Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Commentary

Potential Goals, Challenges, and Safety of Focused Ultrasound Application for Central Nervous System Disorders

Author(s): Iván Pérez-Neri, Alberto González-Aguilar, Hugo Sandoval, Carlos Pineda and Camilo Ríos*

Volume 20, Issue 10, 2022

Published on: 23 May, 2022

Page: [1807 - 1810] Pages: 4

DOI: 10.2174/1570159X20666220201092908

[1]
Gutiérrez, J.; Sandoval, H.; Pérez-Neri, I.; Arauz, A.; López-Hernández, J.C.; Pineda, C. Advances in imaging technologies for the assessment of peripheral neuropathies in rheumatoid arthritis. Rheumatol. Int., 2021, 41(3), 519-528.
[http://dx.doi.org/10.1007/s00296-020-04780-5] [PMID: 33427917]
[2]
Pérez-Neri, I.; González-Aguilar, A.; Sandoval, H.; Pineda, C.; Ríos, C. Therapeutic potential of ultrasound neuromodulation in decreasing neuropathic pain: clinical and experimental evidence. Curr. Neuropharmacol., 2021, 19(3), 334-348.
[http://dx.doi.org/10.2174/1570159X18666200720175253] [PMID: 32691714]
[3]
Brocalero Camacho, A.; Pérez Borrego, Y.A.; Rodríguez Matas, M.J.; Soto León, V.; Mordillo Mateos, L.; Oliviero, A. Protocolo terapéutico del dolor con técnicas de estimulación no invasiva. Medicine (Baltimore), 2019, 12(75), 4451-4454.
[4]
Niu, X.; Yu, K.; He, B. On the neuromodulatory pathways of the in vivo brain by means of transcranial focused ultrasound. Curr. Opin. Biomed. Eng., 2018, 8, 61-69.
[http://dx.doi.org/10.1016/j.cobme.2018.10.004] [PMID: 31223668]
[5]
Lee, D.J.; Lozano, A.M. The future of surgical treatments for Parkinson’s disease. J. Parkinsons Dis., 2018, 8(s1), S79-S83.
[http://dx.doi.org/10.3233/JPD-181467] [PMID: 30584156]
[6]
Darrow, D.P. Focused ultrasound for neuromodulation. Neurotherapeutics, 2019, 16(1), 88-99.
[http://dx.doi.org/10.1007/s13311-018-00691-3] [PMID: 30488340]
[7]
Kim, Y.G.; Kweon, E.J.; Chang, W.S.; Jung, H.H.; Chang, J.W. Magnetic resonance-guided high intensity focused ultrasound for treating movement disorders. Prog. Neurol. Surg., 2018, 33, 120-134.
[http://dx.doi.org/10.1159/000481080] [PMID: 29332078]
[8]
Kubanek, J. Neuromodulation with transcranial focused ultrasound. Neurosurg. Focus, 2018, 44(2), E14.
[http://dx.doi.org/10.3171/2017.11.FOCUS17621] [PMID: 29385924]
[9]
Roet, M.; Hescham, S.A.; Jahanshahi, A.; Rutten, B.P.F.; Anikeeva, P.O.; Temel, Y. Progress in neuromodulation of the brain: A role for magnetic nanoparticles? Prog. Neurobiol., 2019, 177, 1-14.
[http://dx.doi.org/10.1016/j.pneurobio.2019.03.002] [PMID: 30878723]
[10]
Legon, W.; Bansal, P.; Tyshynsky, R.; Ai, L.; Mueller, J.K. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep., 2018, 8(1), 10007.
[http://dx.doi.org/10.1038/s41598-018-28320-1] [PMID: 29968768]
[11]
Harary, M.; Segar, D.J.; Huang, K.T.; Tafel, I.J.; Valdes, P.A.; Cosgrove, G.R. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg. Focus, 2018, 44(2), E2.
[http://dx.doi.org/10.3171/2017.11.FOCUS17586] [PMID: 29385919]
[12]
Dababou, S.; Marrocchio, C.; Scipione, R.; Erasmus, H.P.; Ghanouni, P.; Anzidei, M.; Catalano, C.; Napoli, A. High-intensity focused ultrasound for pain management in patients with cancer. Radiographics, 2018, 38(2), 603-623.
[http://dx.doi.org/10.1148/rg.2018170129] [PMID: 29394144]
[13]
Li, G.; Qiu, W.; Hong, J.; Jiang, Q.; Su, M.; Mu, P.; Yang, G.; Li, Y.; Wang, C.; Zhang, H.; Zheng, H. Imaging-guided dual-target neuromodulation of the mouse brain using array ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65(9), 1583-1589.
[http://dx.doi.org/10.1109/TUFFC.2018.2847252] [PMID: 29994254]
[14]
Sammartino, F.; Krishna, V.; Rezai, A.R. MRI and fMRI for Neuromodulation. In: Neuromodulation; Krames, E.S.; Peckham, P.H.; Rezai, A.R., Eds.; Elsevier: London, 2018, pp. 121-127.
[http://dx.doi.org/10.1016/B978-0-12-805353-9.00011-5]
[15]
Tyler, W.J.; Lani, S.W.; Hwang, G.M. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol., 2018, 50, 222-231.
[http://dx.doi.org/10.1016/j.conb.2018.04.011] [PMID: 29674264]
[16]
Todd, N.; Zhang, Y.; Power, C.; Becerra, L.; Borsook, D.; Livingstone, M.; McDannold, N. Modulation of brain function by targeted delivery of GABA through the disrupted blood-brain barrier. Neuroimage, 2019, 189, 267-275.
[http://dx.doi.org/10.1016/j.neuroimage.2019.01.037] [PMID: 30659957]
[17]
Yang, P.F.; Phipps, M.A.; Newton, A.T.; Chaplin, V.; Gore, J.C.; Caskey, C.F.; Chen, L.M. Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection. Sci. Rep., 2018, 8(1), 7993.
[http://dx.doi.org/10.1038/s41598-018-26287-7] [PMID: 29789605]
[18]
Guo, S.; Zhuo, J.; Li, G.; Gandhi, D.; Dayan, M.; Fishman, P.; Eisenberg, H.; Melhem, E.R.; Gullapalli, R.P. Feasibility of ultrashort echo time images using full-wave acoustic and thermal modeling for transcranial MRI-guided focused ultrasound (tcMRgFUS) planning. Phys. Med. Biol., 2019, 64(9), 095008.
[http://dx.doi.org/10.1088/1361-6560/ab12f7] [PMID: 30909173]
[19]
Krishna, V.; Sammartino, F.; Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol., 2018, 75(2), 246-254.
[http://dx.doi.org/10.1001/jamaneurol.2017.3129] [PMID: 29228074]
[20]
Brown, M.R.D.; Farquhar-Smith, P.; Williams, J.E.; ter Haar, G.; deSouza, N.M. The use of high-intensity focused ultrasound as a novel treatment for painful conditions-a description and narrative review of the literature. Br. J. Anaesth., 2015, 115(4), 520-530.
[http://dx.doi.org/10.1093/bja/aev302] [PMID: 26385662]
[21]
Ghanouni, P.; Pauly, K.B.; Elias, W.J.; Henderson, J.; Sheehan, J.; Monteith, S.; Wintermark, M. Transcranial MRI-Guided Focused Ultrasound: A Review of the Technologic and Neurologic Applications. AJR Am. J. Roentgenol., 2015, 205(1), 150-159.
[http://dx.doi.org/10.2214/AJR.14.13632] [PMID: 26102394]
[22]
Zhang, D.; Li, H.; Sun, J.; Hu, W.; Jin, W.; Li, S.; Tong, S. Antidepressant-Like Effect of Low-Intensity Transcranial Ultrasound Stimulation. IEEE Trans. Biomed. Eng., 2019, 66(2), 411-420.
[http://dx.doi.org/10.1109/TBME.2018.2845689] [PMID: 29993461]
[23]
Hwang, G.M.; Tyler, W.; Lani, S.; Rosenberg, A.P.; Congedo, M.B. Forward-looking engineering concepts for ultrasonic modulation of neural circuit activity in humans, Micro- and Nanotechnology Sensors, Systems, and Applications X, 2018.
[http://dx.doi.org/10.1117/12.2327094]
[24]
Samoudi, M.A.; Van Renterghem, T.; Botteldooren, D. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation. J. Neural Eng., 2019, 16(2), 026015.
[http://dx.doi.org/10.1088/1741-2552/aafa38] [PMID: 30572313]
[25]
Lee, S.A.; Kamimura, H.A.S.; Burgess, M.T.; Pouliopoulos, A.; Konofagou, E.E. Real-time displacement and cavitation imaging of non-invasive neuromodulation of the peripheral nervous system via focused ultrasound 2018 IEEE International Ultrasonics Symposium (IUS), 2018, 1-4.
[26]
Prabhala, T.; Hellman, A.; Walling, I.; Maietta, T.; Qian, J.; Burdette, C.; Neubauer, P.; Shao, M.; Stapleton, A.; Thibodeau, J.; Pilitsis, J.G. External focused ultrasound treatment for neuropathic pain induced by common peroneal nerve injury. Neurosci. Lett., 2018, 684, 145-151.
[http://dx.doi.org/10.1016/j.neulet.2018.07.037] [PMID: 30056105]
[27]
Kim, Y.G.; Chang, J.W. High-intensity focused ultrasound surgery for the treatment of obsessive–compulsive disorder. In: Neuromodulation; Krames, E.S.; Peckham, P.H.; Rezai, A.R., Eds.; Elsevier: London, 2018, pp. 1045-1056.
[http://dx.doi.org/10.1016/B978-0-12-805353-9.00086-3]
[28]
Kobayashi, Y.; Azuma, T.; Shimizu, K.; Koizumi, M.; Oya, T.; Suzuki, R.; Maruyama, K.; Seki, K.; Takagi, S. Development of focus controlling method with transcranial focused ultrasound aided by numerical simulation for noninvasive brain therapy. Jpn. J. Appl. Phys., 2018, 57, 07LF22.
[http://dx.doi.org/10.7567/JJAP.57.07LF22]
[29]
Jung, N.Y.; Chang, J.W. Magnetic resonance-guided focused ultrasound in neurosurgery: Taking lessons from the past to inform the future. J. Korean Med. Sci., 2018, 33(44), e279.
[http://dx.doi.org/10.3346/jkms.2018.33.e279] [PMID: 30369860]
[30]
Qi, S.; Li, Y.; Zhang, W.; Chen, J. Design of a novel wearable LIPUS treatment device for mental health treatment. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2018, 2018, 6052-6055.
[http://dx.doi.org/10.1109/EMBC.2018.8513635] [PMID: 30441716]
[31]
Kang, C.; Chang, T.C.; Vo, J.; Charthad, J.; Weber, M.; Arbabian, A.; Vasudevan, S. Long-term in vivo performance of novel ultrasound powered implantable devices. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2018, 2018, 2985-2988.
[http://dx.doi.org/10.1109/EMBC.2018.8512978] [PMID: 30441025]
[32]
Gougheri, H.S.; Kiani, M. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); Cleveland, United States, 2018, pp. 1-4.
[http://dx.doi.org/10.1109/BIOCAS.2018.8584692]
[33]
Jiang, X.; Savchenko, O.; Li, Y.; Qi, S.; Yang, T.; Zhang, W.; Chen, J. A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Trans. Biomed. Eng., 2019, 66(10), 2704-2718.
[http://dx.doi.org/10.1109/TBME.2018.2889669] [PMID: 30596564]
[34]
Zhou, H.; Niu, L.; Xia, X.; Lin, Z.; Liu, X.; Su, M.; Guo, R.; Meng, L.; Zheng, H. Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng., 2019, 66(11), 3006-3013.
[http://dx.doi.org/10.1109/TBME.2019.2899631] [PMID: 30794160]
[35]
Kim, H.; Kim, S.; Sim, N.S.; Pasquinelli, C.; Thielscher, A.; Lee, J.H.; Lee, H.J. Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimul., 2019, 12(2), 251-255.
[http://dx.doi.org/10.1016/j.brs.2018.11.007] [PMID: 30503712]
[36]
Sharabi, S.; Daniels, D.; Last, D.; Guez, D.; Zivli, Z.; Castel, D.; Levy, Y.; Volovick, A.; Grinfeld, J.; Rachmilevich, I.; Amar, T.; Mardor, Y.; Harnof, S. Non-thermal focused ultrasound induced reversible reduction of essential tremor in a rat model. Brain Stimul., 2019, 12(1), 1-8.
[http://dx.doi.org/10.1016/j.brs.2018.08.014] [PMID: 30181107]
[37]
Fisher, J.A.N.; Gumenchuk, I. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo. J. Neural Eng., 2018, 15(3), 035004.
[http://dx.doi.org/10.1088/1741-2552/aaaee1] [PMID: 29436519]
[38]
Yang, X.; Liu, F.; Wang, F.; Wu, H.; Xie, W.; Ma, M.; Sun, T. Histological effects of focused ultrasound treatment on the sciatic nerves of rats: an experimental study. Biotechnol. Biotechnol. Equip., 2018, 32(4), 1005-1011.
[http://dx.doi.org/10.1080/13102818.2017.1423514]
[39]
Downs, M.E.; Lee, S.A.; Yang, G.; Kim, S.; Wang, Q.; Konofagou, E.E. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo. Phys. Med. Biol., 2018, 63(3), 035011.
[http://dx.doi.org/10.1088/1361-6560/aa9fc2] [PMID: 29214985]
[40]
Iacopino, D.G.; Gagliardo, C.; Giugno, A.; Giammalva, G.R.; Napoli, A.; Maugeri, R.; Graziano, F.; Valentino, F.; Cosentino, G.; D’Amelio, M.; Bartolotta, T.V.; Catalano, C.; Fierro, B.; Midiri, M.; Lagalla, R. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg. Focus, 2018, 44(2), E7.
[http://dx.doi.org/10.3171/2017.11.FOCUS17614] [PMID: 29385927]
[41]
Gallay, M.N.; Moser, D.; Jeanmonod, D. Safety and accuracy of incisionless transcranial MR-guided focused ultrasound functional neurosurgery: single-center experience with 253 targets in 180 treatments. J. Neurosurg., 2018, 1, 1-10.
[PMID: 29799340]
[42]
Lea-Banks, H.; O’Reilly, M.A.; Hynynen, K. Ultrasound-responsive droplets for therapy: A review. J. Control. Release, 2019, 293, 144-154.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.028] [PMID: 30503398]
[43]
Acquaticci, F.; Guarracino, J.F.; Gwirc, S.N.; Lew, S.E. A polydimethylsiloxane-based axicon lens for focused ultrasonic brain stimulation techniques. Acoust. Sci. Technol., 2019, 40(2), 116-126.
[http://dx.doi.org/10.1250/ast.40.116]
[44]
Sammartino, F.; Taylor, T.; Rezai, A.R.; Krishna, V. Chapter 31 - Focused ultrasound ablation for neurological disorders.Elsevier: London, 2018, pp. 443-449.
[45]
Wang, J.B.; Aryal, M.; Zhong, Q.; Vyas, D.B.; Airan, R.D. Noninvasive ultrasonic drug uncaging maps whole-brain functional networks. Neuron, 2018, 100(3), 728-738.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.10.042] [PMID: 30408444]
[46]
Feng, Y.; Tian, Z.; Wan, M. Bioeffects of low-intensity ultrasound in vitro: Apoptosis, protein profile alteration, and potential molecular mechanism. J. Ultrasound Med., 2010, 29(6), 963-974.
[http://dx.doi.org/10.7863/jum.2010.29.6.963] [PMID: 20498470]

© 2025 Bentham Science Publishers | Privacy Policy