Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Protein Arginine Methyltransferase 1 and its Dynamic Regulation Associated with Cellular Processes and Diseases

Author(s): Hao Wu, Yichao Zhang, Shuo Liu, Dongwu Liu, Ao Li, Hongkuan Deng, Xiuzhen Zhang, Weiwei Wu*, Baohua Liu* and Qiuxiang Pang*

Volume 29, Issue 3, 2022

Published on: 14 March, 2022

Page: [218 - 230] Pages: 13

DOI: 10.2174/0929866529666220124120208

Price: $65

Abstract

Post-translational modifications (PTMs) of proteins influence protein degradation, protein- protein interactions, expression of genes, and intracellular signal transduction, thereby regulating major life processes. Among the PTMs occurring within the cytoplasm and nucleus, the most commonly studied one is the arginine methylation of proteins catalyzed by PRMTs. PRMT1 is the most excellent and extensively studied member of the PRMT family. PRMT1 occurs in various isoforms, and the unique sequence splicing of each of these isoforms encodes differential proteins that exhibit different cellular localization, substrate specificity, and enzyme activity. In addition to methylating histones, PRMT1 also methylates a large number of non-histone substrates that regulate a broad range of cellular processes. In recent years, research has revealed an increasing number of pathological diseases caused by the misregulation and aberrant expression of PRMT1, demonstrating the potential of PRMT1 as an effective biomarker for drug targets. In this context, the present study discusses the structural characteristics and the biological functions of PRMT1.

Practical Applications: Several diseases originate from aberrant post-translational modifications. The misregulation of the arginine methylation of proteins, which is regulated by PRMTs and influences a series of cellular activities, leads to developmental abnormalities and physiological diseases. PRMT1, which accounts for 85% of the activity of PRMTs, is involved in several cellular processes occurring in various diseases. Multiple inhibitors have been developed and studied for their potential as biomarkers and suitable drug targets in clinical application. The present report summarizes the findings of the most recent studies focusing on the structural characteristics, splicing, substrates, and biological functions of PRMT1, to contribute to future research for deciphering the molecular mechanisms of PRMT1 and drug improvement.

Keywords: PTMs, PRMT1, cellular processes, biomarker, drug targets, disease.

Graphical Abstract

[1]
Jensen, O.N. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol., 2004, 8(1), 33-41.
[http://dx.doi.org/10.1016/j.cbpa.2003.12.009] [PMID: 15036154]
[2]
Katz, J.E.; Dlakić, M.; Clarke, S. Automated identification of putative methyltransferases from genomic open reading frames. Mol. Cell. Proteomics, 2003, 2(8), 525-540.
[http://dx.doi.org/10.1074/mcp.M300037-MCP200] [PMID: 12872006]
[3]
Cheng, X.; Roberts, R.J. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res., 2001, 29(18), 3784-3795.
[http://dx.doi.org/10.1093/nar/29.18.3784] [PMID: 11557810]
[4]
Bedford, M.T. Arginine methylation at a glance. J. Cell Sci., 2007, 120(Pt 24), 4243-4246.
[http://dx.doi.org/10.1242/jcs.019885] [PMID: 18057026]
[5]
Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857.
[http://dx.doi.org/10.1126/science.1060781] [PMID: 11387442]
[6]
Uhlmann, T.; Geoghegan, V.L.; Thomas, B.; Ridlova, G.; Trudgian, D.C.; Acuto, O. A method for large-scale identification of protein arginine methylation. Mol. Cell. Proteomics, 2012, 11(11), 1489-1499.
[http://dx.doi.org/10.1074/mcp.M112.020743] [PMID: 22865923]
[7]
Pawlak, M.R.; Scherer, C.A.; Chen, J.; Roshon, M.J.; Ruley, H.E. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell. Biol., 2000, 20(13), 4859-4869.
[http://dx.doi.org/10.1128/MCB.20.13.4859-4869.2000] [PMID: 10848611]
[8]
Scorilas, A.; Black, M.H.; Talieri, M.; Diamandis, E.P. Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem. Biophys. Res. Commun., 2000, 278(2), 349-359.
[http://dx.doi.org/10.1006/bbrc.2000.3807] [PMID: 11097842]
[9]
Scott, H.S.; Antonarakis, S.E.; Lalioti, M.D.; Rossier, C.; Silver, P.A.; Henry, M.F. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics, 1998, 48(3), 330-340.
[http://dx.doi.org/10.1006/geno.1997.5190] [PMID: 9545638]
[10]
Goulet, I.; Gauvin, G.; Boisvenue, S.; Côté, J. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J. Biol. Chem., 2007, 282(45), 33009-33021.
[http://dx.doi.org/10.1074/jbc.M704349200] [PMID: 17848568]
[11]
Lin, W.J.; Gary, J.D.; Yang, M.C.; Clarke, S.; Herschman, H.R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem., 1996, 271(25), 15034-15044.
[http://dx.doi.org/10.1074/jbc.271.25.15034] [PMID: 8663146]
[12]
Baldwin, R.M.; Bejide, M.; Trinkle-Mulcahy, L.; Côté, J. Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics, 2015, 15(13), 2187-2197.
[http://dx.doi.org/10.1002/pmic.201400209] [PMID: 25690678]
[13]
Patounas, O.; Papacharalampous, I.; Eckerich, C.; Markopoulos, G.S.; Kolettas, E.; Fackelmayer, F.O. A novel splicing isoform of protein arginine methyltransferase 1 (PRMT1) that lacks the dimerization arm and correlates with cellular malignancy. J. Cell. Biochem., 2018, 119(2), 2110-2123.
[http://dx.doi.org/10.1002/jcb.26373] [PMID: 28857308]
[14]
Peng, C.; Wong, C.C. The story of protein arginine methylation: Characterization, regulation, and function. Expert Rev. Proteomics, 2017, 14(2), 157-170.
[http://dx.doi.org/10.1080/14789450.2017.1275573] [PMID: 28043171]
[15]
Zhang, X.; Zhou, L.; Cheng, X. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J., 2000, 19(14), 3509-3519.
[http://dx.doi.org/10.1093/emboj/19.14.3509] [PMID: 10899106]
[16]
Zhang, X.; Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure (London, England: 1993), 2003, 11(5), 509-520.
[17]
Zhou, R.; Xie, Y.; Hu, H.; Hu, G.; Patel, V.S.; Zhang, J.; Yu, K.; Huang, Y.; Jiang, H.; Liang, Z.; Zheng, Y.G.; Luo, C. Molecular mechanism underlying PRMT1 Dimerization for SAM Binding and Methylase Activity. J. Chem. Inf. Model., 2015, 55(12), 2623-2632.
[http://dx.doi.org/10.1021/acs.jcim.5b00454] [PMID: 26562720]
[18]
Weiss, V.H.; McBride, A.E.; Soriano, M.A.; Filman, D.J.; Silver, P.A.; Hogle, J.M. The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat. Struct. Biol., 2000, 7(12), 1165-1171.
[http://dx.doi.org/10.1038/82028] [PMID: 11101900]
[19]
Feng, Y.; Xie, N.; Jin, M.; Stahley, M.R.; Stivers, J.T.; Zheng, Y.G. A transient kinetic analysis of PRMT1 catalysis. Biochemistry, 2011, 50(32), 7033-7044.
[http://dx.doi.org/10.1021/bi200456u] [PMID: 21736313]
[20]
Fulton, M.D.; Brown, T.; Zheng, Y.G. Mechanisms and inhibitors of Histone Arginine Methylation. Chem. Rec., 2018, 18(12), 1792-1807.
[http://dx.doi.org/10.1002/tcr.201800082] [PMID: 30230223]
[21]
Bedford, M.T.; Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell, 2009, 33(1), 1-13.
[http://dx.doi.org/10.1016/j.molcel.2008.12.013] [PMID: 19150423]
[22]
Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 335-346.
[http://dx.doi.org/10.1038/nrm1907] [PMID: 16612326]
[23]
Lindahl, T.; Barnes, D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol., 2000, 65, 127-133.
[http://dx.doi.org/10.1101/sqb.2000.65.127] [PMID: 12760027]
[24]
Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet., 2008, 9(8), 619-631.
[http://dx.doi.org/10.1038/nrg2380] [PMID: 18626472]
[25]
West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol., 2003, 4(6), 435-445.
[http://dx.doi.org/10.1038/nrm1127] [PMID: 12778123]
[26]
Boisvert, F.M.; Déry, U.; Masson, J.Y.; Richard, S. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev., 2005, 19(6), 671-676.
[http://dx.doi.org/10.1101/gad.1279805] [PMID: 15741314]
[27]
Yuan, Q.; Tian, R.; Zhao, H.; Li, L.; Bi, X. Multiple Arginine residues are methylated in Drosophila Mre11 and required for survival following ionizing radiation. G3 (Bethesda), 2018, 8(6), 2099-2106.
[http://dx.doi.org/10.1534/g3.118.200298] [PMID: 29695495]
[28]
Yu, Z.; Chen, T.; Hébert, J.; Li, E.; Richard, S. A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol. Cell. Biol., 2009, 29(11), 2982-2996.
[http://dx.doi.org/10.1128/MCB.00042-09] [PMID: 19289494]
[29]
Petrini, J.H.; Stracker, T.H. The cellular response to DNA double-strand breaks: Defining the sensors and mediators. Trends Cell Biol., 2003, 13(9), 458-462.
[http://dx.doi.org/10.1016/S0962-8924(03)00170-3] [PMID: 12946624]
[30]
Déry, U.; Coulombe, Y.; Rodrigue, A.; Stasiak, A.; Richard, S.; Masson, J.Y. A glycine-arginine domain in control of the human MRE11 DNA repair protein. Mol. Cell. Biol., 2008, 28(9), 3058-3069.
[http://dx.doi.org/10.1128/MCB.02025-07] [PMID: 18285453]
[31]
Yu, Z.; Vogel, G.; Coulombe, Y.; Dubeau, D.; Spehalski, E.; Hébert, J.; Ferguson, D.O.; Masson, J.Y.; Richard, S. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Res., 2012, 22(2), 305-320.
[http://dx.doi.org/10.1038/cr.2011.128] [PMID: 21826105]
[32]
DiTullio, R.A., Jr; Mochan, T.A.; Venere, M.; Bartkova, J.; Sehested, M.; Bartek, J.; Halazonetis, T.D. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell Biol., 2002, 4(12), 998-1002.
[http://dx.doi.org/10.1038/ncb892] [PMID: 12447382]
[33]
Boisvert, F.M.; Rhie, A.; Richard, S.; Doherty, A.J. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle, 2005, 4(12), 1834-1841.
[http://dx.doi.org/10.4161/cc.4.12.2250] [PMID: 16294045]
[34]
Cho, J.H.; Lee, M.K.; Yoon, K.W.; Lee, J.; Cho, S.G.; Choi, E.J. Arginine methylation-dependent regulation of ASK1 signaling by PRMT1. Cell Death Differ., 2012, 19(5), 859-870.
[http://dx.doi.org/10.1038/cdd.2011.168] [PMID: 22095282]
[35]
Hirata, Y.; Katagiri, K.; Nagaoka, K.; Morishita, T.; Kudoh, Y.; Hatta, T.; Naguro, I.; Kano, K.; Udagawa, T.; Natsume, T.; Aoki, J.; Inada, T.; Noguchi, T.; Ichijo, H.; Matsuzawa, A. TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1. Cell Rep., 2017, 21(9), 2447-2457.
[http://dx.doi.org/10.1016/j.celrep.2017.11.007] [PMID: 29186683]
[36]
Munn, D.H.; Beall, A.C.; Song, D.; Wrenn, R.W.; Throckmorton, D.C. Activation-induced apoptosis in human macrophages: Developmental regulation of a novel cell death pathway by macrophage colony-stimulating factor and interferon gamma. J. Exp. Med., 1995, 181(1), 127-136.
[http://dx.doi.org/10.1084/jem.181.1.127] [PMID: 7806999]
[37]
Cho, J.H.; Lee, R.; Kim, E.; Choi, Y.E.; Choi, E.J. PRMT1 negatively regulates activation-induced cell death in macrophages by arginine methylation of GAPDH. Exp. Cell Res., 2018, 368(1), 50-58.
[http://dx.doi.org/10.1016/j.yexcr.2018.04.012] [PMID: 29665354]
[38]
Park, M.J.; Han, H.J.; Kim, D.I. Lipotoxicity-induced PRMT1 exacerbates mesangial cell apoptosis via endoplasmic reticulum stress. Int. J. Mol. Sci., 2017, 18(7), E1421.
[http://dx.doi.org/10.3390/ijms18071421] [PMID: 28671608]
[39]
Liu, L.; Sun, Q.; Bao, R.; Roth, M.; Zhong, B.; Lan, X.; Tian, J.; He, Q.; Li, D.; Sun, J.; Yang, X.; Lu, S. Specific regulation of PRMT1 expression by PIAS1 and RKIP in BEAS-2B epithelia cells and HFL-1 fibroblasts in lung inflammation. Sci. Rep., 2016, 6, 21810.
[http://dx.doi.org/10.1038/srep21810] [PMID: 26911452]
[40]
Sun, Q.; Liu, L.; Roth, M.; Tian, J.; He, Q.; Zhong, B.; Bao, R.; Lan, X.; Jiang, C.; Sun, J.; Yang, X.; Lu, S. PRMT1 upregulated by epithelial proinflammatory cytokines participates in COX2 expression in fibroblasts and chronic antigen-induced pulmonary inflammation. J. Immunol., 2015, 195(1), 298-306.
[http://dx.doi.org/10.4049/jimmunol.1402465] [PMID: 26026059]
[41]
Masternak, K.; Muhlethaler-Mottet, A.; Villard, J.; Zufferey, M.; Steimle, V.; Reith, W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev., 2000, 14(9), 1156-1166.
[http://dx.doi.org/10.1101/gad.14.9.1156] [PMID: 10809673]
[42]
Fan, Z.; Li, J.; Li, P.; Ye, Q.; Xu, H.; Wu, X.; Xu, Y. Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA. Sci. Rep., 2017, 7, 40531.
[http://dx.doi.org/10.1038/srep40531] [PMID: 28094290]
[43]
Infantino, S.; Benz, B.; Waldmann, T.; Jung, M.; Schneider, R.; Reth, M. Arginine methylation of the B cell antigen receptor promotes differentiation. J. Exp. Med., 2010, 207(4), 711-719.
[http://dx.doi.org/10.1084/jem.20091303] [PMID: 20231378]
[44]
Wu, G.S.; Bassing, C.H. Flip the switch: BTG2-PRMT1 protein complexes antagonize pre-B-cell proliferation to promote B-cell development. Cell. Mol. Immunol., 2018, 15(9), 808-811.
[http://dx.doi.org/10.1038/cmi.2017.156] [PMID: 29429994]
[45]
Dolezal, E.; Infantino, S.; Drepper, F.; Börsig, T.; Singh, A.; Wossning, T.; Fiala, G.J.; Minguet, S.; Warscheid, B.; Tarlinton, D.M.; Jumaa, H.; Medgyesi, D.; Reth, M. The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nat. Immunol., 2017, 18(8), 911-920.
[http://dx.doi.org/10.1038/ni.3774] [PMID: 28628091]
[46]
Blanchet, F.; Cardona, A.; Letimier, F.A.; Hershfield, M.S.; Acuto, O. CD28 costimulatory signal induces protein arginine methylation in T cells. J. Exp. Med., 2005, 202(3), 371-377.
[http://dx.doi.org/10.1084/jem.20050176] [PMID: 16061726]
[47]
Hata, K.; Yanase, N.; Sudo, K.; Kiyonari, H.; Mukumoto, Y.; Mizuguchi, J.; Yokosuka, T. Differential regulation of T-cell dependent and T-cell independent antibody responses through arginine methyltransferase PRMT1 in vivo. FEBS Lett., 2016, 590(8), 1200-1210.
[http://dx.doi.org/10.1002/1873-3468.12161] [PMID: 27013173]
[48]
Osborne, T.C.; Obianyo, O.; Zhang, X.; Cheng, X.; Thompson, P.R. Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry, 2007, 46(46), 13370-13381.
[http://dx.doi.org/10.1021/bi701558t] [PMID: 17960915]
[49]
Rezai-Zadeh, N.; Zhang, X.; Namour, F.; Fejer, G.; Wen, Y.D.; Yao, Y.L.; Gyory, I.; Wright, K.; Seto, E. Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev., 2003, 17(8), 1019-1029.
[http://dx.doi.org/10.1101/gad.1068003] [PMID: 12704081]
[50]
Huang, S.; Litt, M.; Felsenfeld, G. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev., 2005, 19(16), 1885-1893.
[http://dx.doi.org/10.1101/gad.1333905] [PMID: 16103216]
[51]
Li, X.; Hu, X.; Patel, B.; Zhou, Z.; Liang, S.; Ybarra, R.; Qiu, Y.; Felsenfeld, G.; Bungert, J.; Huang, S. H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood, 2010, 115(10), 2028-2037.
[http://dx.doi.org/10.1182/blood-2009-07-236059] [PMID: 20068219]
[52]
Passos, D.O.; Quaresma, A.J.; Kobarg, J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem. Biophys. Res. Commun., 2006, 346(2), 517-525.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.152] [PMID: 16765914]
[53]
Friend, L.R.; Landsberg, M.J.; Nouwens, A.S.; Wei, Y.; Rothnagel, J.A.; Smith, R. Arginine methylation of hnRNP A2 does not directly govern its subcellular localization. PLoS One, 2013, 8(9), e75669.
[http://dx.doi.org/10.1371/journal.pone.0075669] [PMID: 24098712]
[54]
Rajpurohit, R.; Lee, S.O.; Park, J.O.; Paik, W.K.; Kim, S. Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1. Dual substrate specificity for S-adenosylmethionine: histone-arginine N-methyltransferase. J. Biol. Chem., 1994, 269(2), 1075-1082.
[http://dx.doi.org/10.1016/S0021-9258(17)42223-X] [PMID: 8288564]
[55]
Wall, M.L.; Lewis, S.M. Methylarginines within the RGG-Motif Region of hnRNP A1 affect its IRES trans-acting factor activity and are required for hnRNP A1 stress granule localization and formation. J. Mol. Biol., 2017, 429(2), 295-307.
[http://dx.doi.org/10.1016/j.jmb.2016.12.011] [PMID: 27979648]
[56]
Gasperini, L.; Rossi, A.; Cornella, N.; Peroni, D.; Zuccotti, P.; Potrich, V.; Quattrone, A.; Macchi, P. The hnRNP raly regulates PRMT1 expression and interacts with the ALS-linked protein FUS: Implication for reciprocal cellular localization. Mol Biol Cell., 2018, 29(26), 3067-3081.
[http://dx.doi.org/10.1091/mbc.E18-02-0108] [PMID: 30354839]
[57]
Albrecht, L.V.; Ploper, D.; Tejeda-Muñoz, N.; De Robertis, E.M. Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc. Natl. Acad. Sci. USA, 2018, 115(23), E5317-E5325.
[http://dx.doi.org/10.1073/pnas.1804091115] [PMID: 29773710]
[58]
Mowen, K.A.; Tang, J.; Zhu, W.; Schurter, B.T.; Shuai, K.; Herschman, H.R.; David, M. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell, 2001, 104(5), 731-741.
[http://dx.doi.org/10.1016/S0092-8674(01)00269-0] [PMID: 11257227]
[59]
Zhang, X.P.; Jiang, Y.B.; Zhong, C.Q.; Ma, N.; Zhang, E.B.; Zhang, F.; Li, J.J.; Deng, Y.Z.; Wang, K.; Xie, D.; Cheng, S.Q. PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol Biochem., 2018, 47(4), 1643-1654.
[http://dx.doi.org/10.1159/000490983] [PMID: 29945155]
[60]
Reintjes, A.; Fuchs, J.E.; Kremser, L.; Lindner, H.H.; Liedl, K.R.; Huber, L.A.; Valovka, T. Asymmetric arginine dimethylation of RelA provides a repressive mark to modulate TNFα/NF-κB response. Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4326-4331.
[http://dx.doi.org/10.1073/pnas.1522372113] [PMID: 27051065]
[61]
Zhang, T.; Wu, J.; Ungvijanpunya, N.; Jackson-Weaver, O.; Gou, Y.; Feng, J.; Ho, T.V.; Shen, Y.; Liu, J.; Richard, S.; Jin, J.; Hajishengallis, G.; Chai, Y.; Xu, J. Smad6 methylation represses NFκB activation and periodontal inflammation. J. Dent. Res., 2018, 97(7), 810-819.
[http://dx.doi.org/10.1177/0022034518755688] [PMID: 29420098]
[62]
Le Romancer, M.; Treilleux, I.; Leconte, N.; Robin-Lespinasse, Y.; Sentis, S.; Bouchekioua-Bouzaghou, K.; Goddard, S.; Gobert-Gosse, S.; Corbo, L. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell, 2008, 31(2), 212-221.
[http://dx.doi.org/10.1016/j.molcel.2008.05.025] [PMID: 18657504]
[63]
Xia, L.; Zhang, H.X.; Xing, M.L.; Xu, Y.B.; Li, P.; Huang, L.K.; Bai, J.; Tian, Z.; Zhao, Z.D. Knockdown of PRMT1 suppresses IL-1β-induced cartilage degradation and inflammatory responses in human chondrocytes through Gli1-mediated Hedgehog signaling pathway. Mol. Cell. Biochem., 2018, 438(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3109-7] [PMID: 28744817]
[64]
Chen, X.; Niroomand, F.; Liu, Z.; Zankl, A.; Katus, H.A.; Jahn, L.; Tiefenbacher, C.P. Expression of nitric oxide related enzymes in coronary heart disease. Basic Res. Cardiol., 2006, 101(4), 346-353.
[http://dx.doi.org/10.1007/s00395-006-0592-5] [PMID: 16705470]
[65]
Sasser, J.M.; Moningka, N.C.; Cunningham, M.W., Jr; Croker, B.; Baylis, C. Asymmetric dimethylarginine in angiotensin II-induced hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298(3), R740-R746.
[http://dx.doi.org/10.1152/ajpregu.90875.2008] [PMID: 20018820]
[66]
Garcia, M.M.; Guéant-Rodriguez, R.M.; Pooya, S.; Brachet, P.; Alberto, J.M.; Jeannesson, E.; Maskali, F.; Gueguen, N.; Marie, P.Y.; Lacolley, P.; Herrmann, M.; Juillière, Y.; Malthiery, Y.; Guéant, J.L. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J. Pathol., 2011, 225(3), 324-335.
[http://dx.doi.org/10.1002/path.2881] [PMID: 21633959]
[67]
Iwasaki, H. Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats. Life Sci., 2009, 85(3-4), 161-166.
[http://dx.doi.org/10.1016/j.lfs.2009.05.007] [PMID: 19467247]
[68]
Lee, J.H.; Park, G.H.; Lee, Y.K.; Park, J.H. Changes in the arginine methylation of organ proteins during the development of diabetes mellitus. Diabetes Res. Clin. Pract., 2011, 94(1), 111-118.
[http://dx.doi.org/10.1016/j.diabres.2011.07.005] [PMID: 21855157]
[69]
Chen, Y.; Xu, X.; Sheng, M.; Zhang, X.; Gu, Q.; Zheng, Z. PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS- and RAS-mediated diabetic retinopathy. Exp. Eye Res., 2009, 89(6), 1028-1034.
[http://dx.doi.org/10.1016/j.exer.2009.09.004] [PMID: 19748504]
[70]
Christen, V.; Duong, F.; Bernsmeier, C.; Sun, D.; Nassal, M.; Heim, M.H. Inhibition of alpha interferon signaling by hepatitis B virus. J. Virol., 2007, 81(1), 159-165.
[http://dx.doi.org/10.1128/JVI.01292-06] [PMID: 17065208]
[71]
Duong, F.H.; Filipowicz, M.; Tripodi, M.; La Monica, N.; Heim, M.H. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology, 2004, 126(1), 263-277.
[http://dx.doi.org/10.1053/j.gastro.2003.10.076] [PMID: 14699505]
[72]
Rho, J.; Choi, S.; Seong, Y.R.; Choi, J.; Im, D.S. The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J. Virol., 2001, 75(17), 8031-8044.
[http://dx.doi.org/10.1128/JVI.75.17.8031-8044.2001] [PMID: 11483748]
[73]
Mookerjee, R.P.; Malaki, M.; Davies, N.A.; Hodges, S.J.; Dalton, R.N.; Turner, C.; Sen, S.; Williams, R.; Leiper, J.; Vallance, P.; Jalan, R. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology, 2007, 45(1), 62-71.
[http://dx.doi.org/10.1002/hep.21491] [PMID: 17187433]
[74]
Ryu, J.W.; Kim, S.K.; Son, M.Y.; Jeon, S.J.; Oh, J.H.; Lim, J.H.; Cho, S.; Jung, C.R.; Hamamoto, R.; Kim, D.S.; Cho, H.S. Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget, 2017, 8(70), 115444-115455.
[http://dx.doi.org/10.18632/oncotarget.23296] [PMID: 29383172]
[75]
Gou, Q.; He, S.; Zhou, Z. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells. Tumour Biol., 2017, 39(2), 1010428317691419.
[http://dx.doi.org/10.1177/1010428317691419] [PMID: 28231732]
[76]
Li, B.; Liu, L.; Li, X.; Wu, L. miR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochem. Biophys. Res. Commun., 2015, 464(4), 982-987.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.169] [PMID: 26163260]
[77]
Baldwin, R.M.; Morettin, A.; Paris, G.; Goulet, I.; Côté, J. Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle, 2012, 11(24), 4597-4612.
[http://dx.doi.org/10.4161/cc.22871] [PMID: 23187807]
[78]
Bondy-Chorney, E.; Baldwin, R.M.; Didillon, A.; Chabot, B.; Jasmin, B.J.; Cote, J. RNA binding protein RALY promotes Protein Arginine Methyltransferase 1 alternatively spliced isoform v2 relative expression and metastatic potential in breast cancer cells. Int. J. Biochem. Cell Biol., 2017, 91(Pt B), 124-135.
[http://dx.doi.org/10.1016/j.biocel.2017.07.008] [PMID: 28733251]
[79]
Le Romancer, M.; Treilleux, I.; Bouchekioua-Bouzaghou, K.; Sentis, S.; Corbo, L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids, 2010, 75(8-9), 560-564.
[http://dx.doi.org/10.1016/j.steroids.2010.01.013] [PMID: 20116391]
[80]
Gao, Y.; Zhao, Y.; Zhang, J.; Lu, Y.; Liu, X.; Geng, P.; Huang, B.; Zhang, Y.; Lu, J. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci. Rep., 2016, 6, 19874.
[http://dx.doi.org/10.1038/srep19874] [PMID: 26813495]
[81]
Nakai, K.; Xia, W.; Liao, H.W.; Saito, M.; Hung, M.C.; Yamaguchi, H. The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer, 2018, 25(1), 74-80.
[http://dx.doi.org/10.1007/s12282-017-0790-z] [PMID: 28643125]
[82]
van Galen, J.C.; Kuiper, R.P.; van Emst, L.; Levers, M.; Tijchon, E.; Scheijen, B.; Waanders, E.; van Reijmersdal, S.V.; Gilissen, C.; van Kessel, A.G.; Hoogerbrugge, P.M.; van Leeuwen, F.N. BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia. Blood, 2010, 115(23), 4810-4819.
[http://dx.doi.org/10.1182/blood-2009-05-223081] [PMID: 20354172]
[83]
Zou, L.; Zhang, H.; Du, C.; Liu, X.; Zhu, S.; Zhang, W.; Li, Z.; Gao, C.; Zhao, X.; Mei, M.; Bao, S.; Zheng, H. Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia. J. Hematol. Oncol., 2012, 5, 42.
[http://dx.doi.org/10.1186/1756-8722-5-42] [PMID: 22839530]
[84]
Cheung, N.; Fung, T.K.; Zeisig, B.B.; Holmes, K.; Rane, J.K.; Mowen, K.A.; Finn, M.G.; Lenhard, B.; Chan, L.C.; So, C.W. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell, 2016, 29(1), 32-48.
[http://dx.doi.org/10.1016/j.ccell.2015.12.007] [PMID: 26766589]
[85]
Siriboonpiputtana, T.; Zeisig, B.B.; Zarowiecki, M.; Fung, T.K.; Mallardo, M.; Tsai, C.T.; Lau, P.N.I.; Hoang, Q.C.; Veiga, P.; Barnes, J.; Lynn, C.; Wilson, A.; Lenhard, B.; So, C.W.E. Transcriptional memory of cells of origin overrides β-catenin requirement of MLL cancer stem cells. EMBO J., 2017, 36(21), 3139-3155.
[http://dx.doi.org/10.15252/embj.201797994] [PMID: 28978671]
[86]
Avasarala, S.; Van Scoyk, M.; Karuppusamy Rathinam, M.K.; Zerayesus, S.; Zhao, X.; Zhang, W.; Pergande, M.R.; Borgia, J.A.; DeGregori, J.; Port, J.D.; Winn, R.A.; Bikkavilli, R.K. PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J. Biol. Chem., 2015, 290(21), 13479-13489.
[http://dx.doi.org/10.1074/jbc.M114.636050] [PMID: 25847239]
[87]
Elakoum, R.; Gauchotte, G.; Oussalah, A.; Wissler, M.P.; Clément-Duchêne, C.; Vignaud, J.M.; Guéant, J.L.; Namour, F. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie, 2014, 97, 210-218.
[http://dx.doi.org/10.1016/j.biochi.2013.10.021] [PMID: 24211191]
[88]
Liu, C.; Tao, T.; Xu, B.; Lu, K.; Zhang, L.; Jiang, L.; Chen, S.; Liu, D.; Zhang, X.; Cao, N.; Chen, M. BTG1 potentiates apoptosis and suppresses proliferation in renal cell carcinoma by interacting with PRMT1. Oncol. Lett., 2015, 10(2), 619-624.
[http://dx.doi.org/10.3892/ol.2015.3293] [PMID: 26622543]
[89]
Akter, K.A.; Mansour, M.A.; Hyodo, T.; Ito, S.; Hamaguchi, M.; Senga, T. FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion, and colony formation. Tumour Biol., 2016, 37(4), 4531-4539.
[http://dx.doi.org/10.1007/s13277-015-4310-5] [PMID: 26503212]
[90]
Akter, K.A.; Mansour, M.A.; Hyodo, T.; Senga, T. FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression. Int. J. Biochem. Cell Biol., 2017, 84, 1-13.
[http://dx.doi.org/10.1016/j.biocel.2016.12.013] [PMID: 28040436]
[91]
Altan, B.; Yokobori, T.; Ide, M.; Mochiki, E.; Toyomasu, Y.; Kogure, N.; Kimura, A.; Hara, K.; Bai, T.; Bao, P.; Suzuki, M.; Ogata, K.; Asao, T.; Nishiyama, M.; Oyama, T.; Kuwano, H. Nuclear PRMT1 expression is associated with poor prognosis and chemosensitivity in gastric cancer patients. Gastric Cancer, 2016, 19(3), 789-797.
[http://dx.doi.org/10.1007/s10120-015-0551-7] [PMID: 26472729]
[92]
Eberhardt, A.; Hansen, J.N.; Koster, J.; Lotta, L.T., Jr; Wang, S.; Livingstone, E.; Qian, K.; Valentijn, L.J.; Zheng, Y.G.; Schor, N.F.; Li, X. Protein arginine methyltransferase 1 is a novel regulator of MYCN in neuroblastoma. Oncotarget, 2016, 7(39), 63629-63639.
[http://dx.doi.org/10.18632/oncotarget.11556] [PMID: 27571165]
[93]
Wang, S.; Tan, X.; Yang, B.; Yin, B.; Yuan, J.; Qiang, B.; Peng, X. The role of protein arginine-methyltransferase 1 in gliomagenesis. BMB Rep., 2012, 45(8), 470-475.
[http://dx.doi.org/10.5483/BMBRep.2012.45.8.022] [PMID: 22917032]
[94]
Li, L.; Zhang, Z.; Ma, T.; Huo, R. PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM. Mol. Med. Rep., 2016, 14(1), 521-528.
[http://dx.doi.org/10.3892/mmr.2016.5273] [PMID: 27175582]
[95]
Zhou, W.; Yue, H.; Li, C.; Chen, H.; Yuan, Y. Protein arginine methyltransferase 1 promoted the growth and migration of cancer cells in esophageal squamous cell carcinoma. Tumour Biol., 2016, 37(2), 2613-2619.
[http://dx.doi.org/10.1007/s13277-015-4098-3] [PMID: 26392112]
[96]
Wang, Y.; Hsu, J.M.; Kang, Y.; Wei, Y.; Lee, P.C.; Chang, S.J.; Hsu, Y.H.; Hsu, J.L.; Wang, H.L.; Chang, W.C.; Li, C.W.; Liao, H.W.; Chang, S.S.; Xia, W.; Ko, H.W.; Chou, C.K.; Fleming, J.B.; Wang, H.; Hwang, R.F.; Chen, Y.; Qin, J.; Hung, M.C. Oncogenic functions of Gli1 in pancreatic adenocarcinoma are supported by Its PRMT1-mediated methylation. Cancer Res., 2016, 76(23), 7049-7058.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0715] [PMID: 27758883]
[97]
Weber, S.; Maass, F.; Schuemann, M.; Krause, E.; Suske, G.; Bauer, U.M. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev., 2009, 23(1), 118-132.
[http://dx.doi.org/10.1101/gad.489409] [PMID: 19136629]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy