Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Long Non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers

Author(s): Martina Fontanini, Manuela Cabiati, Manuel Giacomarra, Giovanni Federico and Silvia Del Ry*

Volume 28, Issue 19, 2022

Published on: 22 April, 2022

Page: [1592 - 1605] Pages: 14

DOI: 10.2174/1381612828666220211153304

Price: $65

Abstract

Background: A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spreading all over the world, including the children: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities.

Objective: This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis.

Conclusion: LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.

Keywords: Long non-coding RNA (lncRNAs), adipogenesis, lipogenesis, lipid metabolism, obesity, biomarkers.

« Previous
[1]
Lifshitz F, Lifshitz JZ. Globesity: The root causes of the obesity epidemic in the USA and now worldwide. Pediatr Endocrinol Rev 2014; 12(1): 17-34.
[PMID: 25345082]
[2]
Pi-Sunyer FX. Medical hazards of obesity. Ann Intern Med 1993; 119(7 Pt 2): 655-60.
[http://dx.doi.org/10.7326/0003-4819-119-7_Part_2-199310011-00006] [PMID: 8363192]
[3]
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29(1): 415-45.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101322] [PMID: 21219177]
[4]
Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 2009; 53(21): 1925-32.
[http://dx.doi.org/10.1016/j.jacc.2008.12.068] [PMID: 19460605]
[5]
Carbone S, Lavie CJ, Arena R. Obesity and heart failure: Focus on the obesity paradox. Mayo Clin Proc 2017; 92(2): 266-79.
[http://dx.doi.org/10.1016/j.mayocp.2016.11.001] [PMID: 28109619]
[6]
Felber JP, Golay A. Pathways from obesity to diabetes. Int J Obes 2002; 26(S2 Suppl. 2): S39-45..
[http://dx.doi.org/10.1038/sj.ijo.0802126] [PMID: 12174327]
[7]
Verma S, Hussain ME. Obesity and diabetes: An update, diabetes & metabolic syndrome. Clin Res Rev 2017; 11: 73-9.
[8]
Maffeis C. Aetiology of overweight and obesity in children and adolescents. Eur J Pediatr 2000; 159(S1 Suppl. 1): S35-44.
[http://dx.doi.org/10.1007/PL00014361] [PMID: 11011954]
[9]
Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the litera-ture. Prev Med 1993; 22(2): 167-77.
[http://dx.doi.org/10.1006/pmed.1993.1014] [PMID: 8483856]
[10]
Daniels SR. Daniels SRComplications of obesity in children and adolescents. Int J Obes 2009; 33(S1): S60-5.
[http://dx.doi.org/10.1038/ijo.2009.20]
[11]
Umer A, Kelley GA, Cottrell LE, Giacobbi P Jr, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017; 17(1): 683.
[http://dx.doi.org/10.1186/s12889-017-4691-z] [PMID: 28851330]
[12]
McCrindle BW. Cardiovascular consequences of childhood obesity. Can J Cardiol 2015; 31(2): 124-30.
[http://dx.doi.org/10.1016/j.cjca.2014.08.017] [PMID: 25661547]
[13]
Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res 2012; 22(9): 1760-74.
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[14]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[15]
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: Insights into functions. Nat Rev Genet 2009; 10(3): 155-9.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[16]
Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds. Epigenetics 2011; 6(5): 539-43.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[17]
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[18]
Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA 2018; 9(3)e1471
[http://dx.doi.org/10.1002/wrna.1471] [PMID: 29516680]
[19]
Nam JW, Choi SW, You BH. Incredible RNA: Dual functions of coding and noncoding. Mol Cells 2016; 39(5): 367-74.
[http://dx.doi.org/10.14348/molcells.2016.0039] [PMID: 27137091]
[20]
Fan J, Xing Y, Wen X, et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol 2015; 16(1): 139.
[http://dx.doi.org/10.1186/s13059-015-0705-2] [PMID: 26169368]
[21]
Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329(5992): 689-93.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[22]
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505(7483): 344-52.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[23]
Fatica A, Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet 2014; 15(1): 7-21.
[http://dx.doi.org/10.1038/nrg3606] [PMID: 24296535]
[24]
Salviano-Silva A, Lobo-Alves SC, Almeida RC, Malheiros D, Petzl-Erler ML. Besides pathology: Long non-coding RNA in cell and tis-sue homeostasis. Noncoding RNA 2018; 4(1): 3.
[http://dx.doi.org/10.3390/ncrna4010003] [PMID: 29657300]
[25]
Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013; 110(9): 3387-92.
[http://dx.doi.org/10.1073/pnas.1222643110] [PMID: 23401553]
[26]
Muret K, Désert C, Lagoutte L, et al. Long noncoding RNAs in lipid metabolism: Literature review and conservation analysis across species. BMC Genomics 2019; 20(1): 882.
[http://dx.doi.org/10.1186/s12864-019-6093-3] [PMID: 31752679]
[27]
Sun M, Kraus WL. From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36(1): 25-64.
[http://dx.doi.org/10.1210/er.2014-1034] [PMID: 25426780]
[28]
Sun L, Lin JD. Function and mechanism of Long noncoding RNAs in adipocyte biology. Diabetes 2019; 68(5): 887-96.
[http://dx.doi.org/10.2337/dbi18-0009] [PMID: 31010880]
[29]
Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013; 92(6-7): 229-36.
[http://dx.doi.org/10.1016/j.ejcb.2013.06.001] [PMID: 23876739]
[30]
Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000; 16(1): 145-71.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.145] [PMID: 11031233]
[31]
Chen C, Cui Q, Zhang X, et al. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: Emerging insights in obesity. Cell Signal 2018; 51: 47-58.
[http://dx.doi.org/10.1016/j.cellsig.2018.07.012] [PMID: 30071290]
[32]
Xiao T, Liu L, Li H, et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPα. Stem Cell Reports 2015; 5(5): 856-65.
[http://dx.doi.org/10.1016/j.stemcr.2015.09.007] [PMID: 26489893]
[33]
Cai R, Sun Y, Qimuge N, et al. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating adiponectin mRNA translation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863(4): 420-32.
[http://dx.doi.org/10.1016/j.bbalip.2018.01.005] [PMID: 29414510]
[34]
Li M, Sun X, Cai H, et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim Biophys Acta 2016; 1859(7): 871-82.
[http://dx.doi.org/10.1016/j.bbagrm.2016.05.003] [PMID: 27156885]
[35]
Huang J, Jia R, Wei X, Luo X. Time-sequential expression of lnc AK079912 during adipose tissue development and browning in mice. Nan Fang Yi Ke Da Xue Xue Bao 2019; 39(12): 1494-9.
[PMID: 31907161]
[36]
Mi L, Zhao XY, Li S, Yang G, Lin JD. Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Mol Metab 2016; 6(1): 101-10.
[http://dx.doi.org/10.1016/j.molmet.2016.10.010] [PMID: 28123941]
[37]
You LH, Zhu LJ, Yang L, et al. Transcriptome analysis reveals the potential contribution of long noncoding RNAs to brown adipocyte differentiation. Mol Genet Genomics 2015; 290(5): 1659-71.
[http://dx.doi.org/10.1007/s00438-015-1026-6] [PMID: 25773316]
[38]
Li M, Xie Z, Wang P, et al. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death Dis 2018; 9(5): 554.
[http://dx.doi.org/10.1038/s41419-018-0627-5] [PMID: 29748618]
[39]
You L, Zhou Y, Cui X, et al. GM13133 is a negative regulator in mouse white adipocytes differentiation and drives the characteristics of brown adipocytes. J Cell Physiol 2018; 233(1): 313-24.
[http://dx.doi.org/10.1002/jcp.25878] [PMID: 28247947]
[40]
Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W. Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 2016; 6(1): 28897.
[http://dx.doi.org/10.1038/srep28897] [PMID: 27349231]
[41]
Wang Y, Liu W, Liu Y, et al. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. J Cell Physiol 2018; 233(9): 7435-46.
[http://dx.doi.org/10.1002/jcp.26589] [PMID: 29663375]
[42]
Divoux A, Karastergiou K, Xie H, et al. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity (Silver Spring) 2014; 22(8): 1781-5.
[http://dx.doi.org/10.1002/oby.20793] [PMID: 24862299]
[43]
Nuermaimaiti N, Liu J, Liang X, et al. Effect of lncRNA HOXA11-AS1 on adipocyte differentiation in human adipose-derived stem cells. Biochem Biophys Res Commun 2018; 495(2): 1878-84.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.006] [PMID: 29217197]
[44]
Zhu XX, Yan YW, Chen D, et al. Correction: Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget 2018; 9(25): 17978.
[http://dx.doi.org/10.18632/oncotarget.25078] [PMID: 29707162]
[45]
Zhang X, Xue C, Lin J, et al. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipo-cyte metabolism. Sci Transl Med 2018; 10(446)eaar5987
[http://dx.doi.org/10.1126/scitranslmed.aar5987] [PMID: 29925637]
[46]
Alvarez-Dominguez JR, Bai Z, Xu D, et al. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regu-lators of brown adipocyte development. Cell Metab 2015; 21(5): 764-76.
[http://dx.doi.org/10.1016/j.cmet.2015.04.003] [PMID: 25921091]
[47]
Bai Z, Chai XR, Yoon MJ, et al. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol 2017; 15(8)e2002176
[http://dx.doi.org/10.1371/journal.pbio.2002176] [PMID: 28763438]
[48]
Lo KA, Huang S, Walet ACE, et al. Adipocyte long noncoding RNA transcriptome analysis of obese mice identified lnc-leptin which regulates leptin. Diabetes 2018; 67(6): 1045-56.
[http://dx.doi.org/10.2337/db17-0526] [PMID: 29519872]
[49]
Cai R, Tang G, Zhang Q, et al. A Novel lnc-RNA, named lnc-ORA, is identified by RNA-Seq Analysis, and its knockdown inhibits adi-pogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells 2019; 8(5): 477.
[http://dx.doi.org/10.3390/cells8050477] [PMID: 31109074]
[50]
Hacisuleyman E, Goff LA, Trapnell C, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 2014; 21(2): 198-206.
[http://dx.doi.org/10.1038/nsmb.2764] [PMID: 24463464]
[51]
Chen J, Liu Y, Lu S, et al. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int J Obes 2017; 41(2): 299-308.
[http://dx.doi.org/10.1038/ijo.2016.189] [PMID: 27780975]
[52]
Cui X, You L, Li Y, et al. A transcribed ultraconserved noncoding RNA, uc.417, serves as a negative regulator of brown adipose tissue thermogenesis. FASEB J 2016; 30(12): 4301-12.
[http://dx.doi.org/10.1096/fj.201600694R] [PMID: 27655899]
[53]
Li Z, Jin C, Chen S, et al. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 2017; 433(1-2): 51-60.
[http://dx.doi.org/10.1007/s11010-017-3015-z] [PMID: 28382492]
[54]
Huang Y, Jin C, Zheng Y, et al. Knockdown of lncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep 2017; 7(1): 8080.
[http://dx.doi.org/10.1038/s41598-017-08131-6] [PMID: 28808264]
[55]
Gernapudi R, Wolfson B, Zhang Y, et al. MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol 2015; 36(1): 30-8.
[http://dx.doi.org/10.1128/MCB.00702-15] [PMID: 26459763]
[56]
Firmin FF, Oger F, Gheeraert C, et al. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep 2017; 7(1): 14087.
[http://dx.doi.org/10.1038/s41598-017-14570-y] [PMID: 29075020]
[57]
Zhu E, Zhang J, Li Y, Yuan H, Zhou J, Wang B. Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. FASEB J 2019; 33(2): 2396-408.
[http://dx.doi.org/10.1096/fj.201800739RRR] [PMID: 30277818]
[58]
Pang WJ, Lin LG, Xiong Y, et al. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. J Cell Biochem 2013; 114(11): 2500-12.
[http://dx.doi.org/10.1002/jcb.24595] [PMID: 23749759]
[59]
Yi F, Zhang P, Wang Y, et al. Long non-coding RNA slincRAD functions in methylation regulation during the early stage of mouse adi-pogenesis. RNA Biol 2019; 16(10): 1401-13.
[http://dx.doi.org/10.1080/15476286.2019.1631643] [PMID: 31199203]
[60]
Xu B, Gerin I, Miao H, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One 2010; 5(12)e14199
[http://dx.doi.org/10.1371/journal.pone.0014199] [PMID: 21152033]
[61]
Shang G, Wang Y, Xu Y, et al. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J Cell Physiol 2018; 233(8): 6041-51.
[http://dx.doi.org/10.1002/jcp.26424] [PMID: 29319166]
[62]
Liu Y, Wang Y, He X, et al. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res (Amst) 2018; 32: 35-42.
[http://dx.doi.org/10.1016/j.scr.2018.08.016] [PMID: 30172905]
[63]
Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010; 11(5): 354-61.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00659.x] [PMID: 19793375]
[64]
Yilmaz M, Claiborn KC, Hotamisligil GS. De novo lipogenesis products and endogenous lipokines. Diabetes 2016; 65(7): 1800-7.
[http://dx.doi.org/10.2337/db16-0251] [PMID: 27288005]
[65]
Perry RJ, Camporez JG, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 2015; 160(4): 745-58.
[http://dx.doi.org/10.1016/j.cell.2015.01.012] [PMID: 25662011]
[66]
Shimano H, Shimomura I, Hammer RE, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 1997; 100(8): 2115-24.
[http://dx.doi.org/10.1172/JCI119746] [PMID: 9329978]
[67]
Lenhard JM. Lipogenic enzymes as therapeutic targets for obesity and diabetes. Curr Pharm Des 2011; 17(4): 325-31.
[http://dx.doi.org/10.2174/138161211795164185] [PMID: 21375498]
[68]
Chen J, Cui X, Shi C, et al. Differential lncRNA expression profiles in brown and white adipose tissues. Mol Genet Genomics 2015; 290(2): 699-707.
[http://dx.doi.org/10.1007/s00438-014-0954-x] [PMID: 25472036]
[69]
Lai CQ, Parnell LD, Ordovas JM. The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol 2005; 16(2): 153-66.
[http://dx.doi.org/10.1097/01.mol.0000162320.54795.68] [PMID: 15767855]
[70]
Liu G, Zheng X, Xu Y, Lu J, Chen J, Huang X. Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin Med J (Engl) 2015; 128(1): 91-7.
[http://dx.doi.org/10.4103/0366-6999.147824] [PMID: 25563320]
[71]
Zhao XY, Xiong X, Liu T, et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun 2018; 9(1): 2986.
[http://dx.doi.org/10.1038/s41467-018-05383-2] [PMID: 30061575]
[72]
Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in cen-tral metabolism. Biochim Biophys Acta 2014; 1843(2): 372-86.
[http://dx.doi.org/10.1016/j.bbamcr.2013.10.016] [PMID: 24184209]
[73]
Hu YW, Yang JY, Ma X, et al. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. J Lipid Res 2014; 55(4): 681-97.
[http://dx.doi.org/10.1194/jlr.M044669] [PMID: 24493833]
[74]
Yang L, Li P, Yang W, et al. Integrative transcriptome analyses of metabolic responses in mice define pivotal lncRNA metabolic regula-tors. Cell Metab 2016; 24(4): 627-39.
[http://dx.doi.org/10.1016/j.cmet.2016.08.019] [PMID: 27667668]
[75]
Liu C, Yang Z, Wu J, et al. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 2018; 67(5): 1768-83.
[http://dx.doi.org/10.1002/hep.29654] [PMID: 29140550]
[76]
Cui M, Xiao Z, Wang Y, et al. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res 2015; 75(5): 846-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1192] [PMID: 25592151]
[77]
Sallam T, Jones MC, Gilliland T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 2016; 534(7605): 124-8.
[http://dx.doi.org/10.1038/nature17674] [PMID: 27251289]
[78]
Zhang M, Chi X, Qu N, Wang C. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contrib-utes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun 2018; 499(1): 66-70.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.127] [PMID: 29555473]
[79]
Lan X, Yan J, Ren J, et al. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016; 64(1): 58-72.
[http://dx.doi.org/10.1002/hep.28391] [PMID: 26663205]
[80]
Li D, Guo L, Deng B, et al. Long non coding RNA HR1 participates in the expression of SREBP 1c through phosphorylation of the PDK1/AKT/FoxO1 pathway. Mol Med Rep 2018; 18(3): 2850-6.
[http://dx.doi.org/10.3892/mmr.2018.9278] [PMID: 30015961]
[81]
Molina E, Chew GS, Myers SA, et al. A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes. Sci Rep 2017; 7(1): 16710.
[http://dx.doi.org/10.1038/s41598-017-17165-9] [PMID: 29196750]
[82]
Ruan X, Li P, Cangelosi A, Yang L, Cao H. A long non-coding RNA, lncLGR, regulates hepatic glucokinase expression and glycogen storage during fasting. Cell Rep 2016; 14(8): 1867-75.
[http://dx.doi.org/10.1016/j.celrep.2016.01.062] [PMID: 26904944]
[83]
Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab 2015; 21(3): 455-67.
[http://dx.doi.org/10.1016/j.cmet.2015.02.004] [PMID: 25738460]
[84]
Wang J, Yang W, Chen Z, et al. Long noncoding RNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis. Diabetes 2018; 67(4): 581-93.
[http://dx.doi.org/10.2337/db17-0799] [PMID: 29382663]
[85]
Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep 2016; 6(1): 22640.
[http://dx.doi.org/10.1038/srep22640] [PMID: 26935028]
[86]
Fu X, Zhu J, Zhang L, Shu J. Long non-coding RNA NEAT1 promotes steatosis via enhancement of estrogen receptor alpha-mediated AQP7 expression in HepG2 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 1782-7.
[http://dx.doi.org/10.1080/21691401.2019.1604536] [PMID: 31062612]
[87]
Wang Y, Tang H, Ji X, et al. Expression profile analysis of long non-coding RNAs involved in the metformin-inhibited gluconeogenesis of primary mouse hepatocytes. Int J Mol Med 2018; 41(1): 302-10.
[http://dx.doi.org/10.3892/ijmm.2017.3243] [PMID: 29115403]
[88]
Chen G, Yu D, Nian X, et al. LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL). Sci Rep 2016; 6(1): 35531.
[http://dx.doi.org/10.1038/srep35531] [PMID: 27759039]
[89]
Gao H, Kerr A, Jiao H, et al. Long non-coding RNAs associated with metabolic traits in human white adipose tissue. EBioMedicine 2018; 30: 248-60.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.010] [PMID: 29580841]
[90]
Tang S, Zhu W, Zheng F, et al. The Long noncoding RNA Blnc1 protects against diet-induced obesity by promoting mitochondrial func-tion in white fat. Diabetes Metab Syndr Obes 2020; 13: 1189-201.
[http://dx.doi.org/10.2147/DMSO.S248692] [PMID: 32368112]
[91]
Liu W, Ma C, Yang B, Yin C, Zhang B, Xiao Y. LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun 2017; 493(3): 1168-75.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.114] [PMID: 28943435]
[92]
Schmidt E, Dhaouadi I, Gaziano I, et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun 2018; 9(1): 3622.
[http://dx.doi.org/10.1038/s41467-018-05933-8] [PMID: 30190464]
[93]
Chen R, Xin G, Zhang X. Long non-coding RNA HCP5 serves as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogen-esis of childhood obesity via the MAPK signaling pathway. J Pediatr Endocrinol Metab 2019; 32(12): 1327-39.
[http://dx.doi.org/10.1515/jpem-2018-0432] [PMID: 31622249]
[94]
Stapleton K, Das S, Reddy MA, et al. Novel Long noncoding RNA, macrophage inflammation-suppressing transcript (MIST) regulates macrophage activation during obesity. Arterioscler Thromb Vasc Biol 2020; 40(4): 914-28.
[http://dx.doi.org/10.1161/ATVBAHA.119.313359] [PMID: 32078363]
[95]
Zhang L, Zhang D, Qin ZY, Li J, Shen ZY. The role and possible mechanism of long noncoding RNA PVT1 in modulating 3T3-L1 preadipocyte proliferation and differentiation. IUBMB Life 2020; 72(7): 1460-7.
[http://dx.doi.org/10.1002/iub.2269] [PMID: 32150331]
[96]
Liu S, Sheng L, Miao H, et al. SRA gene knockout protects against diet-induced obesity and improves glucose tolerance. J Biol Chem 2014; 289(19): 13000-9.
[http://dx.doi.org/10.1074/jbc.M114.564658] [PMID: 24675075]
[97]
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long noncoding RNAs in regulation of adipogenesis and adipose tissue function. eLife 2020; 9e59053.
[http://dx.doi.org/10.7554/eLife.59053] [PMID: 32730204]
[98]
Zhao XY, Li S, Wang GX, Yu Q, Lin JD. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differen-tiation. Mol Cell 2014; 55(3): 372-82.
[http://dx.doi.org/10.1016/j.molcel.2014.06.004] [PMID: 25002143]
[99]
Rajakumari S, Wu J, Ishibashi J, et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab 2013; 17(4): 562-74.
[http://dx.doi.org/10.1016/j.cmet.2013.01.015] [PMID: 23499423]
[100]
Shapira SN, Lim HW, Rajakumari S, et al. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes Dev 2017; 31(7): 660-73.
[http://dx.doi.org/10.1101/gad.294405.116] [PMID: 28428261]
[101]
Karbiener M, Fischer C, Nowitsch S, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390(2): 247-51.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.098] [PMID: 19800867]
[102]
Wang X, Zhang X, Dang Y, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regu-lating MSH5 and DNA damage repair via YB1. Nucleic Acids Res 2020; 48(8): 4480-91.
[http://dx.doi.org/10.1093/nar/gkaa127] [PMID: 32112110]
[103]
Chooniedass-Kothari S, Emberley E, Hamedani MK, et al. The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 2004; 566(1-3): 43-7.
[http://dx.doi.org/10.1016/j.febslet.2004.03.104] [PMID: 15147866]
[104]
Kawashima H, Takano H, Sugita S, Takahara Y, Sugimura K, Nakatani T. A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: Expression in prostate cancer cells and enhancement of androgen receptor activ-ity. Biochem J 2003; 369(Pt 1): 163-71.
[http://dx.doi.org/10.1042/bj20020743] [PMID: 12350225]
[105]
McKay DB, Xi L, Barthel KKB, Cech TR. Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA. J Mol Biol 2014; 426(8): 1766-85.
[http://dx.doi.org/10.1016/j.jmb.2014.01.006] [PMID: 24486609]
[106]
Coleman KM, Lam V, Jaber BM, Lanz RB, Smith CL. SRA coactivation of estrogen receptor-alpha is phosphorylation-independent, and enhances 4-hydroxytamoxifen agonist activity. Biochem Biophys Res Commun 2004; 323(1): 332-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.090] [PMID: 15351741]
[107]
Li Q, Shao Y, Zhang X, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol 2015; 36(3): 2007-12.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]
[108]
Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 2015; 5(1): 11516.
[http://dx.doi.org/10.1038/srep11516] [PMID: 26096073]
[109]
Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long Non-Coding RNAs in Cancer. Trends Mol Med 2018; 24(3): 257-77.
[http://dx.doi.org/10.1016/j.molmed.2018.01.001] [PMID: 29449148]
[110]
Sánchez Y, Huarte M. Long non-coding RNAs: Challenges for diagnosis and therapies. Nucleic Acid Ther 2013; 23(1): 15-20.
[http://dx.doi.org/10.1089/nat.2012.0414] [PMID: 23391415]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy