摘要
在原发性骨恶性肿瘤中,骨肉瘤(OS)是导致成人和儿童发病率和死亡率的最常见形式。有趣的是,这种恶性肿瘤的新诊断病例中有近10-20%已经发生转移。综上所述,骨肉瘤转移和非转移患者的生存率在过去30年没有改变;因此,有人建议我们需要修改OS的治疗方案。近年来,不同的信号通路引起了科学界的关注,因为它们可能是治疗复杂疾病(如癌症)的极佳候选药物。在这篇综述中,我们试图解释骨肉瘤的病理生理学,不同的信号通路参与其启动/进展,并探索如何靶向这一通路,提供更有效的方法。
关键词: 骨肉瘤,信号通路,STATs, Wnt, MAPK, Akt, PI3K/ERK, Notch。
[1]
Unni, K.K.; Dahlin, D.C. Grading of bone tumors. Semin. Diagn. Pathol., 1984, 1(3), 165-172.
[PMID: 6400634]
[PMID: 6400634]
[2]
Evola, F.R.; Costarella, L.; Pavone, V.; Caff, G.; Cannavò, L.; Sessa, A.; Avondo, S.; Sessa, G. Biomarkers of osteosarcoma, chondrosarcoma, and ewing sarcoma. Front. Pharmacol., 2017, 8, 150.
[http://dx.doi.org/10.3389/fphar.2017.00150] [PMID: 28439237]
[http://dx.doi.org/10.3389/fphar.2017.00150] [PMID: 28439237]
[3]
Harrison, D.J.; Geller, D.S.; Gill, J.D.; Lewis, V.O.; Gorlick, R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther., 2018, 18(1), 39-50.
[http://dx.doi.org/10.1080/14737140.2018.1413939] [PMID: 29210294]
[http://dx.doi.org/10.1080/14737140.2018.1413939] [PMID: 29210294]
[4]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[5]
Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat. Rev., 2014, 40(4), 523-532.
[http://dx.doi.org/10.1016/j.ctrv.2013.11.006] [PMID: 24345772]
[http://dx.doi.org/10.1016/j.ctrv.2013.11.006] [PMID: 24345772]
[6]
Moore, D.D.; Luu, H.H. Osteosarcoma. Cancer Treat. Res., 2014, 162, 65-92.
[http://dx.doi.org/10.1007/978-3-319-07323-1_4] [PMID: 25070231]
[http://dx.doi.org/10.1007/978-3-319-07323-1_4] [PMID: 25070231]
[7]
Ottaviani, G.; Jaffe, N. The etiology of osteosarcoma. Cancer Treat. Res., 2009, 152, 15-32.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_2] [PMID: 20213384]
[http://dx.doi.org/10.1007/978-1-4419-0284-9_2] [PMID: 20213384]
[8]
Hameed, M.; Mandelker, D. Tumor Syndromes Predisposing to Osteosarcoma. Adv. Anat. Pathol., 2018, 25(4), 217-222.
[http://dx.doi.org/10.1097/PAP.0000000000000190] [PMID: 29668499]
[http://dx.doi.org/10.1097/PAP.0000000000000190] [PMID: 29668499]
[9]
Ferguson, J.L.; Turner, S.P. Bone Cancer: Diagnosis and treatment principles. Am. Fam. Physician, 2018, 98(4), 205-213.
[PMID: 30215968]
[PMID: 30215968]
[10]
Bernthal, N.M.; Federman, N.; Eilber, F.R.; Nelson, S.D.; Eckardt, J.J.; Eilber, F.C.; Tap, W.D. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer, 2012, 118(23), 5888-5893.
[http://dx.doi.org/10.1002/cncr.27651] [PMID: 22648705]
[http://dx.doi.org/10.1002/cncr.27651] [PMID: 22648705]
[11]
Kaste, S.C.; Pratt, C.B.; Cain, A.M.; Jones-Wallace, D.J.; Rao, B.N. Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer, 1999, 86(8), 1602-1608.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1602::AID-CNCR31>3.0.CO;2-R] [PMID: 10526292]
[http://dx.doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1602::AID-CNCR31>3.0.CO;2-R] [PMID: 10526292]
[12]
Meyers, P.A.; Gorlick, R. Osteosarcoma. Pediatr. Clin. North Am., 1997, 44(4), 973-989.
[http://dx.doi.org/10.1016/S0031-3955(05)70540-X] [PMID: 9286295]
[http://dx.doi.org/10.1016/S0031-3955(05)70540-X] [PMID: 9286295]
[13]
Chou, A.J.; Geller, D.S.; Gorlick, R. Therapy for osteosarcoma: where do we go from here? Paediatr. Drugs, 2008, 10(5), 315-327.
[http://dx.doi.org/10.2165/00148581-200810050-00005] [PMID: 18754698]
[http://dx.doi.org/10.2165/00148581-200810050-00005] [PMID: 18754698]
[14]
Bozorgi, A.; Sabouri, L. Osteosarcoma, personalized medicine, and tissue engineering; an overview of overlapping fields of research. Cancer Treat. Res. Commun., 2021, 27, 100324.
[http://dx.doi.org/10.1016/j.ctarc.2021.100324] [PMID: 33517237]
[http://dx.doi.org/10.1016/j.ctarc.2021.100324] [PMID: 33517237]
[15]
Mediouni, M.; R Schlatterer, D.; Madry, H.; Cucchiarini, M.; Rai, B. A review of translational medicine. The future paradigm: how can we connect the orthopedic dots better? Curr. Med. Res. Opin., 2018, 34(7), 1217-1229.
[http://dx.doi.org/10.1080/03007995.2017.1385450] [PMID: 28952378]
[http://dx.doi.org/10.1080/03007995.2017.1385450] [PMID: 28952378]
[16]
Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]
[17]
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[18]
Zhang, Y.; Cheng, H.; Li, W.; Wu, H.; Yang, Y. Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int. J. Cancer, 2019, 145(4), 1068-1082.
[http://dx.doi.org/10.1002/ijc.32207] [PMID: 30761524]
[http://dx.doi.org/10.1002/ijc.32207] [PMID: 30761524]
[19]
Li, X.; Huang, Q.; Wang, S.; Huang, Z.; Yu, F.; Lin, J. HER4 promotes the growth and metastasis of osteosarcoma via the PI3K/AKT pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(4), 345-362.
[http://dx.doi.org/10.1093/abbs/gmaa004] [PMID: 32181480]
[http://dx.doi.org/10.1093/abbs/gmaa004] [PMID: 32181480]
[20]
Wang, B.; Li, J. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway. Cancer Manag. Res., 2020, 12, 2631-2640.
[http://dx.doi.org/10.2147/CMAR.S238173] [PMID: 32368141]
[http://dx.doi.org/10.2147/CMAR.S238173] [PMID: 32368141]
[21]
Li, Z.; Dong, H.; Li, M.; Wu, Y.; Liu, Y.; Zhao, Y.; Chen, X.; Ma, M. Honokiol induces autophagy and apoptosis of osteosarcoma through PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep., 2018, 17(2), 2719-2723.
[PMID: 29207060]
[PMID: 29207060]
[22]
Liu, J.; Chen, M.; Ma, L.; Dang, X.; Du, G. LncRNA GAS5 suppresses the proliferation and invasion of osteosarcoma cells via the miR-23a-3p/PTEN/PI3K/AKT pathway. Cell Transplant., 2020, 29, 963689720953093.
[http://dx.doi.org/10.1177/0963689720953093] [PMID: 33121268]
[http://dx.doi.org/10.1177/0963689720953093] [PMID: 33121268]
[23]
Huang, Y.; Xu, Y.Q.; Feng, S.Y.; Zhang, X.; Ni, J.D. LncRNA TDRG1 promotes proliferation, invasion and epithelial-mesenchymal transformation of osteosarcoma through PI3K/AKT signal pathway. Cancer Manag. Res., 2020, 12, 4531-4540.
[http://dx.doi.org/10.2147/CMAR.S248964] [PMID: 32606946]
[http://dx.doi.org/10.2147/CMAR.S248964] [PMID: 32606946]
[24]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[25]
Gui, Z.L.; Wu, T.L.; Zhao, G.C.; Lin, Z.X.; Xu, H.G. MicroRNA-497 suppress osteosarcoma by targeting MAPK/Erk pathway. Bratisl. Lek Listy, 2017, 118(8), 449-452.
[http://dx.doi.org/10.4149/BLL_2017_087] [PMID: 29050481]
[http://dx.doi.org/10.4149/BLL_2017_087] [PMID: 29050481]
[26]
Miao, J.H.; Wang, S.Q.; Zhang, M.H.; Yu, F.B.; Zhang, L.; Yu, Z.X.; Kuang, Y. Knockdown of galectin-1 suppresses the growth and invasion of osteosarcoma cells through inhibition of the MAPK/ERK pathway. Oncol. Rep., 2014, 32(4), 1497-1504.
[http://dx.doi.org/10.3892/or.2014.3358] [PMID: 25069486]
[http://dx.doi.org/10.3892/or.2014.3358] [PMID: 25069486]
[27]
Duchartre, Y.; Kim, Y.M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol., 2016, 99, 141-149.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[28]
Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(12), 767-779.
[http://dx.doi.org/10.1038/nrm3470] [PMID: 23151663]
[http://dx.doi.org/10.1038/nrm3470] [PMID: 23151663]
[29]
Teo, J.L.; Kahn, M. The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. Adv. Drug Deliv. Rev., 2010, 62(12), 1149-1155.
[http://dx.doi.org/10.1016/j.addr.2010.09.012] [PMID: 20920541]
[http://dx.doi.org/10.1016/j.addr.2010.09.012] [PMID: 20920541]
[30]
Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[31]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[32]
Nomura, M.; Rainusso, N.; Lee, Y.C.; Dawson, B.; Coarfa, C.; Han, R.; Larson, J.L.; Shuck, R.; Kurenbekova, L.; Yustein, J.T. Tegavivint and the β-Catenin/ALDH axis in chemotherapy-resistant and metastatic osteosarcoma. J. Natl. Cancer Inst., 2019, 111(11), 1216-1227.
[http://dx.doi.org/10.1093/jnci/djz026] [PMID: 30793158]
[http://dx.doi.org/10.1093/jnci/djz026] [PMID: 30793158]
[33]
Zhu, S.; Liu, Y.; Wang, X.; Wang, J.; Xi, G. lncRNA SNHG10 promotes the proliferation and invasion of osteosarcoma via wnt/β-catenin signaling. Mol. Ther. Nucleic Acids, 2020, 22, 957-970.
[http://dx.doi.org/10.1016/j.omtn.2020.10.010] [PMID: 33251045]
[http://dx.doi.org/10.1016/j.omtn.2020.10.010] [PMID: 33251045]
[34]
Xu, Y.; Yu, P.; Wang, S.; Jiang, L.; Chen, F.; Chen, W. Crosstalk between Hh and Wnt signaling promotes osteosarcoma progression. Int. J. Clin. Exp. Pathol., 2019, 12(3), 768-773.
[PMID: 31933884]
[PMID: 31933884]
[35]
Chen, X.; Zhao, W.; Fan, W. Long non‑coding RNA GHET1 promotes osteosarcoma development and progression via Wnt/β‑catenin signaling pathway. Oncol. Rep., 2020, 44(1), 349-359.
[http://dx.doi.org/10.3892/or.2020.7585] [PMID: 32319657]
[http://dx.doi.org/10.3892/or.2020.7585] [PMID: 32319657]
[36]
Yu, L.; Xia, K.; Gao, T.; Chen, J.; Zhang, Z.; Sun, X.; Simões, B.M.; Eyre, R.; Fan, Z.; Guo, W.; Clarke, R.B. The notch pathway promotes osteosarcoma progression through activation of ephrin reverse signaling. Mol. Cancer Res., 2019, 17(12), 2383-2394.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0493] [PMID: 31570655]
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0493] [PMID: 31570655]
[37]
Cao, Y.; Yu, L.; Dai, G.; Zhang, S.; Zhang, Z.; Gao, T.; Guo, W. Cinobufagin induces apoptosis of osteosarcoma cells through inactivation of Notch signaling. Eur. J. Pharmacol., 2017, 794, 77-84.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.016] [PMID: 27845066]
[http://dx.doi.org/10.1016/j.ejphar.2016.11.016] [PMID: 27845066]
[38]
Tanaka, M.; Setoguchi, T.; Hirotsu, M.; Gao, H.; Sasaki, H.; Matsunoshita, Y.; Komiya, S. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br. J. Cancer, 2009, 100(12), 1957-1965.
[http://dx.doi.org/10.1038/sj.bjc.6605060] [PMID: 19455146]
[http://dx.doi.org/10.1038/sj.bjc.6605060] [PMID: 19455146]
[39]
Engin, F.; Bertin, T.; Ma, O.; Jiang, M.M.; Wang, L.; Sutton, R.E.; Donehower, L.A.; Lee, B. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum. Mol. Genet., 2009, 18(8), 1464-1470.
[http://dx.doi.org/10.1093/hmg/ddp057] [PMID: 19228774]
[http://dx.doi.org/10.1093/hmg/ddp057] [PMID: 19228774]
[40]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403.
[http://dx.doi.org/10.1038/nrd.2015.17] [PMID: 26775688]
[http://dx.doi.org/10.1038/nrd.2015.17] [PMID: 26775688]
[41]
Assi, T.; Watson, S.; Samra, B.; Rassy, E.; Le Cesne, A.; Italiano, A.; Mir, O. Targeting the VEGF Pathway in Osteosarcoma. Cells, 2021, 10(5), 1240.
[http://dx.doi.org/10.3390/cells10051240] [PMID: 34069999]
[http://dx.doi.org/10.3390/cells10051240] [PMID: 34069999]
[42]
Wang, G.; Sun, M.; Jiang, Y.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Sang, W.; Xu, J.; Mao, M.; Zuo, D.; Zhou, Z.; Wang, C.; Fu, Z.; Wang, Z.; Duan, Z.; Hua, Y.; Cai, Z. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma. Int. J. Cancer, 2019, 145(4), 979-993.
[http://dx.doi.org/10.1002/ijc.32180] [PMID: 30719715]
[http://dx.doi.org/10.1002/ijc.32180] [PMID: 30719715]
[43]
Liao, Y.Y.; Tsai, H.C.; Chou, P.Y.; Wang, S.W.; Chen, H.T.; Lin, Y.M.; Chiang, I.P.; Chang, T.M.; Hsu, S.K.; Chou, M.C.; Tang, C.H.; Fong, Y.C. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget, 2016, 7(4), 4310-4325.
[http://dx.doi.org/10.18632/oncotarget.6708] [PMID: 26713602]
[http://dx.doi.org/10.18632/oncotarget.6708] [PMID: 26713602]
[44]
Liu, Y.; Liao, S.; Bennett, S.; Tang, H.; Song, D.; Wood, D.; Zhan, X.; Xu, J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif., 2021, 54(2), e12974.
[http://dx.doi.org/10.1111/cpr.12974] [PMID: 33382511]
[http://dx.doi.org/10.1111/cpr.12974] [PMID: 33382511]
[45]
Oi, T.; Asanuma, K.; Matsumine, A.; Matsubara, T.; Nakamura, T.; Iino, T.; Asanuma, Y.; Goto, M.; Okuno, K.; Kakimoto, T.; Yada, Y.; Sudo, A. STAT3 inhibitor, cucurbitacin I, is a novel therapeutic agent for osteosarcoma. Int. J. Oncol., 2016, 49(6), 2275-2284.
[http://dx.doi.org/10.3892/ijo.2016.3757] [PMID: 27840900]
[http://dx.doi.org/10.3892/ijo.2016.3757] [PMID: 27840900]
[46]
Zuo, D.; Shogren, K.L.; Zang, J.; Jewison, D.E.; Waletzki, B.E.; Miller, A.L., II; Okuno, S.H.; Cai, Z.; Yaszemski, M.J.; Maran, A. Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 244.
[http://dx.doi.org/10.1186/s13046-018-0914-0] [PMID: 30286779]
[http://dx.doi.org/10.1186/s13046-018-0914-0] [PMID: 30286779]
[47]
Ryu, K.; Choy, E.; Yang, C.; Susa, M.; Hornicek, F.J.; Mankin, H.; Duan, Z. Activation of signal transducer and activator of transcription 3 (Stat3) pathway in osteosarcoma cells and overexpression of phosphorylated-Stat3 correlates with poor prognosis. J. Orthop. Res., 2010, 28(7), 971-978.
[http://dx.doi.org/10.1002/jor.21088] [PMID: 20063378]
[http://dx.doi.org/10.1002/jor.21088] [PMID: 20063378]
[48]
Jiang, C.Q.; Ma, L.L.; Lv, Z.D.; Feng, F.; Chen, Z.; Liu, Z.D. Polydatin induces apoptosis and autophagy via STAT3 signaling in human osteosarcoma MG-63 cells. J. Nat. Med., 2020, 74(3), 533-544.
[http://dx.doi.org/10.1007/s11418-020-01399-5] [PMID: 32222939]
[http://dx.doi.org/10.1007/s11418-020-01399-5] [PMID: 32222939]
[49]
Subramaniam, D.; Angulo, P.; Ponnurangam, S.; Dandawate, P.; Ramamoorthy, P.; Srinivasan, P.; Iwakuma, T.; Weir, S.J.; Chastain, K.; Anant, S. Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death Dis., 2020, 11(2), 149.
[http://dx.doi.org/10.1038/s41419-020-2335-1] [PMID: 32094348]
[http://dx.doi.org/10.1038/s41419-020-2335-1] [PMID: 32094348]
[50]
Cai, N.; Zhou, W.; Ye, L.L.; Chen, J.; Liang, Q.N.; Chang, G.; Chen, J.J. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression. Am. J. Transl. Res., 2017, 9(8), 3853-3866.
[PMID: 28861175]
[PMID: 28861175]
[51]
Ji, X.L.; He, M. Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma. Aging (Albany NY), 2019, 11(15), 5848-5863.
[http://dx.doi.org/10.18632/aging.102193] [PMID: 31422383]
[http://dx.doi.org/10.18632/aging.102193] [PMID: 31422383]
[52]
Wang, S.; Wei, H.; Huang, Z.; Wang, X.; Shen, R.; Wu, Z.; Lin, J. Epidermal growth factor receptor promotes tumor progression and contributes to gemcitabine resistance in osteosarcoma. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(3), 317-324.
[http://dx.doi.org/10.1093/abbs/gmaa177] [PMID: 33432347]
[http://dx.doi.org/10.1093/abbs/gmaa177] [PMID: 33432347]
[53]
Dai, G.; Deng, S.; Guo, W.; Yu, L.; Yang, J.; Zhou, S.; Gao, T. Notch pathway inhibition using DAPT, a γ-secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma. Mol. Carcinog., 2019, 58(1), 3-18.
[http://dx.doi.org/10.1002/mc.22873] [PMID: 29964327]
[http://dx.doi.org/10.1002/mc.22873] [PMID: 29964327]
[54]
Wang, L.; Jin, F.; Qin, A.; Hao, Y.; Dong, Y.; Ge, S.; Dai, K. Targeting Notch1 signaling pathway positively affects the sensitivity of osteosarcoma to cisplatin by regulating the expression and/or activity of Caspase family. Mol. Cancer, 2014, 13, 139.
[http://dx.doi.org/10.1186/1476-4598-13-139] [PMID: 24894297]
[http://dx.doi.org/10.1186/1476-4598-13-139] [PMID: 24894297]
[55]
Zhang, H.; Yan, J.; Lang, X.; Zhuang, Y. Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol. Lett., 2018, 16(5), 5856-5862.
[http://dx.doi.org/10.3892/ol.2018.9410] [PMID: 30344736]
[http://dx.doi.org/10.3892/ol.2018.9410] [PMID: 30344736]
[56]
Zhao, G.; Cai, C.; Yang, T.; Qiu, X.; Liao, B.; Li, W.; Ji, Z.; Zhao, J.; Zhao, H.; Guo, M.; Ma, Q.; Xiao, C.; Fan, Q.; Ma, B. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One, 2013, 8(1), e53906.
[http://dx.doi.org/10.1371/journal.pone.0053906] [PMID: 23372675]
[http://dx.doi.org/10.1371/journal.pone.0053906] [PMID: 23372675]
[57]
Liu, Y.; Zhu, S.T.; Wang, X.; Deng, J.; Li, W.H.; Zhang, P.; Liu, B.S. MiR-100 inhibits osteosarcoma cell proliferation, migration, and invasion and enhances chemosensitivity by targeting IGFIR. Technol. Cancer Res. Treat., 2016, 15(5), NP40-NP48.
[http://dx.doi.org/10.1177/1533034615601281] [PMID: 26306402]
[http://dx.doi.org/10.1177/1533034615601281] [PMID: 26306402]
[58]
Meng, C.Y.; Zhao, Z.Q.; Bai, R.; Zhao, W.; Wang, Y.X.; Xue, H.Q.; Sun, L.; Sun, C.; Feng, W.; Guo, S.B. MicroRNA‑22 mediates the cisplatin resistance of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Oncol. Rep., 2020, 43(4), 1169-1186.
[http://dx.doi.org/10.3892/or.2020.7492] [PMID: 32323781]
[http://dx.doi.org/10.3892/or.2020.7492] [PMID: 32323781]
[59]
Shao, X.J.; Miao, M.H.; Xue, J.; Xue, J.; Ji, X.Q.; Zhu, H. The Down-Regulation of MicroRNA-497 Contributes to Cell Growth and Cisplatin Resistance Through PI3K/Akt Pathway in Osteosarcoma. Cell. Physiol. Biochem., 2015, 36(5), 2051-2062.
[http://dx.doi.org/10.1159/000430172] [PMID: 26202364]
[http://dx.doi.org/10.1159/000430172] [PMID: 26202364]
[60]
Wang, K.; Zhuang, Y.; Liu, C.; Li, Y. Inhibition of c-Met activation sensitizes osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling. Arch. Biochem. Biophys., 2012, 526(1), 38-43.
[http://dx.doi.org/10.1016/j.abb.2012.07.003] [PMID: 22820099]
[http://dx.doi.org/10.1016/j.abb.2012.07.003] [PMID: 22820099]
[61]
Wang, Z.; Yang, L.; Xia, Y.; Guo, C.; Kong, L. Icariin enhances cytotoxicity of doxorubicin in human multidrug-resistant osteosarcoma cells by inhibition of ABCB1 and down-regulation of the PI3K/Akt pathway. Biol. Pharm. Bull., 2015, 38(2), 277-284.
[http://dx.doi.org/10.1248/bpb.b14-00663] [PMID: 25747987]
[http://dx.doi.org/10.1248/bpb.b14-00663] [PMID: 25747987]