Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antiproliferative Effects of Artabotrys odoratissimus Fruit Extract and its Bioactive Fraction through Upregulation of p53/γH2AX Signals and G2/M Phase Arrest in MIA PaCa-2 Cells

Author(s): Meghana Pargi, Sandeep Kumar Jain Raviraj, Prashanth Narayanappa, Santhosh Kumar J. Urumarudappa, Pallavi Malleshappa and Kumaraswamy Honnenahally Malleshappa*

Volume 22, Issue 17, 2022

Published on: 27 May, 2022

Page: [2998 - 3008] Pages: 11

DOI: 10.2174/1871520622666220201103431

Price: $65

Abstract

Background: Artabotrys odoratissimus (Annonaceae) is a medicinal and ornamental plant widely cultivated in Southeast Asia for its famous ylang ylang essential oil. The fruits of this plant are used for health benefits, but very little is studied about the bioactive principles, their role in regulating oxidative stress and tumour progression.

Objective: The study aimed to evaluate the antiproliferative effects of fruit extract of Artabotrys odoratissimus and its bioactive fraction using cell-based assays.

Methods: The free radical scavenging and antiproliferative effects of Artabotrys odoratissimus fruit ethyl acetate (FEA) extract and its bioactive fraction were evaluated using cell viability assays, colony formation assay, double staining assay, reactive oxygen species (ROS) assay, comet assay, cell cycle analysis, and western blotting.

Results: The extract showed phenolic content of 149.8±0.11μg/mg Gallic acid equivalents and flavonoid content of 214.47±4.18 μg/mg Quercetin. FEA showed an IC50 value of 76.35 μg/ml in the ABTS assay and an IC50 value of 134.3±7.8 μg/ml on MIA PaCa-2 cells. The cells treated with 125 μg/ml and 250 μg/ml FEA showed increased apoptotic cells in Double staining assay, DNA damage during comet assay, enhanced ROS, and cell cycle arrest at G2M phase at 125 μg/ml and 250 μg/ml. The active fraction AF5 showed an IC50 value of 67±1.26 μg/ml on MIA PaCa-2 cells during MTT assay, displayed potential antiproliferative effects, and showed a marked increase in the expression of γH2AX and p53.

Conclusion: These results prove that the fruit extract and the bioactive fraction demonstrate oxidative stress-mediated DNA damage, leading to apoptosis in the MIA PaCa-2 cell line.

Keywords: Artabotrys odoratissimus, DNA damage, pancreatic cancer, oxidative stress, ROS, bioactive.

Graphical Abstract

[1]
Bagchi, D.; Preuss, H.G., Eds.; Phytopharmaceuticals in cancer chemoprevention; CRC press: New York, 2004.
[http://dx.doi.org/10.1201/9780203506707]
[2]
Gbadamosi, I.T.; Erinos, S.M. A review of twenty ethnobotanicals used in the management of breast cancer in Abeokuta, Ogun State, Nige-ria. Afr. J. Pharm. Pharmacol., 2016, 10(27), 546-564.
[http://dx.doi.org/10.5897/AJPP2015.4327]
[3]
Newman, D.J.; Gragg, G.M.; Sander, K.M. Medicinal plants and their benefits. J. Nat. Prod., 2003, 66(7), 1022-1045.
[http://dx.doi.org/10.1021/np030096l]
[4]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[http://dx.doi.org/10.1038/nrc3803]
[5]
Schumacker, P.T. Reactive oxygen species in cancer: A dance with the devil. Cancer Cell, 2015, 27(2), 156-157.
[http://dx.doi.org/10.1016/j.ccell.2015.01.007] [PMID: 25670075]
[6]
de Groot, A.C.; Schmidt, E. Essential oils, part VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute. Dermatitis, 2017, 28(1), 14-21.
[http://dx.doi.org/10.1097/DER.0000000000000241]
[7]
Sakshi, B.; Sharad, W. Standarization of Artabortrys hexapetalus. Int. J. Pharmacogn. Phytochem. Res, 2016, 8(3), 398-406.
[8]
Nordal, A. The medicinal plants and crude drugs of Burma. Medd. Nor. Farm. Selsk., 1963, 25, 155-158.
[9]
Fernando, W.; Rupasinghe, H.V.; Hoskin, D.W. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett., 2019, 452, 168-177.
[http://dx.doi.org/10.1016/j.canlet.2019.03.022]
[10]
Tan KK. In vitro pharmacological properties of an indigenous medicinal plant, Artabotrys crassifolius Hook. f. & Thomson (Family: Annonaceae Juss.) (Doctoral dissertation, University of Nottingham). (Available from: http://eprints.nottingham.ac.uk/27981/1/KK%20Thesis%20%2820122014%29.pdf
[11]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16(3), 144-158.
[12]
Zhuang, X.P.; Yu, X.Y. Determination of total flavonoids in the leaves of Ginkgo and studies on its extraction process. Chin. Tradit. Herbal Drugs, 1992, 23, 122-124.
[13]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolyb-denum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[14]
Benzie, I.F.; Strain, J.J. [2] Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299, 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5]
[15]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Antioxidative activity of phenolic composition of commercial extracts of sage and rose-mary. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[16]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cati-on decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[17]
Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485] [PMID: 7979394]
[18]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assay. J. Immunol. Methods, 1983, 65, 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[19]
Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[20]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0]
[21]
Kasibhatla, S; Amarante-Mendes, G.P; Finucane, D; Brunner, T; Bossy-Wetzel, E; Green, D.R. Acridine orange/ethidium bromide (AO/EB) staining to detectapoptosis. Cold Spring Harb. Protoc., 2006, 2006(3), pdb-rot4493.
[http://dx.doi.org/10.1101/pdb.prot4493] [PMID: 22485874]
[22]
LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′ 7′-dichlrofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 1992, 5(2), 227-231.
[http://dx.doi.org/10.1021/tx00026a012] [PMID: 1322737]
[23]
Adhami, S.; Farooqi, H.; Abdin, M.Z.; Prasad, R.; Malik, A.A. Chemical profiling of chlorophytum comosum (Thunb.) Jaques by GCMS/LC-ESI-MS and its antiproliferative effects on human carcinoma cell lines. Anticancer. Agents Med. Chem., 2020, 21(13), 1697-1707.
[http://dx.doi.org/10.2174/1871520620666201123085300] [PMID: 33231161]
[24]
Hider, R.C.; Liu, Z.D.; Khodr, H.H. Metal chelation of polyphenols. Methods Enzymol., 2001, 335, 190-203.
[http://dx.doi.org/10.1016/S0076-6879(01)35243-6]
[25]
Andriamadio, J.H.; Rasoanaivo, L.H.; Benedec, D.; Vlase, L.; Gheldiu, A.M.; Duma, M.; Toiu, A.; Raharisololalao, A.; Oniga, I. HPLC/MS analysis of polyphenols, antioxidant and antimicrobial activities of Artabotrys hildebrandtii O. Hffm. extracts. Nat. Prod. Res., 2015, 9(23), 2188-2196.
[http://dx.doi.org/10.1080/14786419.2015.1007458] [PMID: 25679267]
[26]
Bunchareon, W.; Pamok, S.; Saenphet, S.; Saenphet, K. Phytochemical investigation and antioxidant properties of different extracts from artabotrys harmandii finet & gagnep. Chiang Mai J. Sci., 2018, 45(6), 2338-2347.
[27]
Pargi, M.; Jain Raviraj, S.K.; Narayanappa, P.; Malleshappa Honnenahally, K. Phytochemical profiling and screening of protective effects of Artabotrys odoratissimus on H2O2 induced oxidative stress in HEK-293 cells and erythrocytes. Bot. Lett., 2020, 167(4), 471-484.
[http://dx.doi.org/10.1080/23818107.2020.1791730]
[28]
Rahman, M.; Rahman, M.D.; Biswas, P.; Hossain, M.; Islam, R.; Hannan, M.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phyto-chemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2021, 10(1), 23.
[http://dx.doi.org/10.3390/antiox10010023] [PMID: 33379372]
[29]
Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res., 2018, 28(1), 9-21.
[http://dx.doi.org/10.1038/cr.2017.133] [PMID: 29076500]
[30]
Kaina, B. DNA damage-triggered apoptosis: Critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol., 2003, 66(8), 1547-1554.
[http://dx.doi.org/10.1016/S0006-2952(03)00510-0] [PMID: 14555233]
[31]
Yasuhara, S.; Zhu, Y.; Matsui, T.; Tipirneni, N.; Yasuhara, Y.; Kaneki, M.; Rosenzweig, A.; Martyn, J.J. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J. Histochem. Cytochem., 2003, 51(7), 873-885.
[http://dx.doi.org/10.1177/002215540305100703] [PMID: 12810838]
[32]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med., 2006, 12(9), 440-450.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[33]
Norbury, C.J.; Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene, 2004, 23(16), 2797-2808.
[http://dx.doi.org/10.1038/sj.onc.1207532] [PMID: 15077143]
[34]
Srinivas, U.S.; Tan, B.W.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol., 2018, 25, 101084.
[http://dx.doi.org/10.1016/j.redox.2018.101084]
[35]
Sun, Y.; Clair, D.K.; Xu, Y.; Crooks, P.A.; Clair, W.H. A NADPH oxidase–dependent redox signaling pathway mediates the selective radi-osensitization effect of parthenolide in prostate cancer cells. Cancer Res., 2010, 70(7), 2880-2890.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4572] [PMID: 20233868]
[36]
Widodo, N.; Priyandoko, D.; Shah, N.; Wadhwa, R.; Kaul, S.C. Selective killing of cancer cells by Ashwagandha leaf extract and its compo-nent withanone involves ROS signaling. PLoS One, 5(10), e13536.
[http://dx.doi.org/10.1371/journal.pone.0013536] [PMID: 20975835]
[37]
Boutros, R.; Lobjois, V.; Ducommun, B. CDC25 phosphatases in cancer cells: Key players? Good targets? Nat. Rev. Cancer, 2007, 7(7), 495-507.
[http://dx.doi.org/10.1038/nrc2169] [PMID: 17568790]
[38]
Xiao, D.; Herman-Antosiewicz, A.; Antosiewicz, J.; Xiao, H.; Brisson, M.; Lazo, J.S.; Singh, S.V. Diallyl trisulfide-induced G2–M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc25C. Oncogene, 2005, 24(41), 6256-6268.
[http://dx.doi.org/10.1038/sj.onc.1208759] [PMID: 15940258]
[39]
Pumiputavon, K.; Chaowasku, T.; Saenjum, C.; Osathanunkul, M.; Wungsintaweekul, B.; Chawansuntati, K.; Wipasa, J.; Lithanatudom, P. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complement. Altern. Med., 2017, 17(1), 1.
[http://dx.doi.org/10.1186/s12906-017-1811-3]
[40]
De Haan, L.H.; Bosselaers, I. FJongen, W.M; Zwijsen, R.M. Effect of lipids and aldehydes on gap-junctional intercellular communication between human smooth muscle cells. Carcinogenesis, 1994, 15(2), 253-256.
[http://dx.doi.org/10.1093/carcin/15.2.253] [PMID: 8313516]
[41]
Slaughter, J.C. The naturally occurring furanones: Formation and function from pheromone to food. Biol. Rev., 1999, 74(3), 259-276.
[http://dx.doi.org/10.1111/j.1469-185X.1999.tb00187.x] [PMID: 10466251]
[42]
Cimmino, A; Scafato, P; Mathieu, V; Ingels, A; D'Amico, W; Pisani, L; Maddau, L; Superchi, S; Kiss, R; Evidente, A Natural and synthet-ic furanones with anticancer activity. Nat. Prod. Commun., 2016, 11(10), 1934578X1601101013.
[http://dx.doi.org/10.1177/1934578X1601101013]
[43]
Nair, R.V.; Jayasree, D.V.; Biju, P.G.; Baby, S. Anti-inflammatory and anticancer activities of erythrodiol-3-acetate and 2, 4-di-tert-butylphenol isolated from Humboldtia unijuga. Nat. Prod. Res., 2020, 34(16), 2319-2322.
[http://dx.doi.org/10.1080/14786419.2018.1531406]
[44]
Song, Y.W.; Lim, Y.; Cho, S.K. 2, 4-di-tert-butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in hu-man gastric adenocarcinoma AGS cells. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 675-683.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.003] [PMID: 29427610]
[45]
Ortea, I.; González-Fernández, M.J.; Ramos-Bueno, R.P.; Guil-Guerrero, J.L. Proteomics study reveals that docosahexaenoic and arachi-donic acids exert different in vitro anticancer activities in colorectal cancer cells. J. Agric. Food Chem., 2018, 66(24), 6003-6012.
[http://dx.doi.org/10.1021/acs.jafc.8b00915] [PMID: 29804451]
[46]
Kang, S.H.; Kim, Y.S.; Kim, E.K.; Hwang, J.W.; Jeong, J.H.; Dong, X.; Lee, J.W.; Moon, S.H.; Jeon, B.T.; Park, P.J. Anticancer effect of thymol on AGS human gastric carcinoma cells. J. Microbiol. Biotechnol., 2016, 26(1), 28-37.
[http://dx.doi.org/10.4014/jmb.1506.06073] [PMID: 26437948]
[47]
De La Chapa, J.J.; Singha, P.K.; Lee, D.R.; Gonzales, C.B. Thymol inhibits oral squamous cell carcinoma growth via mitochondria mediated apoptosis. J. Oral Pathol. Med., 2018, 47(7), 674-682.
[http://dx.doi.org/10.1111/jop.12735] [PMID: 29777637]
[48]
Cordell, G.A.; Beecher, C.W.; Pezzuto, J.M. Can ethnopharmacology contribute to the development of new anticancer drugs? J. Ethnopharmacol., 1991, 32(1-3), 117-133.
[http://dx.doi.org/10.1016/0378-8741(91)90110-Y] [PMID: 1881151]
[49]
Yang, Z.; Lu, W.; Ma, X.; Song, D. Bioassay-guided isolation of an alkaloid with antiangiogenic and antitumor activities from the extract of Fissistigma cavaleriei root. Phytomedicine, 2012, 19(3-4), 301-305.
[http://dx.doi.org/10.1016/j.phymed.2011.11.009] [PMID: 22240079]
[50]
Moghadamtousi, S.Z.; Rouhollahi, E.; Karimian, H.; Fadaeinasab, M.; Firoozinia, M.; Abdulla, M.A.; Kadir, H.A. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of acetogenin annomuricin E in HT-29 cells: A bioassay-guided approach. PLoS One, 2015, 10(4), e0122288.
[http://dx.doi.org/10.1371/journal.pone.0122288] [PMID: 25860620]
[51]
Wijeratne, E.K.; Gunatilaka, A.L.; Kingston, D.G.; Haltiwanger, R.C.; Eggleston, D.S. Artabotrine: A novel bioactive alkaloid from Arta-botrys zeylanicus. Tetrahedron, 1995, 51(29), 7877-7882.
[http://dx.doi.org/10.1016/0040-4020(95)00422-5]
[52]
Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Syner-gy and positive interactions. Malar. J., 2011, 10(1), 1-2.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S4] [PMID: 21411015]
[53]
Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine, 2001, 8(5), 401-409.
[http://dx.doi.org/10.1078/0944-7113-00060] [PMID: 11695885]
[54]
Cokol, M.; Chua, H.N.; Tasan, M.; Mutlu, B.; Weinstein, Z.B.; Suzuki, Y.; Nergiz, M.E.; Costanzo, M.; Baryshnikova, A.; Giaever, G.; Nislow, C. Systematic exploration of synergistic drug pairs. Mol. Syst. Biol., 2011, 7(1), 544.
[http://dx.doi.org/10.1038/msb.2011.71] [PMID: 22068327]
[55]
Fitzgerald, J.B.; Schoeberl, B.; Nielsen, U.B.; Sorger, P.K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol., 2006, 2(9), 458-466.
[http://dx.doi.org/10.1038/nchembio817] [PMID: 16921358]
[56]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[http://dx.doi.org/10.1023/A:1009616228304] [PMID: 11256882]
[57]
Byczkowska, A.; Kunikowska, A. Kaźmierczak, A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma, 2013, 250(1), 121-128.
[http://dx.doi.org/10.1007/s00709-012-0383-9] [PMID: 22350735]
[58]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[59]
Mazar, J.; Gordon, C.; Naga, V.; Westmoreland, T.J. The killing of human neuroblastoma cells by the small molecule JQ1 occurs in a p53-dependent manner. Anti-Cancer Agents in Med. Chem., 2020, 20(13), 1613-1625.
[http://dx.doi.org/10.2174/1871520620666200424123834] [PMID: 32329693]
[60]
Cheng, Q.; Chen, J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle, 2010, 9(3), 472-478.
[http://dx.doi.org/10.4161/cc.9.3.10556] [PMID: 20081365]
[61]
Humpton, T.J.; Vousden, K.H. Regulation of cellular metabolism and hypoxia by p53. Cold Spring Harb. Perspect. Med., 2016, 6(7), a026146.
[http://dx.doi.org/10.1101/cshperspect.a026146] [PMID: 27371670]
[62]
Sablina, A.A.; Budanov, A.V.; Ilyinskaya, G.V.; Agapova, L.S.; Kravchenko, J.E.; Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med., 2005, 11(12), 1306-1313.
[http://dx.doi.org/10.1038/nm1320] [PMID: 16286925]
[63]
Wanka, C.; Steinbach, J.P.; Rieger, J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J. Biol. Chem., 2012, 287(40), 33436-33446.
[http://dx.doi.org/10.1074/jbc.M112.384578] [PMID: 22887998]
[64]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regula-tor of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[65]
Rogakou, E.P.; Nieves-Neira, W.; Boon, C.; Pommier, Y.; Bonner, W.M. Initiation of DNA fragmentation during apoptosis induces phos-phorylation of H2AX histone at serine 139. J. Biol. Chem., 2000, 275(13), 9390-9395.
[http://dx.doi.org/10.1074/jbc.275.13.9390] [PMID: 10734083]
[66]
Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science, 2008, 319(5868), 1352-1355.
[http://dx.doi.org/10.1126/science.1140735] [PMID: 18323444]
[67]
Brunner, A.H.; Hinterholzer, S.; Riss, P.; Heinze, G.; Weiss, K.; Brustmann, H. Expression of γ-H2AX in endometrial carcinomas: An immunohistochemical study with p53. Gynecol. Oncol., 2011, 121(1), 206-211.
[http://dx.doi.org/10.1016/j.ygyno.2010.11.037] [PMID: 21185067]
[68]
de Souza Grinevicius, V.M.; Kviecinski, M.R.; Mota, N.S.; Ourique, F.; Castro, L.S.; Andreguetti, R.R.; Correia, J.F.; Wilhem Filho, D.; Pich, C.T.; Pedrosa, R.C. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. J. Ethnopharmacol., 2016, 189, 139-147.
[http://dx.doi.org/10.1016/j.jep.2016.05.020]
[69]
Tang, J.Y.; Peng, S.Y.; Cheng, Y.B.; Wang, C.L.; Farooqi, A.A.; Yu, T.J.; Hou, M.F.; Wang, S.C.; Yen, C.H.; Chan, L.P. Ou‐Yang, F.; Chang, H-W. Ethyl acetate extract of Nepenthes adrianii x clipeata induces antiproliferation, apoptosis, and DNA damage against oral can-cer cells through oxidative stress. Environ. Toxicol., 2019, 34(8), 891-901.
[http://dx.doi.org/10.1002/tox.22748] [PMID: 31157515]
[70]
Gundala, S.R. Phytocomplexity: Implications for development of novel anticancer therapeutics using dietary agents. 2014. (Available from: https://scholarworks.gsu.edu/biology_diss/146/).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy