November 9, 2021).
[20]
V-Life molecular design suite version 4.3. Available from: www.vlifescience.com/products/vlifeMDS/product_vlife
[21]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[22]
The Open Babel Package, version 3.1.1 2021. Available from: http://openbabel.org (Accessed November 2021)
[23]
BIOVIA. Dassault Systèmes, BIOVIA Discovery Studio Visualizer, v211020298. San Diego: Dassault Systèmes 2021.
[24]
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[25]
Yadav R, Imran M, Dhamija P, Chaurasia DK, Handu S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J Biomol Struct Dyn 2021; 39(17): 6617-32.
[http://dx.doi.org/10.1080/07391102.2020.1796812] [PMID: 32715956]
[26]
Muegge I. Selection criteria for drug-like compounds. Med Res Rev 2003; 23(3): 302-21.
[http://dx.doi.org/10.1002/med.10041] [PMID: 12647312]
[27]
Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015; 58(9): 4066-72.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[28]
Chitre TS, Asgaonkar KD, Patil SM, Kumar S, Khedkar VM, Garud DR. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput Biol Chem 2017; 68: 211-8.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[29]
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[30]
Kumar V, Kumar R, Parate S, et al. Identification of ACK1 inhibitors as anticancer agents by using computer-aided drug designing. J Mol Struct 2021; 1235: 130200.
[http://dx.doi.org/10.1016/j.molstruc.2021.130200]
[31]
Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg Chem 2021; 106: 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[32]
Faria WCS, de Oliveira MG, da Conceição EC, et al. Antioxidant efficacy and in silico toxicity prediction of free and spray-dried extracts of green Arabica and Robusta coffee fruits and their application in edible oil. Food Hydrocoll 2020; 108: 106004.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106004]
[33]
Hu B, Joseph J, Geng X, et al. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Comput Biol Chem 2020; 86: 107249.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107249] [PMID: 32199335]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy