Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Most Recent Discoveries in Heterocyclic Nanoformulations for Targeted Anticancer Therapy

Author(s): Sankha Bhattacharya*, Rajat Patel and Aalind Joshi

Volume 22, Issue 13, 2022

Published on: 08 March, 2022

Page: [1735 - 1751] Pages: 17

DOI: 10.2174/138955752203220202164839

Price: $65

Abstract

Every day, new cases of cancer patients whose recovery is delayed by multidrug resistance and chemotherapy side effects are identified, which severely limit treatment options. One of the most recent advances in nanotechnology is the effective usage of nanotechnology as drug carriers for cancer therapy. As a consequence, heterocyclic nanocarriers were put into practice to see whether they could have a better cure with positive results. The potential of a therapeutic agent to meet its desired goal is vital to its success in treating any disease. Heterocyclic moieties are molecules that have a wide variety of chemically therapeutic functions as well as a significant biological activity profile. Heterocyclic nanoformulations play an important role in cell physiology and as possible arbitrators for typical biological reactions, making them valuable in cancer research. As a result, experts are working with heterocyclic nanoformulation to discover alternative approaches to treat cancer. Due to their unique physicochemical properties, heterocyclic compounds are real cornerstones in medicinal chemistry and promising compounds for the future drug delivery system. This review briefly explores the therapeutic relevance of heterocyclic compounds in cancer treatment, various nanoformulation, and actively describes heterocyclic magnetic nano catalysts and heterocyclic moiety, as well as their mode of action, which have favorable anti-cancer effects.

Keywords: Heterocyclic compounds, nanoformulation, anticancer therapy, molecularcompounds, in vivo interactions, chitosan derivatives, lactoferrin nanoparticles, cisplatin, farnesol nanoparticles.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOcan estima-tes of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[3]
Song, H.; Rioux, R.M.; Hoefelmeyer, J.D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P.; Somorjai, G.A. Hydrothermal growth of mesopo-rous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc., 2006, 128(9), 3027-3037.
[http://dx.doi.org/10.1021/ja057383r] [PMID: 16506784]
[4]
Ghafouri-Fard, S.; Shoorei, H.; Abak, A.; Seify, M.; Mohaqiq, M.; Keshmir, F.; Taheri, M.; Ayatollahi, S.A. Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed. Pharmacother., 2021, 142, 112040. Epub ahead of print
[http://dx.doi.org/10.1016/j.biopha.2021.112040] [PMID: 34416630]
[5]
Tavakkol Afshari, H.S.; Homayouni Tabrizi, M.; Ardalan, T.; Jalili Anoushirvani, N.; Mahdizadeh, R. Anethum Graveolens Essential Oil Nanoemulsions (AGEO-NE) as an Exclusive Apoptotic Inducer in Human Lung Adenocarcinoma (A549) Cells. Nutr. Cancer, 2021, 1-9. Epub ahead of print
[http://dx.doi.org/10.1080/01635581.2021.1952450] [PMID: 34282978]
[6]
Haverfield, E.V.; Esplin, E.D.; Aguilar, S.J.; Hatchell, K.E.; Ormond, K.E.; Hanson-Kahn, A.; Atwal, P.S.; Macklin-Mantia, S.; Hines, S.; Sak, C.W.; Tucker, S.; Bleyl, S.B.; Hulick, P.J.; Gordon, O.K.; Velsher, L.; Gu, J.Y.J.; Weissman, S.M.; Kruisselbrink, T.; Abel, C.; Kettles, M.; Slavotinek, A.; Mendelsohn, B.A.; Green, R.C.; Aradhya, S.; Nussbaum, R.L. Physician-directed genetic screening to evaluate personal risk for medically actionable disorders: a large multi-center cohort study. BMC Med., 2021, 19(1), 199.
[http://dx.doi.org/10.1186/s12916-021-01999-2] [PMID: 34404389]
[7]
Wang, Y.; Zhang, X.; Wan, K.; Zhou, N.; Wei, G.; Su, Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J. Nanobiotechnology, 2021, 19(1), 253.
[http://dx.doi.org/10.1186/s12951-021-00999-x] [PMID: 34425823]
[8]
Bhise, K.; Kashaw, S.K.; Sau, S.; Iyer, A.K. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. Int. J. Pharm., 2017, 526(1-2), 506-515.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[9]
Canfell, K.; Kim, J.J.; Brisson, M.; Keane, A.; Simms, K.T.; Caruana, M.; Burger, E.A.; Martin, D.; Nguyen, D.T.N.; Bénard, É.; Sy, S.; Regan, C.; Drolet, M.; Gingras, G.; Laprise, J.F.; Torode, J.; Smith, M.A.; Fidarova, E.; Trapani, D.; Bray, F.; Ilbawi, A.; Broutet, N.; Hutu-bessy, R. Mortality impact of achieving WHO cervical cancer elimination targets: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet, 2020, 395(10224), 591-603.
[http://dx.doi.org/10.1016/S0140-6736(20)30157-4] [PMID: 32007142]
[10]
Bienia, A.; Wiecheć-Cudak, O.; Murzyn, A.A.; Krzykawska-Serda, M. Photodynamic therapy and hyperthermia in combination treatment-neglected forces in the fight against cancer. Pharmaceutics, 2021, 13(8), 1147.
[http://dx.doi.org/10.3390/pharmaceutics13081147] [PMID: 34452108]
[11]
Al-Akra, L.; Bae, D.H.; Leck, L.Y.W.; Richardson, D.R.; Jansson, P.J. The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1390-1397.
[http://dx.doi.org/10.1016/j.bbagen.2019.06.007] [PMID: 31202693]
[12]
Gao, S.; Siddiqui, N.; Etim, I.; Du, T.; Zhang, Y.; Liang, D. Developing nutritional component chrysin as a therapeutic agent: Bioavailabili-ty and pharmacokinetics consideration, and ADME mechanisms. Biomed. Pharmacother., 2021, 142, 112080. Epub ahead of print
[http://dx.doi.org/10.1016/j.biopha.2021.112080] [PMID: 34449320]
[13]
Ahmed, N.; Abubaker, K.; Findlay, J.; Quinn, M. Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistan-ce. J. Cell. Biochem., 2013, 114(1), 21-34.
[http://dx.doi.org/10.1002/jcb.24317] [PMID: 22887554]
[14]
Salama, L.; Pastor, E.R.; Stone, T.; Mousa, S.A. Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines, 2020, 8(9), 347.
[http://dx.doi.org/10.3390/biomedicines8090347] [PMID: 32932737]
[15]
Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Abdela Siraj, E. Targeted drug delivery - from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc., 2021, 14, 1711-1724.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[16]
Sharma, S.; Masud, M.K.; Kaneti, Y.V.; Rewatkar, P.; Koradia, A.; Hossain, M.S.A.; Yamauchi, Y.; Popat, A.; Salomon, C. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small, 2021, 17(42), e2102220. Epub ahead of print
[http://dx.doi.org/10.1002/smll.202102220] [PMID: 34216426]
[17]
Freitag, T.L.; Podojil, J.R.; Pearson, R.M.; Fokta, F.J.; Sahl, C.; Messing, M.; Andersson, L.C.; Leskinen, K.; Saavalainen, P.; Hoover, L.I.; Huang, K.; Phippard, D.; Maleki, S.; King, N.J.C.; Shea, L.D.; Miller, S.D.; Meri, S.K.; Getts, D.R. Gliadin nanoparticles induce immune to-lerance to gliadin in mouse models of celiac disease. Gastroenterology, 2020, 158(6), 1667-1681.e12.
[http://dx.doi.org/10.1053/j.gastro.2020.01.045] [PMID: 32032584]
[18]
Soni, J.P.; Chemitikanti, K.S.; Joshi, S.V.; Shankaraiah, N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org. Biomol. Chem., 2020, 18(48), 9737-9761.
[http://dx.doi.org/10.1039/D0OB01779E] [PMID: 33211792]
[19]
Praveen, C. Cycloisomerization of π-coupled heteroatom nucleophiles by gold catalysis: En route to regiochemically defined heterocycles. Chem. Rec., 2021, 21(7), 1697-1737.
[http://dx.doi.org/10.1002/tcr.202100105] [PMID: 34061426]
[20]
Goni, L.K.M.O.; Jafar Mazumder, M.A.; Quraishi, M.A.; Mizanur Rahman, M. Bioinspired heterocyclic compounds as corrosion inhibi-tors: A comprehensive review. Chem. Asian J., 2021, 16(11), 1324-1364.
[http://dx.doi.org/10.1002/asia.202100201] [PMID: 33844882]
[21]
Barber, V.P.; Green, W.H.; Kroll, J.H. Screening for new pathways in atmospheric oxidation chemistry with automated mechanism genera-tion. J. Phys. Chem. A, 2021, 125(31), 6772-6788.
[http://dx.doi.org/10.1021/acs.jpca.1c04297] [PMID: 34346695]
[22]
Zhang, X.; Jia, Y. Recent advances in β-lactam derivatives as potential anticancer agents. Curr. Top. Med. Chem., 2020, 20(16), 1468-1480.
[http://dx.doi.org/10.2174/1568026620666200309161444] [PMID: 32148196]
[23]
Bajpai, V.K.; Shukla, S.; Kang, S.M.; Hwang, S.K.; Song, X.; Huh, Y.S.; Han, Y.K. Developments of cyanobacteria for nano-marine drugs: Relevance of nanoformulations in cancer therapies. Mar. Drugs, 2018, 16(6), 179.
[http://dx.doi.org/10.3390/md16060179] [PMID: 29882898]
[24]
Plevy, S. A molecular connection hints at how a genetic risk factor drives Crohn’s disease. Nature, 2021, 593(7858), 201-203.
[http://dx.doi.org/10.1038/d41586-021-00979-z] [PMID: 33875878]
[25]
Soltan, O.M.; Shoman, M.E.; Abdel-Aziz, S.A.; Narumi, A.; Konno, H.; Abdel-Aziz, M. Molecular hybrids: A five-year survey on structu-res of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem., 2021, 225, 113768. Epub ahead of print
[http://dx.doi.org/10.1016/j.ejmech.2021.113768] [PMID: 34450497]
[26]
Khan, S.; Sharifi, M.; Hasan, A.; Attar, F.; Edis, Z.; Bai, Q.; Derakhshankhah, H.; Falahati, M. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J. Adv. Res., 2020, 30, 171-184.
[http://dx.doi.org/10.1016/j.jare.2020.12.001] [PMID: 34026294]
[27]
Vázquez-Salazar, A.; Becerra, A.; Lazcano, A. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. PLoS One, 2018, 13(4), e0196349.
[http://dx.doi.org/10.1371/journal.pone.0196349] [PMID: 29698445]
[28]
Schöbel, J.H.; Liang, W.; Wöll, D.; Bolm, C. Mechanochemical Synthesis of 1,2,6-Thiadiazine 1-Oxides from Sulfonimidamides and the Fluorescence Properties of the Products. J. Org. Chem., 2020, 85(23), 15760-15766.
[http://dx.doi.org/10.1021/acs.joc.0c02599] [PMID: 33225705]
[29]
Kim, E.S. Tivozanib: First Global Approval. Drugs, 2017, 77(17), 1917-1923.
[http://dx.doi.org/10.1007/s40265-017-0825-y] [PMID: 28971328]
[30]
Recondo, G.; Mezquita, L.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Bigot, L.; Rizvi, A.Z.; Frias, R.L.; Thiery, J.P.; Scoazec, J.Y.; Souris-seau, T.; Howarth, K.; Deas, O.; Samofalova, D.; Galissant, J.; Tesson, P.; Braye, F.; Naltet, C.; Lavaud, P.; Mahjoubi, L.; Abou Lovergne, A.; Vassal, G.; Bahleda, R.; Hollebecque, A.; Nicotra, C.; Ngo-Camus, M.; Michiels, S.; Lacroix, L.; Richon, C.; Auger, N.; De Baere, T.; Tselikas, L.; Solary, E.; Angevin, E.; Eggermont, A.M.; Andre, F.; Massard, C.; Olaussen, K.A.; Soria, J.C.; Besse, B.; Friboulet, L. Diver-se resistance mechanisms to the third-generation alk inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res., 2020, 26(1), 242-255.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1104] [PMID: 31585938]
[31]
Dhillon, S.; Keam, S.J. Umbralisib: First approval. Drugs, 2021, 81(7), 857-866.
[http://dx.doi.org/10.1007/s40265-021-01504-2] [PMID: 33797740]
[32]
Markham, A. Tepotinib: First approval. Drugs, 2020, 80(8), 829-833.
[http://dx.doi.org/10.1007/s40265-020-01317-9] [PMID: 32361823]
[33]
Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.; Han, J.Y.; Lee, J.S.; Hochmair, M.J.; Li, J.Y.; Chang, G.C.; Lee, K.H.; Gridelli, C.; Del-monte, A.; Garcia Campelo, R.; Kim, D.W.; Bearz, A.; Griesinger, F.; Morabito, A.; Felip, E.; Califano, R.; Ghosh, S.; Spira, A.; Gettinger, S.N.; Tiseo, M.; Gupta, N.; Haney, J.; Kerstein, D.; Popat, S. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med., 2018, 379(21), 2027-2039.
[http://dx.doi.org/10.1056/NEJMoa1810171] [PMID: 30280657]
[34]
Timmins, P. The latest developments in the field of therapeutic delivery, December 2020. Ther. Deliv., 2021, 12(4), 271-285.
[http://dx.doi.org/10.4155/tde-2021-0013] [PMID: 33685231]
[35]
Greig, S.L. Osimertinib: First global approval. Drugs, 2016, 76(2), 263-273.
[http://dx.doi.org/10.1007/s40265-015-0533-4] [PMID: 26729184]
[36]
Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; Bouabdallah, R.; Choquet, S.; Gurion, R.; Hill, B.; Jaeger, U.; Sancho, J.M.; Schuster, M.; Thieblemont, C.; De la Cruz, F.; Egyed, M.; Mishra, S.; Offner, F.; Vassilakopoulos, T.P.; Warzocha, K.; McCarthy, D.; Ma, X.; Corona, K.; Saint-Martin, J.R.; Chang, H.; Landesman, Y.; Joshi, A.; Wang, H.; Shah, J.; Shacham, S.; Kauffman, M.; Van Den Neste, E.; Canales, M.A. Selinexor in patients with relapsed or re-fractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol., 2020, 7(7), e511-e522.
[http://dx.doi.org/10.1016/S2352-3026(20)30120-4] [PMID: 32589977]
[37]
Markham, A. Pralsetinib: First approval. Drugs, 2020, 80(17), 1865-1870.
[http://dx.doi.org/10.1007/s40265-020-01427-4] [PMID: 33136236]
[38]
Deeks, E.D. Venetoclax: First global approval. Drugs, 2016, 76(9), 979-987.
[http://dx.doi.org/10.1007/s40265-016-0596-x] [PMID: 27260335]
[39]
Babiker, H.M.; Milhem, M.; Aisner, J.; Edenfield, W.; Shepard, D.; Savona, M.; Iyer, S.; Abdelrahim, M.; Beach, C.L.; Skikne, B.; Laille, E.; Tsai, K.T.; Ho, T. Evaluation of the bioequivalence and food effect on the bioavailability of CC-486 (oral azacitidine) tablets in adult patients with cancer. Cancer Chemother. Pharmacol., 2020, 85(3), 621-626. [Erratum in: Cancer Chemother Pharmacol. 2020 May;85]. [5]. [:1009-1010.]. [PMID: 32036412; PMCID: PMC7036073].
[http://dx.doi.org/10.1007/s00280-020-04037-9] [PMID: 32036412]
[40]
Garcia-Manero, G.; Griffiths, E.A.; Steensma, D.P.; Roboz, G.J.; Wells, R.; McCloskey, J.; Odenike, O.; DeZern, A.E.; Yee, K.; Busque, L.; O’Connell, C.; Michaelis, L.C.; Brandwein, J.; Kantarjian, H.; Oganesian, A.; Azab, M.; Savona, M.R. Oral cedazuridine/decitabine for MDS and CMML: A phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood, 2020, 136(6), 674-683.
[http://dx.doi.org/10.1182/blood.2019004143] [PMID: 32285126]
[41]
Hoy, S.M. Tazemetostat: First approval. Drugs, 2020, 80(5), 513-521.
[http://dx.doi.org/10.1007/s40265-020-01288-x] [PMID: 32166598]
[42]
Tugnait, M.; Gupta, N.; Hanley, M.J.; Venkatakrishnan, K.; Sonnichsen, D.; Kerstein, D.; Dorer, D.J.; Narasimhan, N. The effect of a high-fat meal on the pharmacokinetics of brigatinib, an oral anaplastic lymphoma kinase inhibitor, in healthy volunteers. Clin. Pharmacol. Drug Dev., 2019, 8(6), 734-741.
[http://dx.doi.org/10.1002/cpdd.641] [PMID: 30570839]
[43]
Wu, L.; Zhu, J.; Yin, R.; Wu, X.; Lou, G.; Wang, J.; Gao, Y.; Kong, B.; Lu, X.; Zhou, Q.; Wang, Y.; Chen, Y.; Lu, W.; Li, W.; Cheng, Y.; Liu, J.; Ma, X.; Zhang, J. Olaparib maintenance therapy in patients with newly diagnosed advanced ovarian cancer and a BRCA1 and/or BRCA2 mutation: SOLO1 China cohort. Gynecol. Oncol., 2021, 160(1), 175-181.
[http://dx.doi.org/10.1016/j.ygyno.2020.10.005] [PMID: 33250205]
[44]
Nemunaitis, J.; Bauer, S.; Blay, J.Y.; Choucair, K.; Gelderblom, H.; George, S.; Schöffski, P.; Mehren, M.V.; Zalcberg, J.; Achour, H.; Ruiz-Soto, R.; Heinrich, M.C. Intrigue: Phase III study of ripretinib versus sunitinib in advanced gastrointestinal stromal tumor after imati-nib. Future Oncol., 2020, 16(1), 4251-4264.
[http://dx.doi.org/10.2217/fon-2019-0633] [PMID: 31755321]
[45]
Syed, Y.Y. Rucaparib: First global approval. Drugs, 2017, 77(5), 585-592.
[http://dx.doi.org/10.1007/s40265-017-0716-2] [PMID: 28247266]
[46]
Elkinson, S.; McCormack, P.L. Pomalidomide: First global approval. Drugs, 2013, 73(6), 595-604.
[http://dx.doi.org/10.1007/s40265-013-0047-x] [PMID: 23572409]
[47]
Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; Godbert, Y.; Barlesi, F.; Morris, J.C.; Owonikoko, T.K.; Tan, D.S.W.; Gautschi, O.; Weiss, J.; de la Fouchardière, C.; Burkard, M.E.; Laskin, J.; Taylor, M.H.; Kroiss, M.; Medioni, J.; Goldman, J.W.; Bauer, T.M.; Levy, B.; Zhu, V.W.; Lakhani, N.; Moreno, V.; Ebata, K.; Nguyen, M.; Hei-rich, D.; Zhu, E.Y.; Huang, X.; Yang, L.; Kherani, J.; Rothenberg, S.M.; Drilon, A.; Subbiah, V.; Shah, M.H.; Cabanillas, M.E. Efficacy of selpercatinib in ret-altered thyroid cancers. N. Engl. J. Med., 2020, 383(9), 825-835.
[http://dx.doi.org/10.1056/NEJMoa2005651] [PMID: 32846061]
[48]
Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; Smit, E.F.; Sou-quet, P.J.; Vansteenkiste, J.; Hochmair, M.; Felip, E.; Nishio, M.; Thomas, M.; Ohashi, K.; Toyozawa, R.; Overbeck, T.R.; de Marinis, F.; Kim, T.M.; Laack, E.; Robeva, A.; Le Mouhaer, S.; Waldron-Lynch, M.; Sankaran, B.; Balbin, O.A.; Cui, X.; Giovannini, M.; Akimov, M.; Heist, R.S. GEOMETRY mono-1 Investigators. Capmatinib in MET exon 14-mutated or met-amplified non-small-cell lung cancer. N. Engl. J. Med., 2020, 383(10), 944-957.
[http://dx.doi.org/10.1056/NEJMoa2002787] [PMID: 32877583]
[49]
Barr, P.M.; Brown, J.R.; Hillmen, P.; O’Brien, S.; Barrientos, J.C.; Reddy, N.M.; Coutre, S.; Mulligan, S.P.; Jaeger, U.; Furman, R.R.; Cym-balista, F.; Montillo, M.; Dearden, C.; Robak, T.; Moreno, C.; Pagel, J.M.; Burger, J.A.; Suzuki, S.; Sukbuntherng, J.; Cole, G.; James, D.F.; Byrd, J.C. Impact of ibrutinib dose adherence on therapeutic efficacy in patients with previously treated CLL/SLL. Blood, 2017, 129(19), 2612-2615.
[http://dx.doi.org/10.1182/blood-2016-12-737346] [PMID: 28373262]
[50]
Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; Oh, D.Y.; Dotan, E.; Catenacci, D.V.; Van Cutsem, E.; Ji, T.; Lihou, C.F.; Zhen, H.; Féliz, L.; Vogel, A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol., 2020, 21(5), 671-684.
[http://dx.doi.org/10.1016/S1470-2045(20)30109-1] [PMID: 32203698]
[51]
Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; Bedard, P.L.; Oliveira, M.; Jakobsen, E.; Bachelot, T.; Shachar, S.S.; Müller, V.; Braga, S.; Duhoux, F.P.; Greil, R.; Cameron, D.; Carey, L.A.; Curi-gliano, G.; Gelmon, K.; Hortobagyi, G.; Krop, I.; Loibl, S.; Pegram, M.; Slamon, D.; Palanca-Wessels, M.C.; Walker, L.; Feng, W.; Winer, E.P. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med., 2020, 382(7), 597-609. [Erra-tum in: N Engl J Med. 2020 Feb 6;382]. [6]. [:586.]. [PMID: 31825569].
[http://dx.doi.org/10.1056/NEJMoa1914609] [PMID: 31825569]
[52]
Markham, A.; Keam, S.J. Selumetinib: First approval. Drugs, 2020, 80(9), 931-937.
[http://dx.doi.org/10.1007/s40265-020-01331-x] [PMID: 32504375]
[53]
Lin, J.H.; Lu, A.Y. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev., 1997, 49(4), 403-449.
[PMID: 9443165]
[54]
Andriyanov, A.V.; Koren, E.; Barenholz, Y.; Goldberg, S.N. Therapeutic efficacy of combining pegylated liposomal doxorubicin and ra-diofrequency (RF) ablation: Comparison between slow-drug-releasing, non-thermosensitive and fast-drug-releasing, thermosensitive nano-liposomes. PLoS One, 2014, 9(5), e92555.
[http://dx.doi.org/10.1371/journal.pone.0092555] [PMID: 24786533]
[55]
Ghosh, S.; Ansar, W. Multidynamic liposomes in nanomedicine: technology, biology, applications, and disease targeting. InNanoparticles’ Promises and Risks; Springer: Cham, 2015, pp. 167-210.
[56]
Li, Q.; Xiong, Y.; Ji, C.; Yan, Z. The application of nanotechnology in the codelivery of active constituents of plants and chemotherapeu-tics for overcoming physiological barriers during antitumor treatment. BioMed Res. Int., 2019, 2019, 9083068.
[http://dx.doi.org/10.1155/2019/9083068] [PMID: 31915707]
[57]
Cavalli, G.; Guglielmi, B.; Ponzoni, M.; Tresoldi, M.; Dagna, L. A bitter effect: Thrombocytopenia induced by a quinidine-containing be-verage. Am. J. Med., 2014, 127(8), e1-e2.
[http://dx.doi.org/10.1016/j.amjmed.2014.04.005] [PMID: 24754971]
[58]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[59]
Salama, A.H.; Basha, M.; Salama, A.A.A. Micellar buccal film for safe and effective control of seizures: Preparation, in vitro characteriza-tion, ex vivo permeation studies and in vivo assessment. Eur. J. Pharm. Sci., 2021, 166, 105978. Epub ahead of print
[http://dx.doi.org/10.1016/j.ejps.2021.105978] [PMID: 34418574]
[60]
Renault, C.; Lemay, S.G. Electrochemical collisions of individual graphene oxide sheets: an analytical and fundamental study. ChemElectroChem, 2020, 7(1), 69-73.
[http://dx.doi.org/10.1002/celc.201901606] [PMID: 31998598]
[61]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[62]
Démoulins, T.; Englezou, P.C.; Milona, P.; Ruggli, N.; Tirelli, N.; Pichon, C.; Sapet, C.; Ebensen, T.; Guzmán, C.A.; McCullough, K.C. Self-replicating RNA vaccine delivery to dendritic cells. Methods Mol. Biol., 2017, 1499, 37-75.
[http://dx.doi.org/10.1007/978-1-4939-6481-9_3] [PMID: 27987142]
[63]
Aguilera-Garrido, A.; Del Castillo-Santaella, T.; Yang, Y.; Galisteo-González, F.; Gálvez-Ruiz, M.J.; Molina-Bolívar, J.A.; Holgado-Terriza, J.A.; Cabrerizo-Vílchez, M.Á.; Maldonado-Valderrama, J. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Adv. Colloid Interface Sci., 2021, 290, 102365.
[http://dx.doi.org/10.1016/j.cis.2021.102365] [PMID: 33667972]
[64]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[65]
Chen, N.; Brachmann, C.; Liu, X.; Pierce, D.W.; Dey, J.; Kerwin, W.S.; Li, Y.; Zhou, S.; Hou, S.; Carleton, M.; Klinghoffer, R.A.; Palmi-sano, M.; Chopra, R. Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemother. Pharmacol., 2015, 76(4), 699-712.
[http://dx.doi.org/10.1007/s00280-015-2833-5] [PMID: 26231955]
[66]
Edge, D.; Shortt, C.M.; Gobbo, O.L.; Teughels, S.; Prina-Mello, A.; Volkov, Y.; MacEneaney, P.; Radomski, M.W.; Markos, F. Pharma-cokinetics and bio-distribution of novel super paramagnetic iron oxide nanoparticles (SPIONs) in the anaesthetized pig. Clin. Exp. Pharmacol. Physiol., 2016, 43(3), 319-326.
[http://dx.doi.org/10.1111/1440-1681.12533] [PMID: 26707795]
[67]
Mallakpour, S.; Tukhani, M.; Hussain, C.M. Sustainable plant and microbes-mediated preparation of Fe3O4 nanoparticles and industrial application of its chitosan, starch, cellulose, and dextrin-based nanocomposites as catalysts. Int. J. Biol. Macromol., 2021, 179, 429-447.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.183] [PMID: 33652048]
[68]
Veloso, S.R.S.; Ferreira, P.M.T.; Martins, J.A.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetogels: Prospects and main challenges in bio-medical applications. Pharmaceutics, 2018, 10(3), 145.
[http://dx.doi.org/10.3390/pharmaceutics10030145] [PMID: 30181472]
[69]
Mahato, K; Nagpal, S; Shah, MA; Srivastava, A; Maurya, PK; Roy, S; Jaiswal, A; Singh, R; Chandra, P Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech, 9(2), 57.2019,
[http://dx.doi.org/10.1007/s13205-019-1577-z]
[70]
Tuo, Y.; Liu, G.; Dong, B.; Zhou, J.; Wang, A.; Wang, J.; Jin, R.; Lv, H.; Dou, Z.; Huang, W. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci. Rep., 2015, 5, 13515.
[http://dx.doi.org/10.1038/srep13515] [PMID: 26310728]
[71]
Stanley, S.A.; Friedman, J.M. Electromagnetic regulation of cell activity. Cold Spring Harb. Perspect. Med., 2019, 9(5), a034322.
[http://dx.doi.org/10.1101/cshperspect.a034322] [PMID: 30249601]
[72]
Dimitriou, N.M.; Tsekenis, G.; Balanikas, E.C.; Pavlopoulou, A.; Mitsiogianni, M.; Mantso, T.; Pashos, G.; Boudouvis, A.G.; Lykakis, I.N.; Tsigaridas, G.; Panayiotidis, M.I.; Yannopapas, V.; Georgakilas, A.G. Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol. Ther., 2017, 178, 1-17.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.006] [PMID: 28322970]
[73]
Xiao, W.; Wang, Y.; Zhang, H.; Liu, Y.; Xie, R.; He, X.; Zhou, Y.; Liang, L.; Gao, H. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor. Biomaterials, 2021, 274, 120888.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120888] [PMID: 34029915]
[74]
Huang, L.; Asghar, S.; Zhu, T.; Ye, P.; Hu, Z.; Chen, Z.; Xiao, Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin. Drug Deliv., 2021, 18(10), 1473-1500. Epub ahead of print
[http://dx.doi.org/10.1080/17425247.2021.1950685] [PMID: 34253129]
[75]
Jin, M.; Li, S.; Wu, Y.; Li, D.; Han, Y. Construction of chitosan/alginate nano-drug delivery system for improving dextran sodium sulfate-induced colitis in mice. Nanomaterials (Basel), 2021, 11(8), 1884.
[http://dx.doi.org/10.3390/nano11081884] [PMID: 34443715]
[76]
Maiuolo, L.; Algieri, V.; Olivito, F.; Tallarida, M.A.; Costanzo, P.; Jiritano, A.; De Nino, A. Chronicle of nanocelluloses (NCs) for catalytic applications: Key advances. Catalysts, 2021, 11(1), 96.
[http://dx.doi.org/10.3390/catal11010096]
[77]
Huang, D.; Zhang, G.; Yi, J.; Cheng, M.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Zhou, C.; Xue, W.; Wang, R.; Li, Z.; Chen, S. Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment. Chemosphere, 2021, 263, 127672.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127672] [PMID: 32822945]
[78]
Akhtar, S.; Rehman, S.; Almessiere, M.A.; Khan, F.A.; Slimani, Y.; Baykal, A. Synthesis of Mn0.5Zn0.5SmxEuxFe1.8-2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials (Basel), 2019, 9(11), 1635.
[http://dx.doi.org/10.3390/nano9111635] [PMID: 31752130]
[79]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polariza-tion in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[80]
Wani, T.A.; Shah, A.G.; Wani, S.M.; Wani, I.A.; Masoodi, F.A.; Nissar, N.; Shagoo, M.A. Suitability of different food grade materials for the encapsulation of some functional foods well reported for their advantages and susceptibility. Crit. Rev. Food Sci. Nutr., 2016, 56(15), 2431-2454.
[http://dx.doi.org/10.1080/10408398.2013.845814] [PMID: 25603446]
[81]
Adhikari, H.S.; Yadav, P.N. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater., 2018, 2018, 2952085.
[http://dx.doi.org/10.1155/2018/2952085] [PMID: 30693034]
[82]
Rui, L.; Xie, M.; Hu, B.; Zhou, L.; Saeeduddin, M.; Zeng, X. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr. Polym., 2017, 170, 206-216.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.076] [PMID: 28521988]
[83]
Hassan, B.; Rajan, V.K.; Mujeeb, V.M.A. K, M. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: Prior to the removal of Hg toxicity. Int. J. Biol. Macromol., 2017, 99, 549-554.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.032] [PMID: 28283449]
[84]
Yazidi, A.; Sellaoui, L.; Badawi, M.; Dotto, G.L.; Bonilla-Petriciolet, A.; Lamine, A.B.; Erto, A. Ternary adsorption of cobalt, nickel and methylene blue on a modified chitin: Phenomenological modeling and physical interpretation of the adsorption mechanism. Int. J. Biol. Macromol., 2020, 158, 595-604. Epub ahead of print
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.022] [PMID: 32387603]
[85]
Gong, N.; Sheppard, N.C.; Billingsley, M.M.; June, C.H.; Mitchell, M.J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol., 2021, 16(1), 25-36.
[http://dx.doi.org/10.1038/s41565-020-00822-y] [PMID: 33437036]
[86]
Chiang, C.L.; Cheng, M.H.; Lin, C.H. From nanoparticles to cancer nanomedicine: Old problems with new solutions. Nanomaterials (Basel), 2021, 11(7), 1727.
[http://dx.doi.org/10.3390/nano11071727] [PMID: 34209111]
[87]
Revia, R.A.; Stephen, Z.R.; Zhang, M. Theranostic nanoparticles for rna-based cancer treatment. Acc. Chem. Res., 2019, 52(6), 1496-1506.
[http://dx.doi.org/10.1021/acs.accounts.9b00101] [PMID: 31135134]
[88]
Shepherd, S.J.; Issadore, D.; Mitchell, M.J. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials, 2021, 274, 120826.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120826] [PMID: 33965797]
[89]
Stinchcombe, T.E. Nanoparticle albumin-bound paclitaxel: A novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine (Lond.), 2007, 2(4), 415-423.
[http://dx.doi.org/10.2217/17435889.2.4.415] [PMID: 17716129]
[90]
Kell, D.B.; Heyden, E.L.; Pretorius, E. The biology of Lactoferrin, an iron-binding protein that can help defend against viruses and bacte-ria. Front. Immunol., 2020, 11, 1221.
[http://dx.doi.org/10.3389/fimmu.2020.01221] [PMID: 32574271]
[91]
Dix, C.; Wright, O. Bioavailability of a novel form of microencapsulated bovine lactoferrin and its effect on inflammatory markers and the gut microbiome: A pilot study. Nutrients, 2018, 10(8), 1115.
[http://dx.doi.org/10.3390/nu10081115] [PMID: 30126153]
[92]
Kondapi, A.K. Targeting cancer with lactoferrin nanoparticles: Recent advances. Nanomedicine (Lond.), 2020, 15(21), 2071-2083.
[http://dx.doi.org/10.2217/nnm-2020-0090] [PMID: 32779524]
[93]
Haschek, W.M.; Rousseaux, C.G.; Wallig, M.A.; Bolon, B.; Ochoa, R., Eds.; Haschek and Rousseaux’s handbook of toxicologic pathology; Academic Press, 2013.
[94]
Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics, 2021, 13(8), 1151.
[http://dx.doi.org/10.3390/pharmaceutics13081151] [PMID: 34452113]
[95]
Cojocaru, F.D.; Botezat, D.; Gardikiotis, I.; Uritu, C.M.; Dodi, G.; Trandafir, L.; Rezus, C.; Rezus, E.; Tamba, B.I.; Mihai, C.T. Nanomate-rials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics, 2020, 12(2), 171.
[http://dx.doi.org/10.3390/pharmaceutics12020171] [PMID: 32085535]
[96]
Sabra, S.; Agwa, M.M. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int. J. Biol. Macromol., 2020, 164, 1046-1060.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.167] [PMID: 32707283]
[97]
Chen, C.; Ai, Q.D.; Wei, Y.H. Kanglaite enhances the efficacy of cisplatin in suppression of hepatocellular carcinoma via inhibiting CKLF1 mediated NF-κB pathway and regulating transporter mediated drug efflux. J. Ethnopharmacol., 2021, 264, 113388.
[http://dx.doi.org/10.1016/j.jep.2020.113388] [PMID: 32918990]
[98]
Mondal, J.; Khuda-Bukhsh, A.R. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Mol. Biol. Rep., 2020, 47(5), 3615-3628.
[http://dx.doi.org/10.1007/s11033-020-05455-x] [PMID: 32314187]
[99]
Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.C.; Santos, A.M.D.; Meneguin, A.B.; Chorilli, M. Highlighting the impact of chitosan on the deve-lopment of gastroretentive drug delivery systems. Int. J. Biol. Macromol., 2020, 159, 804-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.104] [PMID: 32425271]
[100]
Gomes, D.; Silvestre, S.; Duarte, A.P.; Venuti, A.; Soares, C.P.; Passarinha, L.; Sousa, Â. In silico approaches: A way to unveil novel the-rapeutic drugs for cervical cancer management. Pharmaceuticals (Basel), 2021, 14(8), 741.
[http://dx.doi.org/10.3390/ph14080741] [PMID: 34451838]
[101]
Augustine, R.; Rehman, S.R.U.; Ahmed, R.; Zahid, A.A.; Sharifi, M.; Falahati, M.; Hasan, A. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int. J. Biol. Macromol., 2020, 156, 153-170.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.207] [PMID: 32229203]
[102]
Kim, M.J. Preparation, technique, and imaging of computed tomography/magnetic resonance enterography. Korean J. Gastroenterol., 2020, 75(2), 86-93.
[http://dx.doi.org/10.4166/kjg.2020.75.2.86]
[103]
Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; Kumar, N.V.A.; Braga, S.S.; Cardoso, S.M.; Jafernik, K.; Ekiert, H.; Cruz-Martins, N.; Szopa, A.; Villagran, M.; Mardones, L.; Martorell, M.; Do-cea, A.O.; Calina, D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int., 2021, 21(1), 318.
[http://dx.doi.org/10.1186/s12935-021-02025-4] [PMID: 34167552]
[104]
Rusiecka, I.; Gągało, I.; Kocić, I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers, 2021, 1965418, 1965418. Epub ahead of print
[http://dx.doi.org/10.1080/21688370.2021.1965418] [PMID: 34402743]
[105]
Bianchera, A.; Bettini, R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer inter-actions. Expert Opin. Drug Deliv., 2020, 17(10), 1345-1359.
[http://dx.doi.org/10.1080/17425247.2020.1789585] [PMID: 32602795]
[106]
Niza, E.; Ocaña, A.; Castro-Osma, J.A.; Bravo, I.; Alonso-Moreno, C. Polyester polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. Cancers (Basel), 2021, 13(14), 3387.
[http://dx.doi.org/10.3390/cancers13143387] [PMID: 34298604]
[107]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[108]
Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem., 2014, 406(16), 3957-3975.
[http://dx.doi.org/10.1007/s00216-014-7804-x] [PMID: 24740529]
[109]
Desai, S.A.; Manjappa, A.; Khulbe, P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: An overview. J. Egypt. Natl. Canc. Inst., 2021, 33(1), 4.
[http://dx.doi.org/10.1186/s43046-021-00059-3] [PMID: 33555490]
[110]
Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtů, M.; Latiff, N.M.; Pumera, M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev., 2021, 50(1), 619-657.
[http://dx.doi.org/10.1039/D0CS00150C] [PMID: 33206730]
[111]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[112]
Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine, 2021, 16, 1313-1330. [Erratum in: Int. J. Nanomed. 2021 Jul 27; 16: 5099. PMID: 33628022; PMCID: PMC7898224].
[http://dx.doi.org/10.2147/IJN.S289443] [PMID: 33628022]
[113]
Lee, A.; Djamgoz, M.B.A. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat. Rev., 2018, 62, 110-122.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.003] [PMID: 29202431]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy