Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Mini-Review Article

Progress in Catalytic Decarboxylative Oxidative C-H Alkynylation

Author(s): Biswajit Panda*

Volume 11, Issue 1, 2022

Published on: 25 March, 2022

Page: [2 - 15] Pages: 14

DOI: 10.2174/2211544711666220210125547

Price: $65

Abstract

Alkyne carboxylic acid derivatives are stable, non-toxic, inexpensive, and commercially available. They are prevalent intermediates for various synthetic transformations. In recent years, decarboxylative oxidative alkynylation reactions involving direct C−H bond activation of diverse carbo- and hetero-cycles with alkyne carboxylic acid have attracted more and more interest from the synthetic community. The joy and challenges of direct oxidative decarboxylative alkynylation have been discussed in detail to enlighten this highly emerging area. More emphasis is being placed on the fascinating implementation and advancement of various methods for the formation of C(SP2)-C(SP) bonds. This short review mainly focuses on developments of the decarboxylative oxidative alkynylation reaction, considering the uniqueness of each protocol by highlighting the substrate scope, selectivity, and yields in conjunction with mechanistic insights.

Keywords: Oxidative coupling, decarboxylative reaction, C–H alkynylation, alkynes, heterocycles, C(SP2)- C(SP) bond.

Graphical Abstract

[1]
Diederich, F.; Stang, P.J.; Tykwinski, R.R. Acetylene Chemistry: Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005.
[2]
Doucet, H.; Hierso, J.C. Palladium-based catalytic systems for the synthesis of conjugated enynes by Sonogashira reactions and related alkynylations. Angew. Chem. Int. Ed., 2007, 46(6), 834-871.
[http://dx.doi.org/10.1002/anie.200602761] [PMID: 17335070]
[3]
Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev., 2011, 40(10), 5084-5121.
[http://dx.doi.org/10.1039/c1cs15071e] [PMID: 21655588]
[4]
Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[5]
Plenio, H. Catalysts for the sonogashira coupling-the crownless again shall be king. Angew. Chem. Int. Ed. Engl., 2008, 47(37), 6954-6956.
[http://dx.doi.org/10.1002/anie.200802270] [PMID: 18683173]
[6]
Li, C.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update. Chem. Rev., 2005, 105(8), 3095-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[7]
Heravi, M.M.; Sadjadi, S. Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron, 2009, 65, 7761-7775.
[http://dx.doi.org/10.1016/j.tet.2009.06.028]
[8]
Chen, C.; Wu, J.; Yan, G.; Huang, D. Recent advances of propiolic acids in organic reactions. Tetrahedron Lett., 2020, 61, 151415-151418.
[http://dx.doi.org/10.1016/j.tetlet.2019.151415]
[9]
Rodríguez, N.; Goossen, L.J. Decarboxylative coupling reactions: A modern strategy for C-C-bond formation. Chem. Soc. Rev., 2011, 40(10), 5030-5048.
[http://dx.doi.org/10.1039/c1cs15093f] [PMID: 21792454]
[10]
Smith, J.M.; Qin, T.; Merchant, R.R.; Edwards, J.T.; Malins, L.R.; Liu, Z.; Che, G.; Shen, Z.; Shaw, S.A.; Eastgate, M.D.; Baran, P.S. Decarboxylative alkynylation. Angew. Chem. Int. Ed., 2017, 56, 11906-11910.
[http://dx.doi.org/10.1002/anie.201705107]
[11]
Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-catalyzed decarboxylative C-H functionalization. Chem. Rev., 2017, 117(13), 8864-8907.
[http://dx.doi.org/10.1021/acs.chemrev.6b00516] [PMID: 28266216]
[12]
Zhang, T.; Wang, N.X.; Xing, Y. Advances in decarboxylative oxidative coupling reaction. J. Org. Chem., 2018, 83(15), 7559-7565.
[http://dx.doi.org/10.1021/acs.joc.8b01080] [PMID: 29986581]
[13]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[14]
Carril, M.; Correa, A.; Bolm, C. Iron-catalyzed Sonogashira reactions. Angew. Chem. Int. Ed. Engl., 2008, 47(26), 4862-4865.
[http://dx.doi.org/10.1002/anie.200801539] [PMID: 18506862]
[15]
Torborg, C.; Huang, J.; Schulz, T.; Schäffner, B.; Zapf, A.; Spannenberg, A.; Börner, A.; Beller, M. Improved palladium-catalyzed Sonogashira coupling reactions of aryl chlorides. Chemistry, 2009, 15(6), 1329-1336.
[http://dx.doi.org/10.1002/chem.200802444] [PMID: 19123225]
[16]
Finke, A.D.; Elleby, E.C.; Boyd, M.J.; Weissman, H.; Moore, J.S. Zinc chloride-promoted aryl bromide-alkyne cross-coupling reactions at room temperature. J. Org. Chem., 2009, 74(22), 8897-8900.
[http://dx.doi.org/10.1021/jo902015w] [PMID: 19860393]
[17]
Eckhardt, M.; Fu, G.C. The first applications of carbene ligands in cross-couplings of alkyl electrophiles: Sonogashira reactions of unactivated alkyl bromides and iodides. J. Am. Chem. Soc., 2003, 125(45), 13642-13643.
[http://dx.doi.org/10.1021/ja038177r] [PMID: 14599185]
[18]
Liang, Y.; Xie, Y.X.; Li, J.H. Modified palladium-catalyzed Sonogashira cross-coupling reactions under copper-, amine-, and solvent-free conditions. J. Org. Chem., 2006, 71(1), 379-381.
[http://dx.doi.org/10.1021/jo051882t] [PMID: 16388664]
[19]
Gelman, D.; Buchwald, S.L. Efficient palladium-catalyzed coupling of aryl chlorides and tosylates with terminal alkynes: Use of a copper cocatalyst inhibits the reaction. Angew. Chem. Int. Ed., 2003, 42(48), 5993-5996.
[http://dx.doi.org/10.1002/anie.200353015] [PMID: 14679552]
[20]
Severin, R.; Reimer, J.; Doye, S. One-pot procedure for the synthesis of unsymmetrical diarylalkynes. J. Org. Chem., 2010, 75(10), 3518-3521.
[http://dx.doi.org/10.1021/jo100460v] [PMID: 20420397]
[21]
Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J.H.; Jung, H.M.; Lee, S. One-pot synthesis of diarylalkynes using palladium-catalyzed Sonogashira reaction and decarboxylative coupling of sp carbon and sp2 carbon. Org. Lett., 2008, 10(5), 945-948.
[http://dx.doi.org/10.1021/ol703130y] [PMID: 18229935]
[22]
Brand, J.P.; Waser, J. Electrophilic alkynylation: The dark side of acetylene chemistry. Chem. Soc. Rev., 2012, 41(11), 4165-4179.
[http://dx.doi.org/10.1039/c2cs35034c] [PMID: 22513709]
[23]
Torborg, C.; Zapf, A.; Beller, M. Palladium catalysts for highly selective Sonogashira reactions of aryl and heteroaryl bromides. ChemSusChem, 2008, 1(1-2), 91-96.
[http://dx.doi.org/10.1002/cssc.200700004] [PMID: 18605670]
[24]
Panda, B.; Sarkar, T.K. On the catalytic duo PdCl2(PPh3)2/AuCl(PPh3) that cannot effect a Sonogashira-type reaction: A correction. Tetrahedron Lett., 2010, 51, 301-305.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.003]
[25]
Panda, B.; Sarkar, T.K. Gold and palladium combined for the Sonogashira-type cross-coupling of arenediazonium salts. Chem. Commun. (Camb.), 2010, 46(18), 3131-3133.
[http://dx.doi.org/10.1039/c001277g] [PMID: 20361097]
[26]
Panda, B.; Sarkar, T.K. Gold and palladium combined for the Sonogashira coupling of aryl and heteroaryl Halides. Synthesis, 2013, 45, 817.
[http://dx.doi.org/10.1055/s-0032-1318119]
[27]
Panda, B. Sonogashira coupling of arenediazonium salts: Discovery and developments. ARKIVOC, 2021, 2021, 177-199.
[http://dx.doi.org/10.24820/ark.5550190.p011.559]
[28]
Dudnik, A.S.; Gevorgyan, V. Formal inverse Sonogashira reaction: Direct alkynylation of arenes and heterocycles with alkynyl halides. Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2096-2098.
[http://dx.doi.org/10.1002/anie.200906755] [PMID: 20191647]
[29]
Kobayashi, K.; Arisawa, M.; Yamaguchi, M. GaCl(3)-catalyzed ortho-ethynylation of phenols. J. Am. Chem. Soc., 2002, 124(29), 8528-8529.
[http://dx.doi.org/10.1021/ja026108r] [PMID: 12121084]
[30]
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed direct alkynylation of azoles with alkynyl bromides. Org. Lett., 2009, 11(18), 4156-4159.
[http://dx.doi.org/10.1021/ol901684h] [PMID: 19739688]
[31]
Kawano, T.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Room temperature direct alkynylation of 1,3,4-oxadiazoles with alkynyl bromides under copper catalysis. J. Org. Chem., 2010, 75(5), 1764-1766.
[http://dx.doi.org/10.1021/jo9025622] [PMID: 20073529]
[32]
Tobisu, M.; Ano, Y.; Chatani, N. Palladium-catalyzed direct alkynylation of C-H bonds in benzenes. Org. Lett., 2009, 11(15), 3250-3252.
[http://dx.doi.org/10.1021/ol901049r] [PMID: 19555067]
[33]
Seregin, I.V.; Ryabova, V.; Gevorgyan, V. Direct palladium-catalyzed alkynylation of N-fused heterocycles. J. Am. Chem. Soc., 2007, 129(25), 7742-7743.
[http://dx.doi.org/10.1021/ja072718l] [PMID: 17539646]
[34]
Besselièvre, F.; Piguel, S. Copper as a powerful catalyst in the direct alkynylation of azoles. Angew. Chem. Int. Ed. Engl., 2009, 48(50), 9553-9556.
[http://dx.doi.org/10.1002/anie.200904776] [PMID: 19902446]
[35]
Kim, S.H.; Chang, S. Highly efficient and versatile pd-catalyzed direct alkynylation of both azoles and azolines. Org. Lett., 2010, 12(8), 1868-1871.
[http://dx.doi.org/10.1021/ol100488v] [PMID: 20337427]
[36]
Brand, J.P.; Waser, J. Direct alkynylation of thiophenes: Cooperative activation of TIPS-EBX with gold and Brønsted acids. Angew. Chem. Int. Ed. Engl., 2010, 49(40), 7304-7307.
[http://dx.doi.org/10.1002/anie.201003179] [PMID: 20730846]
[37]
Brand, J.P.; Charpentier, J.; Waser, J. Direct alkynylation of indole and pyrrole heterocycles. Angew. Chem. Int. Ed. Engl., 2009, 48(49), 9346-9349.
[http://dx.doi.org/10.1002/anie.200905419] [PMID: 19894245]
[38]
Brand, J.P.; Chevalley, C.; Scopelliti, R.; Waser, J. Ethynyl benziodoxolones for the direct alkynylation of heterocycles: Structural requirement, improved procedure for pyrroles, and insights into the mechanism. Chemistry, 2012, 18(18), 5655-5666.
[http://dx.doi.org/10.1002/chem.201200200] [PMID: 22438043]
[39]
Brand, J.P.; Waser, J. Para-selective gold-catalyzed direct alkynylation of anilines. Org. Lett., 2012, 14(3), 744-747.
[http://dx.doi.org/10.1021/ol203289v] [PMID: 22260441]
[40]
Wang, X.; Studer, A. Iodine(III) reagents in radical chemistry. Acc. Chem. Res., 2017, 50(7), 1712-1724.
[http://dx.doi.org/10.1021/acs.accounts.7b00148] [PMID: 28636313]
[41]
Pyo, A.; Kim, J.D.; Choi, H.C.; Lee, S. Ligand-free palladium-catalyzed decarboxylative coupling reactions of aryl iodides and alkynyl carboxylic acids. J. Organomet. Chem., 2013, 724, 271-274.
[http://dx.doi.org/10.1016/j.jorganchem.2012.11.029]
[42]
Mousa, A.H.; Fleckhaus, A.; Kondrashov, M.; Wendt, O.F. Aromatic PCN pincer palladium complexes: Forming and breaking C-C bonds. J. Organomet. Chem., 2017, 845, 157-164.
[http://dx.doi.org/10.1016/j.jorganchem.2017.04.025]
[43]
Reddy, P.V.; Srinivas, P.; Annapurna, M.; Bhargava, S.; Wagler, J.; Mirzadeh, N.; Kantam, M.L. Phosphine-free palladium-catalyzed decarboxylative coupling of alkynylcarboxylic acids with aryl and heteroaryl halides. Adv. Synth. Catal., 2013, 355, 705-710.
[http://dx.doi.org/10.1002/adsc.201200876]
[44]
Li, X.; Yang, F.; Wu, Y. Palladacycle-catalyzed decarboxylative coupling of alkynyl carboxylic acids with aryl chlorides under air. J. Org. Chem., 2013, 78(9), 4543-4550.
[http://dx.doi.org/10.1021/jo400574d] [PMID: 23573947]
[45]
Li, X.; Yang, F.; Wu, Y. Synthesis of diarylalkynes via tandem Sonogashira/decarboxylative reaction of aryl chlorides with propiolic acid. RSC Advances, 2014, 4, 13738-13741.
[http://dx.doi.org/10.1039/C3RA47712F]
[46]
Yang, Y.; Lim, Y.H.; Robins, E.G.; Johannes, C.W. Decarboxylative/Sonogashira-type cross-coupling using PdCl2(Cy*Phine)2. RSC Advances, 2016, 6, 72810-72814.
[http://dx.doi.org/10.1039/C6RA12916A]
[47]
Moon, J.; Jang, M.; Lee, S. Palladium-catalyzed decarboxylative coupling of alkynyl carboxylic acids and aryl halides. J. Org. Chem., 2009, 74(3), 1403-1406.
[http://dx.doi.org/10.1021/jo802290r] [PMID: 19099411]
[48]
Zhang, W.W.; Zhang, X.G.; Li, J.H. Palladium-catalyzed decarboxylative coupling of alkynyl carboxylic acids with benzyl halides or aryl halides. J. Org. Chem., 2010, 75(15), 5259-5264.
[http://dx.doi.org/10.1021/jo1010284] [PMID: 20578679]
[49]
Tartaggia, S.; Lucchi, O.D.; Gooßen, L.J. Practical synthesis of unsymmetrical diarylacetylenes from propiolic acid and two different aryl bromides. Eur. J. Org. Chem., 2012, 1431-1438.
[http://dx.doi.org/10.1002/ejoc.201101770]
[50]
Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K.H.; Lee, S. Synthesis of symmetrical and unsymmetrical diarylalkynes from propiolic acid using palladium-catalyzed decarboxylative coupling. J. Org. Chem., 2010, 75(18), 6244-6251.
[http://dx.doi.org/10.1021/jo101398a] [PMID: 20795634]
[51]
Park, K.; Bae, G.; Park, A.; Kim, Y.; Choe, J.; Song, K.H.; Lee, S. Synthesis of symmetrical diarylalkyne from palladium-catalyzed decarboxylative couplings of propiolic acid and aryl bromides under water. Tetrahedron Lett., 2011, 52, 576-580.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.110]
[52]
Lee, H.J.; Park, K.; Bae, G.; Choe, J.; Song, K.H.; Lee, S. Efficient synthesis of unsymmetric diarylalkynes from decarboxylative coupling in a continuous flow reaction system. Tetrahedron Lett., 2011, 52, 5064-5067.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.091]
[53]
Son, Y.; Kim, H.S.; Lee, J.H.; Jang, J.; Lee, C.F.; Lee, S. Nickel-catalyzed decarboxylative coupling of an alkynyl carboxylic acid with aryl iodides. Tetrahedron Lett., 2017, 58, 1413-1416.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.073]
[54]
Pan, D.L.; Zhang, C.; Ding, S.T.; Jiao, N. Phosphane-free copper-catalyzed decarboxylative coupling of alkynyl carboxylic acids with aryl halides under aerobic conditions. Eur. J. Org. Chem., 2011, 4751-4755.
[55]
Li, T.; Sun, P.; Yang, H.; Zhu, Y.; Yan, H.; Lu, L.; Mao, J. Copper-catalyzed decarboxylative coupling of aryl halides with alkynyl carboxylic acids performed in water. Tetrahedron, 2012, 68, 6413-6419.
[http://dx.doi.org/10.1016/j.tet.2012.06.003]
[56]
Park, J.; Jung, D.; Kim, H.S.; Na, K.; Lee, S. Zeolite-based copper catalyst for decarboxylative coupling of alkynyl carboxylic acids with aryl iodides. Catal. Commun., 2017, 99, 83-88.
[http://dx.doi.org/10.1016/j.catcom.2017.05.025]
[57]
Zhao, D.; Gao, C.; Su, X.; He, Y.; You, J.; Xue, Y. Copper-catalyzed decarboxylative cross-coupling of alkynyl carboxylic acids with aryl halides. Chem. Commun. (Camb.), 2010, 46(47), 9049-9051.
[http://dx.doi.org/10.1039/c0cc03772a] [PMID: 21049135]
[58]
Qu, X.; Li, T.; Sun, P.; Zhu, Y.; Yang, H.; Mao, J. Highly effective copper-catalyzed decarboxylative coupling of aryl halides with alkynyl carboxylic acids. Org. Biomol. Chem., 2011, 9(20), 6938-6942.
[http://dx.doi.org/10.1039/c1ob05969f] [PMID: 21904730]
[59]
Wang, X.; Wang, Z.; Xie, Z.; Zhang, G.; Zhang, W.; Gao, Z. Functionalized α,β-ynones: Efficient ligand for Cu catalyzed Sonogashira-type cross-coupling reaction. RSC Advances, 2016, 6, 109296-109300.
[http://dx.doi.org/10.1039/C6RA23742H]
[60]
Kumar, M.R.; Irudayanathan, F.M.; Moon, J.H.; Lee, S. Regioselective one-pot synthesis of isocoumarins and phthalides from 2-iodobenzoic acids and alkynes by temperature control. Adv. Synth. Catal., 2013, 355, 3221-3230.
[http://dx.doi.org/10.1002/adsc.201300561]
[61]
Wang, Z.; Wang, X.; Sun, H.; Zhu, Z.; Zhang, G.; Zhang, W.; Gao, Z. Triazine-triazole conjugates as potent ligands for Cu-catalyzed Sonogashira reaction. ChemistrySelect, 2016, 1, 391-395.
[http://dx.doi.org/10.1002/slct.201600113]
[62]
Li, T.Y.; Qu, X.M.; Zhu, Y.; Sun, P.; Yang, H.L.; Shan, Y.Q.; Zhang, H.X.; Liu, D.F.; Zhang, X.; Mao, J.C. Synthesis of diarylalkynes by iron/copper co-catalyzed decarboxylative sp-sp2 coupling of alkynyl carboxylic acids and aryl halides. Adv. Synth. Catal., 2011, 353, 2731-2738.
[http://dx.doi.org/10.1002/adsc.201100238]
[63]
Yu, S.; Cho, E.; Kim, J.; Lee, S. Palladium-catalyzed decarboxylative coupling of alkynyl carboxylic acids and alkenyl tosylates for the synthesis of enynones. J. Org. Chem., 2017, 82(20), 11150-11156.
[http://dx.doi.org/10.1021/acs.joc.7b02175] [PMID: 28965408]
[64]
Lee, J.H.; Raja, G.C.E.; Yu, S.; Lee, J.; Song, K.H.; Lee, S. Palladium-catalyzed decarboxylative coupling of alkynyl carboxylic acids with aryl tosylates. ACS Omega, 2017, 2(9), 6259-6269.
[http://dx.doi.org/10.1021/acsomega.7b01165] [PMID: 31457871]
[65]
Jadhav, V.G.; Sarode, S.A.; Nagarkar, J.M. Palladium on manganese ferrite: An efficient catalyst for ligand free decarboxylative Sonogashira reaction with arene diazonium tetrafluoroborate. Tetrahedron Lett., 2015, 56, 1771-1774.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.029]
[66]
Bhojane, J.M.; Jadhav, V.G.; Nagarkar, J.M. Pd(NHC)PEPPSI-diazonium salts: An efficient blend for the decarboxylative Sonogashira cross coupling reaction. New J. Chem., 2017, 41, 6775-6780.
[http://dx.doi.org/10.1039/C7NJ00877E]
[67]
Lu, L.; Chellan, P.; Smith, G.S.; Zhang, X.; Yan, H.; Mao, J. Thiosemicarbazone salicylaldiminato palladium(II)-catalyzed alkynylation couplings between arylboronic acids and alkynes or alkynyl carboxylic acids. Tetrahedron, 2014, 70, 5980-5985.
[http://dx.doi.org/10.1016/j.tet.2014.05.087]
[68]
Lee, J.H.; Raja, G.C.E.; Son, Y.; Jang, J.; Kim, J.; Lee, S. Nickel-catalyzed oxidative decarboxylative coupling reactions between alkynyl carboxylic acids and arylboronic acids. Tetrahedron Lett., 2016, 57, 4824-4828.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.054]
[69]
Feng, C.; Loh, T.P. Palladium-catalyzed decarboxylative cross-coupling of alkynyl carboxylic acids with arylboronic acids. Chem. Commun. (Camb.), 2010, 46(26), 4779-4781.
[http://dx.doi.org/10.1039/c0cc00403k] [PMID: 20490417]
[70]
Jang, J.; Raja, G.C.E.; Lee, J.H.; Son, Y.; Kim, J.; Lee, S. Palladium-catalyzed decarboxylative coupling reaction with alkynyl carboxylic acids and arylsiloxanes. Tetrahedron Lett., 2016, 57, 4581-4584.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.095]
[71]
Lim, J.; Choi, J.; Kim, H.S.; Kim, I.S.; Nam, K.C.; Kim, J.; Lee, S. Synthesis of terminal allenes via a copper-catalyzed decarboxylative coupling reaction of alkynyl carboxylic acids. J. Org. Chem., 2016, 81(1), 303-308.
[http://dx.doi.org/10.1021/acs.joc.5b02361] [PMID: 26618610]
[72]
Balsane, K.E.; Gund, S.H.; Nagarkar, J.M. Base free palladium-Ag2O catalyzed decarboxylative cross-coupling of alkynyl carboxylic acids with triarylbismuth reagents. Catal. Commun., 2018, 104, 78-81.
[http://dx.doi.org/10.1016/j.catcom.2017.10.018]
[73]
Modha, S.G.; Mehta, V.P.; Van der Eycken, E.V. Transition metal-catalyzed C-C bond formation via C-S bond cleavage: An overview. Chem. Soc. Rev., 2013, 42(12), 5042-5055.
[http://dx.doi.org/10.1039/c3cs60041f] [PMID: 23467811]
[74]
Yang, F.L.; Tian, S.K. Sulfonyl hydrazides as sulfonyl sources in organic synthesis. Tetrahedron Lett., 2017, 58, 487-504.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.058]
[75]
Chang, S.; Liu, Y.; Yin, S.Z.; Dong, L.L.; Wang, J.F. Pd-Catalyzed decarboxylative alkynylation of alkynyl carboxylic acids with arylsulfonyl hydrazides via a desulfinative process. New J. Chem., 2019, 43, 5357-5362.
[http://dx.doi.org/10.1039/C8NJ02964D]
[76]
Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: An update of recent C-H functionalizations. Chem. Rev., 2015, 115(22), 12138-12204.
[http://dx.doi.org/10.1021/cr500431s] [PMID: 26558751]
[77]
Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev., 2019, 119(12), 6769-6787.
[http://dx.doi.org/10.1021/acs.chemrev.9b00045] [PMID: 31074264]
[78]
Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition metals for C-H activation. Chem. Rev., 2019, 119(4), 2192-2452.
[http://dx.doi.org/10.1021/acs.chemrev.8b00507] [PMID: 30480438]
[79]
Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev., 2017, 117(13), 8787-8863.
[http://dx.doi.org/10.1021/acs.chemrev.6b00567] [PMID: 28085272]
[80]
Tzouras, N.V.; Stamatopoulos, I.K.; Papastavrou, A.T.; Liori, A.A.; Vougioukalakis, G.C. Sustainable metal catalysis in C-H activation. Coord. Chem. Rev., 2017, 343, 25-138.
[http://dx.doi.org/10.1016/j.ccr.2017.04.012]
[81]
Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C-H activation: Examples and concepts. Chem. Soc. Rev., 2016, 45(10), 2900-2936.
[http://dx.doi.org/10.1039/C6CS00075D] [PMID: 27072661]
[82]
Kommagalla, Y.; Chatani, N. Cobalt(II)-catalyzed C-H functionalization using an N,N′-bidentate directing group. Coord. Chem. Rev., 2017, 350, 117-135.
[http://dx.doi.org/10.1016/j.ccr.2017.06.018]
[83]
Kärkäs, M.D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev., 2018, 47(15), 5786-5865.
[http://dx.doi.org/10.1039/C7CS00619E] [PMID: 29911724]
[84]
Nájera, C.; Beletskaya, I.P.; Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev., 2019, 48(16), 4515-4618.
[http://dx.doi.org/10.1039/C8CS00872H] [PMID: 31282495]
[85]
Caspers, L.D.; Nachtsheim, B.J. Directing-group-mediated c-h-alkynylations. Chem. Asian J., 2018, 13(10), 1231-1247.
[http://dx.doi.org/10.1002/asia.201800102] [PMID: 29575823]
[86]
Panda, B. Joy and challenges of alkynylation of arenes and heteroarenes through double C−H functionalizations. Asian J. Org. Chem., 2020, 9, 492-507.
[http://dx.doi.org/10.1002/ajoc.201900733]
[87]
Zhao, H.; Wei, Y.; Xu, J.; Kan, J.; Su, W.; Hong, M. Pd/PR3-catalyzed cross-coupling of aromatic carboxylic acids with electron-deficient polyfluoroarenes via combination of decarboxylation with sp2 C-H cleavage. J. Org. Chem., 2011, 76(3), 882-893.
[http://dx.doi.org/10.1021/jo102175f] [PMID: 21222475]
[88]
Zhao, B. Pd-catalyzed C-3 functionalization of indolizines via C-H bond cleavage. Org. Biomol. Chem., 2012, 10(35), 7108-7119.
[http://dx.doi.org/10.1039/c2ob25643f] [PMID: 22868382]
[89]
Lotz, M.D.; Camasso, N.M.; Canty, A.J.; Sanford, M.S. Role of silver salts in palladium-catalyzed arene and heteroarene C-H functionalization reactions. Organometallics, 2017, 36(1), 165-171.
[http://dx.doi.org/10.1021/acs.organomet.6b00437]
[90]
Kim, J.; Kang, D.; Yoo, E.J.; Lee, P.H. Palladium-catalyzed decarboxylative C-H alkynylation of benzoxazoles with α,β-ynoic acids. Eur. J. Org. Chem., 2013, 7902-7906.
[http://dx.doi.org/10.1002/ejoc.201301441]
[91]
Myers, A.G.; Tanaka, D.; Mannion, M.R. Development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates. J. Am. Chem. Soc., 2002, 124(38), 11250-11251.
[http://dx.doi.org/10.1021/ja027523m] [PMID: 12236722]
[92]
Tanaka, D.; Romeril, S.P.; Myers, A.G. On the mechanism of the palladium(II)-catalyzed decarboxylative olefination of arene carboxylic acids. Crystallographic characterization of non-phosphine palladium(II) intermediates and observation of their stepwise transformation in Heck-like processes. J. Am. Chem. Soc., 2005, 127(29), 10323-10333.
[http://dx.doi.org/10.1021/ja052099l] [PMID: 16028944]
[93]
Goossen, L.J.; Deng, G.; Levy, L.M. Synthesis of biaryls via catalytic decarboxylative coupling. Science, 2006, 313(5787), 662-664.
[http://dx.doi.org/10.1126/science.1128684] [PMID: 16888137]
[94]
Goossen, L.J.; Rodríguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L.M. Biaryl synthesis via Pd-catalyzed decarboxylative coupling of aromatic carboxylates with aryl halides. J. Am. Chem. Soc., 2007, 129(15), 4824-4833.
[http://dx.doi.org/10.1021/ja068993+] [PMID: 17375927]
[95]
Dickstein, J.S.; Mulrooney, C.A.; O’Brien, E.M.; Morgan, B.J.; Kozlowski, M.C. Development of a catalytic aromatic decarboxylation reaction. Org. Lett., 2007, 9(13), 2441-2444.
[http://dx.doi.org/10.1021/ol070749f] [PMID: 17542594]
[96]
Goossen, L.J.; Rodríguez, N.; Lange, P.P.; Linder, C. Decarboxylative cross-coupling of aryl tosylates with aromatic carboxylate salts. Angew. Chem. Int. Ed. Engl., 2010, 49(6), 1111-1114.
[http://dx.doi.org/10.1002/anie.200905953] [PMID: 20041463]
[97]
Xie, K.; Yang, Z.; Zhou, X.; Li, X.; Wang, S.; Tan, Z.; An, X.; Guo, C.C. Pd-catalyzed decarboxylative arylation of thiazole, benzoxazole, and polyfluorobenzene with substituted benzoic acids. Org. Lett., 2010, 12(7), 1564-1567.
[http://dx.doi.org/10.1021/ol100296b] [PMID: 20201587]
[98]
Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. Copper-catalyzed direct alkynylation of electron-deficient polyfluoroarenes with terminal alkynes using O2 as an oxidant. J. Am. Chem. Soc., 2010, 132(8), 2522-2523.
[http://dx.doi.org/10.1021/ja910461e] [PMID: 20131777]
[99]
Kim, H.; Lee, P.H. Palladium-catalyzed decarboxylative sp-sp2 cross-coupling reactions of aryl and vinyl halides and triflates with α,β-ynoic acids using silver oxide. Adv. Synth. Catal., 2009, 351, 2827.
[http://dx.doi.org/10.1002/adsc.200900502]
[100]
Parsharamulu, T.; Vishnuvardhan Reddy, P.; Likhar, P.R.; Lakshmi Kantam, M. Dehydrogenative and decarboxylative C-H alkynylation of heteroarenes catalyzed by Pd(II)-carbene complex. Tetrahedron, 2015, 71, 1975-1981.
[http://dx.doi.org/10.1016/j.tet.2015.02.020]
[101]
Reddy, L.M.; Reddy, P.R.; Reddy, C.K. Palladium-catalyzed decarboxylative cross-coupling of 1,3,4-oxadiazoles with alkynoic acids: A simple route for the preparation of 2-alkynylated 1,3,4-oxadiazoles. Synthesis, 2017, 49, 1675-1679.
[http://dx.doi.org/10.1055/s-0036-1588115]
[102]
Hossian, A.; Manna, K.; Das, P.; Jana, R. CuI/AgI-Promoted decarboxylative alkynylation of ortho-nitro benzoic acids. ChemistrySelect, 2018, 3, 4315-4318.
[http://dx.doi.org/10.1002/slct.201800758]
[103]
Bhadra, S.; Dzik, W.I.; Goossen, L.J. Decarboxylative etherification of aromatic carboxylic acids. J. Am. Chem. Soc., 2012, 134(24), 9938-9941.
[http://dx.doi.org/10.1021/ja304539j] [PMID: 22681310]
[104]
Ribas, X.; Jackson, D.A.; Donnadieu, B.; Mahía, J.; Parella, T.; Xifra, R.; Hedman, B.; Hodgson, K.O.; Llobet, A.; Stack, T.D.P. Aryl CbondH activation by CuII to form an organometallic aryl-CuIII species: A novel twist on copper disproportionation. Angew. Chem. Int. Ed., 2002, 41(16), 2991-2994.
[http://dx.doi.org/10.1002/1521-3773(20020816)41:16<2991:AID-ANIE2991>3.0.CO;2-6] [PMID: 12203435]
[105]
Meng, M.; Wang, G.; Yang, L.; Cheng, K.; Qi, C. Silver-catalyzed double decarboxylative radical alkynylation/annulation of arylpropiolic acids with α-keto acids: Access to ynones and flavones under mild conditions. Adv. Synth. Catal., 2018, 360, 1218-1231.
[http://dx.doi.org/10.1002/adsc.201701469]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy