Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Analyzing Association Between Expression Quantitative Trait and CNV for Breast Cancer Based on Gene Interaction Network Clustering and Group Sparse Learning

Author(s): Xia Chen, Yexiong Lin, Qiang Qu, Bin Ning, Haowen Chen*, Bo Liao and Xiong Li

Volume 17, Issue 4, 2022

Published on: 06 April, 2022

Page: [358 - 368] Pages: 11

DOI: 10.2174/1574893617666220207095117

Price: $65

Abstract

Aim: The occurrence and development of tumor are accompanied by a change in pathogenic gene expression. Tumor cells avoid the damage of immune cells by regulating the expression of immune- related genes.

Background: Tracing the causes of gene expression variation is helpful to understand tumor evolution and metastasis.

Objective: Current explanation methods for gene expression variation are confronted with several main challenges, which include low explanation power, insufficient prediction accuracy, and lack of biological meaning.

Methods: In this study, we propose a novel method to analyze the mRNA expression variations of breast cancer risk genes. Firstly, we collected some high-confidence risk genes related to breast cancer and then designed a rank-based method to preprocess the breast cancers copy number variation (CNV) and mRNA data. Secondly, to elevate the biological meaning and narrow down the combinatorial space, we introduced a prior gene interaction network and applied a network clustering algorithm to generate high-density subnetworks. Lastly, to describe the interlinked structure within and between subnetworks and target genes mRNA expression, we proposed a group sparse learning model to identify CNVs for pathogenic genes expression variations.

Results: The performance of the proposed method is evaluated by both significantly improved predication accuracy and biological meaning of pathway enrichment analysis.

Conclusion: The experimental results show that our method has practical significance.

Keywords: Breast cancer, gene expression regulation analysis, regression model, regularization method, mRNA, NGS.

Graphical Abstract

[1]
Joshi K, de Massy MR, Ismail M, et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung can-cer. Nat Med 2019; 25(10): 1549-59.
[http://dx.doi.org/10.1038/s41591-019-0592-2] [PMID: 31591606]
[2]
McNulty SN, Cottrell CE, Vigh-Conrad KA, et al. Beyond sequence variation: Assessment of copy number variation in adult glioblastoma through targeted tumor somatic profiling. Hum Pathol 2019; 86: 170-81.
[http://dx.doi.org/10.1016/j.humpath.2018.12.004] [PMID: 30594748]
[3]
Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity 2018; 48(4): 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[4]
Alizadeh AA, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med 2015; 21(8): 846-53.
[http://dx.doi.org/10.1038/nm.3915] [PMID: 26248267]
[5]
Jia Q, Wu W, Wang Y, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun 2018; 9(1): 5361.
[http://dx.doi.org/10.1038/s41467-018-07767-w] [PMID: 30560866]
[6]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10): 883-92.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[7]
Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152(4): 714-26.
[http://dx.doi.org/10.1016/j.cell.2013.01.019] [PMID: 23415222]
[8]
Ratnapriya R, Sosina OA, Starostik MR, et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat Genet 2019; 51(4): 606-10.
[http://dx.doi.org/10.1038/s41588-019-0351-9] [PMID: 30742112]
[9]
Dobbyn A, Huckins LM, Boocock J, et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schiz-ophrenia GWAS. Am J Hum Genet 2018; 102(6): 1169-84.
[http://dx.doi.org/10.1016/j.ajhg.2018.04.011] [PMID: 29805045]
[10]
Gillies CE, Putler R, Menon R, et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am J Hum Genet 2018; 103(2): 232-44.
[http://dx.doi.org/10.1016/j.ajhg.2018.07.004] [PMID: 30057032]
[11]
Sharma A, Jiang C, De S. Dissecting the sources of gene expression variation in a pan-cancer analysis identifies novel regulatory muta-tions. Nucleic Acids Res 2018; 46(9): 4370-81.
[http://dx.doi.org/10.1093/nar/gky271] [PMID: 29672706]
[12]
Lawrence M, Daujat S, Schneider R. Lateral thinking: How histone modifications regulate gene expression. Trends Genet 2016; 32(1): 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[13]
Zhao Q, Wirka R, Nguyen T, et al. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Med 2019; 11(1): 23.
[http://dx.doi.org/10.1186/s13073-019-0635-9] [PMID: 31014396]
[14]
Donato L, Scimone C, Alibrandi S, et al. Possible A2E mutagenic effects on RPE mitochondrial DNA from innovative RNA-seq bioinfor-matics pipeline. Antioxidants 2020; 9(11): 1158.
[http://dx.doi.org/10.3390/antiox9111158] [PMID: 33233726]
[15]
Wilk G, Braun R. regQTLs: Single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors. PLoS Genet 2018; 14(12): e1007837.
[http://dx.doi.org/10.1371/journal.pgen.1007837] [PMID: 30557297]
[16]
Scimone C, Alibrandi S, Scalinci SZ, et al. Expression of pro-angiogenic markers is enhanced by blue light in human RPE cells. Antioxidants 2020; 9(11): 1154.
[http://dx.doi.org/10.3390/antiox9111154] [PMID: 33233546]
[17]
Donato L, Scimone C, Alibrandi S, et al. New omics-derived perspectives on retinal dystrophies: Could ion channels-encoding or related genes act as modifier of pathological phenotype? Int J Mol Sci 2020; 22(1): 70.
[http://dx.doi.org/10.3390/ijms22010070] [PMID: 33374679]
[18]
Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 2010; 26(1): 145-6.
[http://dx.doi.org/10.1093/bioinformatics/btp618] [PMID: 19864262]
[19]
Gross AM, Ajay SS, Rajan V, et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and un-diagnosed disease. Genet Med 2019; 21(5): 1121-30.
[http://dx.doi.org/10.1038/s41436-018-0295-y] [PMID: 30293986]
[20]
Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet 2015; 6: 138.
[http://dx.doi.org/10.3389/fgene.2015.00138] [PMID: 25918519]
[21]
Sun J, Wang Z, Sun F, Li H. Sparse dual graph-regularized NMF for image co-clustering. Neurocomputing 2018; 316: 156-65.
[http://dx.doi.org/10.1016/j.neucom.2018.07.062]
[22]
Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods 2013; 10(11): 1108-15.
[http://dx.doi.org/10.1038/nmeth.2651] [PMID: 24037242]
[23]
Lu H, Zhao Q, Sang X, Lu J. Community detection in complex networks using nonnegative matrix factorization and density-based cluster-ing algorithm. Neural Process Lett 2020; •••: 1-18.
[http://dx.doi.org/10.1007/s11063-019-10170-1]
[24]
Wang H, Nie F, Huang H, et al. Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 2012; 28(2): 229-37.
[http://dx.doi.org/10.1093/bioinformatics/btr649] [PMID: 22155867]
[25]
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser A Stat Soc 2005; 67(2): 301-20.
[http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x]
[26]
Shao X, Lv N, Liao J, et al. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet 2019; 20(1): 175.
[http://dx.doi.org/10.1186/s12881-019-0909-5] [PMID: 31706287]
[27]
Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[28]
Iida J, Dorchak J, Clancy R, et al. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth. Exp Cell Res 2015; 330(2): 358-70.
[http://dx.doi.org/10.1016/j.yexcr.2014.11.002] [PMID: 25445787]
[29]
Luker KE, Steele JM, Mihalko LA, Ray P, Luker GD. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 2010; 29(32): 4599-610.
[http://dx.doi.org/10.1038/onc.2010.212] [PMID: 20531309]
[30]
Afratis N, Gialeli C, Nikitovic D, et al. Glycosaminoglycans: Key players in cancer cell biology and treatment. FEBS J 2012; 279(7): 1177-97.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08529.x] [PMID: 22333131]
[31]
Tang X, Zhang Q, Shi S, et al. Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1α/VEGF signal-ing pathways in human breast cancer cells. Int J Cancer 2010; 126(1): 90-103.
[http://dx.doi.org/10.1002/ijc.24710] [PMID: 19569175]
[32]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40(5): 457-70.
[http://dx.doi.org/10.1007/s13402-017-0335-7] [PMID: 28741069]
[33]
Dinda S, Sanchez A, Moudgil V. Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and reti-noblastoma, in breast cancer cells. Oncogene 2002; 21(5): 761-8.
[http://dx.doi.org/10.1038/sj.onc.1205136] [PMID: 11850804]
[34]
Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci 2019; 20(20): 4986.
[http://dx.doi.org/10.3390/ijms20204986] [PMID: 31600974]
[35]
Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002; 4(2): 70-6.
[http://dx.doi.org/10.1186/bcr426] [PMID: 11879567]
[36]
Khan H, Reale M, Ullah H, et al. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38: 107385.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.007] [PMID: 31004736]
[37]
Handzlik JE, Tastsoglou S, Vlachos IS, Hatzigeorgiou AG. Manatee: Detection and quantification of small non-coding RNAs from next-generation sequencing data. Sci Rep 2020; 10(1): 705.
[http://dx.doi.org/10.1038/s41598-020-57495-9] [PMID: 31959833]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy