Research Article

阿拉曼定在缺血性卒中模型中诱导神经保护作用

卷 29, 期 19, 2022

发表于: 04 February, 2022

页: [3483 - 3498] 页: 16

弟呕挨: 10.2174/0929867329666220204145730

价格: $65

摘要

背景和目的:中风是导致死亡和残疾的主要原因,以神经元死亡为特征,可由血流减少或中断引起。本研究评价了肾素-血管紧张素系统的一种新肽阿拉曼定在体外和体内脑缺血模型中的作用。 方法:在体外模型中,将雄性C57/Bl6小鼠的海马切片置于无糖aCSF溶液中,用95%n2和5%二氧化碳起泡模拟脑缺血。生成阿拉曼定浓度-反应曲线来评估细胞损伤、谷氨酸能兴奋性毒性和细胞死亡。在体内模型中,SD大鼠通过双侧颈总动脉闭塞(BCCAo未处理)诱导大鼠脑缺血/再灌注。在BCCAo术前20-30min给予侧脑室内注射阿拉曼定。BCCAo后24h和72h进行神经学试验。在BCCAo术后72h,检测脑内细胞因子水平、氧化应激标志物和免疫荧光水平。 结果:阿拉曼定能保护脑片免受细胞损伤、兴奋性毒性和细胞死亡。当阿拉曼丁呤受体被阻断时,保护作用就消失了。ICV注射阿拉曼定可减轻BCCAo组动物的神经功能缺损,并减少凋亡神经元/细胞的数量。此外,阿拉曼定在BCCAO动物中诱导了抗炎作用,通过降低大脑中SOD、过氧化氢酶和GSH活性来降低TNFα、IL1β、IL-6和抗氧化作用。 结论:本研究首次显示阿拉曼定在不同缺血性卒中模型中具有神经保护作用。

关键词: 肾素-血管紧张素系统,氧化应激,脑缺血,OGD,ICV,细胞因子,神经功能缺陷。

« Previous
[1]
Castillo, J.; Loza, M.I.; Mirelman, D.; Brea, J.; Blanco, M.; Sobrino, T.; Campos, F. A novel mechanism of neuroprotection: Blood glutamate grabber. J. Cereb. Blood Flow Metab., 2016, 36(2), 292-301.
[http://dx.doi.org/10.1177/0271678X15606721] [PMID: 26661174]
[2]
Sieber, M.W.; Claus, R.A.; Witte, O.W.; Frahm, C. Attenuated inflammatory response in aged mice brains following stroke. PLoS One, 2011, 6(10), e26288.
[http://dx.doi.org/10.1371/journal.pone.0026288] [PMID: 22028848]
[3]
Zhang, R.; Xu, M.; Wang, Y.; Xie, F.; Zhang, G.; Qin, X. Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke. Mol. Neurobiol., 2017, 54(8), 6006-6017.
[http://dx.doi.org/10.1007/s12035-016-0111-0] [PMID: 27696223]
[4]
Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[5]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1–7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[6]
Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: Going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(5), H958-H970.
[http://dx.doi.org/10.1152/ajpheart.00723.2018] [PMID: 30707614]
[7]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[8]
Herath, C.B.; Mak, K.; Burrell, L.M.; Angus, P.W. Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(1), G99-G108.
[http://dx.doi.org/10.1152/ajpgi.00163.2012] [PMID: 23086915]
[9]
Lemos, V.S.; Silva, D.M.R.; Walther, T.; Alenina, N.; Bader, M.; Santos, R.A.S. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J. Cardiovasc. Pharmacol., 2005, 46(3), 274-279.
[http://dx.doi.org/10.1097/01.fjc.0000175237.41573.63] [PMID: 16116331]
[10]
Dong, X.; Han, S.; Zylka, M.J.; Simon, M.I.; Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell, 2001, 106(5), 619-632.
[http://dx.doi.org/10.1016/S0092-8674(01)00483-4] [PMID: 11551509]
[11]
Shinohara, T.; Harada, M.; Ogi, K.; Maruyama, M.; Fujii, R.; Tanaka, H.; Fukusumi, S.; Komatsu, H.; Hosoya, M.; Noguchi, Y.; Watanabe, T.; Moriya, T.; Itoh, Y.; Hinuma, S. Identification of a G protein-coupled receptor specifically responsive to beta-alanine. J. Biol. Chem., 2004, 279(22), 23559-23564.
[http://dx.doi.org/10.1074/jbc.M314240200] [PMID: 15037633]
[12]
Habiyakare, B.; Alsaadon, H.; Mathai, M.L.; Hayes, A.; Zulli, A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int. J. Exp. Pathol., 2014, 95(4), 290-295.
[http://dx.doi.org/10.1111/iep.12087] [PMID: 24953785]
[13]
Jesus, I.C.G.; Scalzo, S.; Alves, F.; Marques, K.; Rocha-Resende, C.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am. J. Physiol. Cell Physiol., 2018, 314(6), C702-C711.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[14]
Oliveira, A.C.; Peluso, A.A.; Qadri, F.; Alenina, N.; Bader, M.; Santos, R.A.S. Immunofluorescence detection of MrgD expression in rodents.Hypertension; , 2015, 66, p. AP110.
[http://dx.doi.org/10.1161/hyp.66.suppl_1.p110]
[15]
Marins, F.R.; Oliveira, A.C.; Qadri, F.; Motta-Santos, D.; Alenina, N.; Bader, M.; Fontes, M.A.P.; Santos, R.A.S. Alamandine but not angiotensin-(1-7) produces cardiovascular effects at the rostral insular cortex. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2021, 321(3), R513-R521.
[http://dx.doi.org/10.1152/ajpregu.00308.2020] [PMID: 34346721]
[16]
Da Silva, A.R.; Lenglet, S.; Carbone, F.; Burger, F.; Roth, A.; Liberale, L.; Bonaventura, A.; Dallegri, F.; Stergiopulos, N.; Santos, R.A.S.; Mach, F.; Fraga-Silva, R.A.; Montecucco, F. Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur. J. Clin. Invest., 2017, 47(2), 117-128.
[http://dx.doi.org/10.1111/eci.12708] [PMID: 27930810]
[17]
Li, P.; Chen, X-R.; Xu, F.; Liu, C.; Li, C.; Liu, H.; Wang, H.; Sun, W.; Sheng, Y.H.; Kong, X.Q. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci., 2018, 206, 106-116.
[http://dx.doi.org/10.1016/j.lfs.2018.04.010] [PMID: 29679702]
[18]
de Souza-Neto, F.P.; Carvalho Santuchi, M.; de Morais, E. Silva, M.; Campagnole-Santos, M.J.; da Silva, R.F. Angiotensin-(1-7) and alamandine on experimental models of hypertension and atherosclerosis. Curr. Hypertens. Rep., 2018, 20(2), 17.
[http://dx.doi.org/10.1007/s11906-018-0798-6] [PMID: 29541937]
[19]
de Carvalho Santuchi, M.; Dutra, M.F.; Vago, J.P.; Lima, K.M.; Galvão, I.; de Souza-Neto, F.P.; Morais, E. Silva, M.; Oliveira, A.C.; de Oliveira, F.C.B.; Gonçalves, R.; Teixeira, M.M.; Sousa, L.P.; Dos Santos, R.A.S.; da Silva, R.F. Angiotensin-(1-7) and Alamandine promote anti-inflammatory response in macrophages in vitro and in vivo. Mediators Inflamm., 2019, 2019, 2401081.
[http://dx.doi.org/10.1155/2019/2401081] [PMID: 30918468]
[20]
Liu, C.; Yang, C.X.; Chen, X.R.; Liu, B.X.; Li, Y.; Wang, X.Z.; Sun, W.; Li, P.; Kong, X.Q. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids, 2018, 50(8), 1071-1081.
[http://dx.doi.org/10.1007/s00726-018-2583-x] [PMID: 29752563]
[21]
Jesus, I.C.G.; Mesquita, T.R.R.; Monteiro, A.L.L.; Parreira, A.B.; Santos, A.K.; Coelho, E.L.X.; Silva, M.M.; Souza, L.A.C.; Campagnole-Santos, M.J.; Santos, R.S.; Guatimosim, S. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. Am. J. Physiol. Cell Physiol., 2020, 318(4), C740-C750.
[http://dx.doi.org/10.1152/ajpcell.00153.2019] [PMID: 31913703]
[22]
Oliveira, A.C.; Melo, M.B.; Motta-Santos, D.; Peluso, A.A.; Souza-Neto, F.; da Silva, R.F.; Almeida, J.F.Q.; Canta, G.; Reis, A.M.; Goncalves, G.; Cerri, G.; Coutinho, D.; Guedes de Jesus, I.C.; Guatimosim, S.; Linhares, N.D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(1), H123-H133.
[http://dx.doi.org/10.1152/ajpheart.00075.2018] [PMID: 30339496]
[23]
Soares, E.R.; Barbosa, C.M.; Campagnole-Santos, M.J.; Santos, R.A.S.; Alzamora, A.C. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides, 2017, 96, 67-75.
[http://dx.doi.org/10.1016/j.peptides.2017.09.005] [PMID: 28889964]
[24]
Shen, Y.H.; Chen, X.R.; Yang, C.X.; Liu, B.X.; Li, P. Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides, 2018, 103, 98-102.
[http://dx.doi.org/10.1016/j.peptides.2018.03.014] [PMID: 29580957]
[25]
Gong, J.; Shen, Y.; Li, P.; Zhao, K.; Chen, X.; Li, Y.; Sheng, Y.; Zhou, B.; Kong, X. Superoxide anions mediate the effects of angiotensin (1-7) analog, alamandine, on blood pressure and sympathetic activity in the paraventricular nucleus. Peptides, 2019, 118, 170101.
[http://dx.doi.org/10.1016/j.peptides.2019.170101] [PMID: 31199949]
[26]
Leite, H.R.; Mourão, F.A.G.; Drumond, L.E.; Ferreira-Vieira, T.H.; Bernardes, D.; Silva, J.F.; Lemos, V.S.; Moraes, M.F.D.; Pereira, G.S.; Carvalho-Tavares, J.; Massensini, A.R. Swim training attenuates oxidative damage and promotes neuroprotection in cerebral cortical slices submitted to oxygen glucose deprivation. J. Neurochem., 2012, 123(2), 317-324.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07898.x] [PMID: 22913494]
[27]
Monette, R.; Small, D.L.; Mealing, G.; Morley, P. A fluorescence confocal assay to assess neuronal viability in brain slices. Brain Res. Brain Res. Protoc., 1998, 2(2), 99-108.
[http://dx.doi.org/10.1016/S1385-299X(97)00020-2] [PMID: 9473610]
[28]
Markert, C.L. Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem. Funct., 1984, 2(3), 131-134.
[http://dx.doi.org/10.1002/cbf.290020302] [PMID: 6383647]
[29]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[30]
Nicholls, D.G.; Sihra, T.S.; Sanchez-Prieto, J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem., 1987, 49(1), 50-57.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb03393.x] [PMID: 2884279]
[31]
Choy, M.; Ganesan, V.; Thomas, D.L.; Thornton, J.S.; Proctor, E.; King, M.D.; van der Weerd, L.; Gadian, D.G.; Lythgoe, M.F. The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats. J. Cereb. Blood Flow Metab., 2006, 26(8), 1066-1075.
[http://dx.doi.org/10.1038/sj.jcbfm.9600259] [PMID: 16395291]
[32]
Chen, J.; Zhang, C.; Jiang, H.; Li, Y.; Zhang, L.; Robin, A.; Katakowski, M.; Lu, M.; Chopp, M. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J. Cereb. Blood Flow Metab., 2005, 25(2), 281-290.
[http://dx.doi.org/10.1038/sj.jcbfm.9600034] [PMID: 15678129]
[33]
Nelson, D.P.; Kiesow, L.A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem., 1972, 49(2), 474-478.
[http://dx.doi.org/10.1016/0003-2697(72)90451-4] [PMID: 5082943]
[34]
Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192-205.
[http://dx.doi.org/10.1016/0003-2697(68)90092-4] [PMID: 4973948]
[35]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[36]
Canta, G.N.; Lautner, R.Q.; Santos, R.A. AT1R blockade increases the depressor effect of alamandine in normotensive SD rats. Hypertension, 2016, 68(Suppl. 1), AP192.
[http://dx.doi.org/10.1161/hyp.68.suppl_1.p192]
[37]
Soltani Hekmat, A.; Javanmardi, K.; Kouhpayeh, A.; Baharamali, E.; Farjam, M. Differences in cardiovascular responses to alamandine in two-kidney, one clip hypertensive and normotensive rats. Circ. J., 2017, 81(3), 405-412.
[http://dx.doi.org/10.1253/circj.CJ-16-0958] [PMID: 28070059]
[38]
Park, B.M.; Phuong, H.T.A.; Yu, L.; Kim, S.H. Alamandine protects the heart against reperfusion injury via the MrgD receptor. Circ. J., 2018, 82(10), 2584-2593.
[http://dx.doi.org/10.1253/circj.CJ-17-1381] [PMID: 29998915]
[39]
Ali, S.A.; Zaitone, S.A.; Dessouki, A.A.; Ali, A.A. Pregabalin affords retinal neuroprotection in diabetic rats: suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp. Eye Res., 2019, 184, 78-90.
[http://dx.doi.org/10.1016/j.exer.2019.04.014] [PMID: 31002823]
[40]
Schaar, K.L.; Brenneman, M.M.; Savitz, S.I. Functional assessments in the rodent stroke model. Exp. Transl. Stroke Med., 2010, 2(1), 13.
[http://dx.doi.org/10.1186/2040-7378-2-13] [PMID: 20642841]
[41]
Jiang, T.; Gao, L.; Guo, J.; Lu, J.; Wang, Y.; Zhang, Y. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. Br. J. Pharmacol., 2012, 167(7), 1520-1532.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02105.x] [PMID: 22817481]
[42]
Florio, T.M.; Scarnati, E.; Rosa, I.; Di Censo, D.; Ranieri, B.; Cimini, A.; Galante, A.; Alecci, M. The Basal Ganglia: more than just a switching device. CNS Neurosci. Ther., 2018, 24(8), 677-684.
[http://dx.doi.org/10.1111/cns.12987] [PMID: 29879292]
[43]
Hu, W.; Gao, W.; Miao, J.; Xu, Z.; Sun, L. Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways. Peptides, 2021, 146, 170627.
[http://dx.doi.org/10.1016/j.peptides.2021.170627] [PMID: 34400214]
[44]
Zhu, J.; Qiu, J.G.; Xu, W.T.; Ma, H.X.; Jiang, K. Alamandine protects against renal ischaemia-reperfusion injury in rats via inhibiting oxidative stress. J. Pharm. Pharmacol., 2021, 2021, rgab091.
[http://dx.doi.org/10.1093/jpp/rgab091]
[45]
Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension, 2007, 49(1), 185-192.
[http://dx.doi.org/10.1161/01.HYP.0000251865.35728.2f] [PMID: 17116756]
[46]
Aqul, A.; Liu, B.; Ramirez, C.M.; Pieper, A.A.; Estill, S.J.; Burns, D.K.; Liu, B.; Repa, J.J.; Turley, S.D.; Dietschy, J.M. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J. Neurosci., 2011, 31(25), 9404-9413.
[http://dx.doi.org/10.1523/JNEUROSCI.1317-11.2011] [PMID: 21697390]
[47]
Marques, F.D.; Ferreira, A.J.; Sinisterra, R.D.M.; Jacoby, B.A.; Sousa, F.B.; Caliari, M.V.; Silva, G.A.B.; Melo, M.B.; Nadu, A.P.; Souza, L.E.; Irigoyen, M.C.C.; Almeida, A.P.; Santos, R.A.S. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension, 2011, 57(3), 477-483.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.167346] [PMID: 21282558]
[48]
Robinson, T.; Waddington, A.; Ward-Close, S.; Taub, N.; Potter, J. The predictive role of 24-hour compared to casual blood pressure levels on outcome following acute stroke. Cerebrovasc. Dis., 1997, 7(5), 264-272.
[http://dx.doi.org/10.1159/000108206]
[49]
Tikhonoff, V.; Zhang, H.; Richart, T.; Staessen, J.A. Blood pressure as a prognostic factor after acute stroke. Lancet Neurol., 2009, 8(10), 938-948.
[http://dx.doi.org/10.1016/S1474-4422(09)70184-X] [PMID: 19747655]
[50]
Lattanzi, S.; Silvestrini, M.; Provinciali, L. Elevated blood pressure in the acute phase of stroke and the role of Angiotensin receptor blockers. Int. J. Hypertens., 2013, 2013, 941783.
[http://dx.doi.org/10.1155/2013/941783] [PMID: 23431423]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy