Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Repurposing Novel Antagonists for Targeting p7 Viroporin of HCV Using In Silico Approach

Author(s): Varsha Dwivedi, Rakesh Kumar Gupta, Amita Gupta, Vijay K Chaudhary, Sanjay Gupta and Vandana Gupta*

Volume 19, Issue 11, 2022

Published on: 19 April, 2022

Page: [969 - 981] Pages: 13

DOI: 10.2174/1570180819666220124112150

Price: $65

Abstract

Background: P7 viroporin in HCV is a cation-selective ion channel-forming protein, functional in the oligomeric form. It is considered to be a potential target for anti-HCV compounds due to its crucial role in viral entry, assembly, and release.

Methods: Conserved crucial residues present in HCV p7 protein were delineated from the available literature with a specific focus on the genotypes 3a and 1b prevalent in India. Using the Flex-X docking tool, a library of FDA-approved drugs was docked on the receptor sites prepared around crucial residues. In the present study, we proposed drug repurposing to target viroporin p7, which may help in the rapid development of effective anti-HCV therapies.

Results: With our approach of poly-pharmacology, a variety of drugs currently identified as antibiotics, antiparasitic, antiemetic, anti-retroviral, and anti-neoplastic were found to dock successfully on the p7 viroporin. Noteworthy among these are general-purpose cephalosporin antibiotics, leucal, phthalylsulfathiazole, and granisetron, which may be useful in acute HCV infection, and anti-neoplastic sorafenib and nilotinib, which may be valuable in advanced HCV-HCC cases.

Conclusion: This study could pave the way for quick repurposing of these compounds as anti-HCV therapeutics.

Keywords: Hepatitis C virus, viroporin, p7, drug-repurposing, in silico screening, polypharmacology.

Graphical Abstract

[1]
Moriya, K.; Fujie, H.; Shintani, Y.; Yotsuyanagi, H.; Tsutsumi, T.; Ishibashi, K.; Matsuura, Y.; Kimura, S.; Miyamura, T.; Koike, K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med., 1998, 4(9), 1065-1067.
[http://dx.doi.org/10.1038/2053] [PMID: 9734402]
[2]
von Hahn, T.; Yoon, J.C.; Alter, H.; Rice, C.M.; Rehermann, B.; Balfe, P.; McKeating, J.A. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology, 2007, 132(2), 667-678.
[http://dx.doi.org/10.1053/j.gastro.2006.12.008] [PMID: 17258731]
[3]
Kuiken, C.; Simmonds, P. Nomenclature and numbering of the Hepatitis C virus. In: Hepatitis C: Methods and Protocols; Tang, H., Ed.; Humana Press: Totowa, NJ, 2009; 510, pp. 33-53.
[http://dx.doi.org/10.1007/978-1-59745-394-3_4]
[4]
Bracho, M.A.; Saludes, V.; Martró, E.; Bargalló, A.; González-Candelas, F.; Ausina, V. Complete genome of a European hepatitis C virus subtype 1g isolate: phylogenetic and genetic analyses. Virol. J., 2008, 5(1), 72.
[http://dx.doi.org/10.1186/1743-422X-5-72] [PMID: 18533988]
[5]
Messina, J.P.; Humphreys, I.; Flaxman, A.; Brown, A.; Cooke, G.S.; Pybus, O.G.; Barnes, E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology, 2015, 61(1), 77-87.
[http://dx.doi.org/10.1002/hep.27259] [PMID: 25069599]
[6]
Singh, S.; Malhotra, V.; Sarin, S.K. Distribution of hepatitis C virus genotypes in patients with chronic hepatitis C infection in India. Indian J. Med. Res., 2004, 119(4), 145-148.
[PMID: 15147119]
[7]
Fischer, W.B.; Wang, Y-T.; Schindler, C.; Chen, C-P. Mechanism of function of viral channel proteins and implications for drug development. Int. Rev. Cell Mol. Biol., 2012, 294, 259-321.
[http://dx.doi.org/10.1016/B978-0-12-394305-7.00006-9]
[8]
Atoom, A.M.; Taylor, N.G.A.; Russell, R.S. The elusive function of the hepatitis C virus p7 protein. Virology, 2014, 462-463, 377-387.
[http://dx.doi.org/10.1016/j.virol.2014.04.018] [PMID: 25001174]
[9]
Haqshenas, G.; Mackenzie, J.M.; Dong, X.; Gowans, E.J. Hepatitis C virus p7 protein is localized in the endoplasmic reticulum when it is encoded by a replication-competent genome. J. Gen. Virol., 2007, 88(Pt 1), 134-142.
[http://dx.doi.org/10.1099/vir.0.82049-0] [PMID: 17170445]
[10]
Carrère-Kremer, S.; Montpellier, C.; Lorenzo, L.; Brulin, B.; Cocquerel, L.; Belouzard, S.; Penin, F.; Dubuisson, J. Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. J. Biol. Chem., 2004, 279(40), 41384-41392.
[http://dx.doi.org/10.1074/jbc.M406315200] [PMID: 15247249]
[11]
Gentzsch, J.; Brohm, C.; Steinmann, E.; Friesland, M.; Menzel, N.; Vieyres, G.; Perin, P.M.; Frentzen, A.; Kaderali, L.; Pietschmann, T. Hepatitis C virus P7 is critical for capsid assembly and envelopment. PLoS Pathog., 2013, 9(5), e1003355.
[http://dx.doi.org/10.1371/journal.ppat.1003355]
[12]
Clarke, D.; Griffin, S.; Beales, L.; Gelais, C.S.; Burgess, S.; Harris, M.; Rowlands, D. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem., 2006, 281(48), 37057-37068.
[http://dx.doi.org/10.1074/jbc.M602434200] [PMID: 17032656]
[13]
Saint, N.; Montserret, R.; Chipot, C.; Penin, F. Structural and Functional Analysis of the HCV P7 Protein. In: Hepatitis C: Methods and Protocols; Humana Press: Totowa, NJ, 2009; 510, pp. 125-143.
[http://dx.doi.org/10.1007/978-1-59745-394-3_10]
[14]
Fischer, W.B.; Hsu, H-J. Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta, 2011, 1808(2), 561-571.
[http://dx.doi.org/10.1016/j.bbamem.2010.05.014] [PMID: 20546700]
[15]
Chandler, D.E.; Penin, F.; Schulten, K.; Chipot, C. The P7 protein of Hepatitis C virus forms structurally plastic, minimalist ion channels. PLoS Comput. Biol., 2012, 8(9), e1002702.
[http://dx.doi.org/10.1371/journal.pcbi.1002702]
[16]
Sharma, S.D.; Hepatitis, C. Virus: Molecular biology & current therapeutic options. Indian J. Med. Res., 2010, 131, 17-34.
[17]
Steinmann, E.; Pietschmann, T. Hepatitis C virus p7-a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses, 2010, 2(9), 2078-2095.
[http://dx.doi.org/10.3390/v2092078] [PMID: 21994720]
[18]
Griffin, S.D.C.; Harvey, R.; Clarke, D.S.; Barclay, W.S.; Harris, M.; Rowlands, D.J. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J. Gen. Virol., 2004, 85(Pt 2), 451-461.
[http://dx.doi.org/10.1099/vir.0.19634-0] [PMID: 14769903]
[19]
Montserret, R.; Saint, N.; Vanbelle, C.; Salvay, A.G.; Simorre, J-P.; Ebel, C.; Sapay, N.; Renisio, J.G.; Böckmann, A.; Steinmann, E.; Pietschmann, T.; Dubuisson, J.; Chipot, C.; Penin, F. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J. Biol. Chem., 2010, 285(41), 31446-31461.
[http://dx.doi.org/10.1074/jbc.M110.122895] [PMID: 20667830]
[20]
Griffin, S.D.C.; Beales, L.P.; Clarke, D.S.; Worsfold, O.; Evans, S.D.; Jaeger, J.; Harris, M.P.G.; Rowlands, D.J. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug. Amantadine. FEBS Lett., 2003, 535(1-3), 34-38.
[http://dx.doi.org/10.1016/S0014-5793(02)03851-6] [PMID: 12560074]
[21]
Luik, P.; Chew, C.; Aittoniemi, J.; Chang, J.; Wentworth, P., Jr; Dwek, R.A.; Biggin, P.C.; Vénien-Bryan, C.; Zitzmann, N. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12712-12716.
[http://dx.doi.org/10.1073/pnas.0905966106] [PMID: 19590017]
[22]
Gan, S.W.; Surya, W.; Vararattanavech, A.; Torres, J. Two different conformations in Hepatitis C Virus P7 protein account for proton transport and dye release. PLoS One, 2014, 9(1), e78494.
[http://dx.doi.org/10.1371/journal.pone.0078494]
[23]
Griffin, S.; Stgelais, C.; Owsianka, A.M.; Patel, A.H.; Rowlands, D.; Harris, M. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology, 2008, 48(6), 1779-1790.
[http://dx.doi.org/10.1002/hep.22555] [PMID: 18828153]
[24]
Cook, G.A.; Opella, S.J. NMR studies of p7 protein from hepatitis C virus. Eur. Biophys. J., 2010, 39(7), 1097-1104.
[http://dx.doi.org/10.1007/s00249-009-0533-y] [PMID: 19727701]
[25]
Patargias, G.; Zitzmann, N.; Dwek, R.; Fischer, W.B. Protein-protein interactions: modeling the hepatitis C virus ion channel p7. J. Med. Chem., 2006, 49(2), 648-655.
[http://dx.doi.org/10.1021/jm050721e] [PMID: 16420050]
[26]
StGelais, C.; Tuthill, T.J.; Clarke, D.S.; Rowlands, D.J.; Harris, M.; Griffin, S. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res., 2007, 76(1), 48-58.
[http://dx.doi.org/10.1016/j.antiviral.2007.05.001] [PMID: 17574688]
[27]
StGelais, C.; Foster, T.L.; Verow, M.; Atkins, E.; Fishwick, C.W.G.; Rowlands, D.; Harris, M.; Griffin, S. Determinants of hepatitis C virus p7 ion channel function and drug sensitivity identified in vitro. J. Virol., 2009, 83(16), 7970-7981.
[http://dx.doi.org/10.1128/JVI.00521-09] [PMID: 19493992]
[28]
Simmonds, P.; Bukh, J.; Combet, C.; Deléage, G.; Enomoto, N.; Feinstone, S.; Halfon, P.; Inchauspé, G.; Kuiken, C.; Maertens, G.; Mizokami, M.; Murphy, D.G.; Okamoto, H.; Pawlotsky, J.M.; Penin, F.; Sablon, E.; Shin-I, T.; Stuyver, L.J.; Thiel, H.J.; Viazov, S.; Weiner, A.J.; Widell, A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005, 42(4), 962-973.
[http://dx.doi.org/10.1002/hep.20819] [PMID: 16149085]
[29]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[30]
Jones, C.T.; Murray, C.L.; Eastman, D.K.; Tassello, J.; Rice, C.M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol., 2007, 81(16), 8374-8383.
[http://dx.doi.org/10.1128/JVI.00690-07] [PMID: 17537845]
[31]
Carrère-Kremer, S.; Montpellier-Pala, C.; Cocquerel, L.; Wychowski, C.; Penin, F.; Dubuisson, J. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol., 2002, 76(8), 3720-3730.
[http://dx.doi.org/10.1128/JVI.76.8.3720-3730.2002] [PMID: 11907211]
[32]
Sarrazin, C.; Zeuzem, S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology, 2010, 138(2), 447-462.
[http://dx.doi.org/10.1053/j.gastro.2009.11.055] [PMID: 20006612]
[33]
Milani, A.; Basimi, P.; Agi, E.; Bolhassani, A. Pharmaceutical approaches for treatment of hepatitis C virus. Curr. Pharm. Des., 2020, 26(34), 4304-4314.
[http://dx.doi.org/10.2174/1381612826666200509233215] [PMID: 32386486]
[34]
Bafna, K.; Krug, R.M.; Montelione, G. Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics; , 2020. Available from:
[http://dx.doi.org/10.26434/chemrxiv.12153615.v1]
[35]
Chahine, E.B.; Guirguis, E.H.; Derrick, C.B. Management of hepatitis C in the older adult. Sr. Care Pharm., 2020, 35(1), 13-28.
[http://dx.doi.org/10.4140/TCP.n.2020.13] [PMID: 31883541]
[36]
Link, J.O. The discovery of Ledipasvir (GS-5885): The potent once-daily oral HCV NS5A inhibitor in the single-tablet regimen harvoni®. In: HCV: The Journey from Discovery to a Cure; Michael, J.S., Ed.; Cham: Springer International Publishing, 2019; 32, pp. 57-80.
[http://dx.doi.org/10.1007/7355_2019_66]
[37]
Balistreri, W.F.; Murray, K.F.; Rosenthal, P.; Bansal, S.; Lin, C.H.; Kersey, K.; Massetto, B.; Zhu, Y.; Kanwar, B.; German, P.; Svarovskaia, E.; Brainard, D.M.; Wen, J.; Gonzalez-Peralta, R.P.; Jonas, M.M.; Schwarz, K. The safety and effectiveness of ledipasvir-sofosbuvir in adolescents 12-17 years old with hepatitis C virus genotype 1 infection. Hepatology, 2017, 66(2), 371-378.
[http://dx.doi.org/10.1002/hep.28995] [PMID: 27997679]
[38]
Keikha, M.; Eslami, M.; Yousefi, B.; Ali-Hassanzadeh, M.; Kamali, A.; Yousefi, M.; Karbalaei, M. HCV genotypes and their determinative role in hepatitis C treatment. Virusdisease, 2020, 31(3), 235-240.
[http://dx.doi.org/10.1007/s13337-020-00592-0] [PMID: 32904762]
[39]
Gottwein, J.M.; Scheel, T.K.H.; Jensen, T.B.; Lademann, J.B.; Prentoe, J.C.; Knudsen, M.L.; Hoegh, A.M.; Bukh, J. Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology, 2009, 49(2), 364-377.
[http://dx.doi.org/10.1002/hep.22673] [PMID: 19148942]
[40]
Wakita, T.; Pietschmann, T.; Kato, T.; Date, T.; Miyamoto, M.; Zhao, Z.; Murthy, K.; Habermann, A.; Kräusslich, H.G.; Mizokami, M.; Bartenschlager, R.; Liang, T.J. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med., 2005, 11(7), 791-796.
[http://dx.doi.org/10.1038/nm1268] [PMID: 15951748]
[41]
Zhong, J.; Gastaminza, P.; Cheng, G.; Kapadia, S.; Kato, T.; Burton, D.R.; Wieland, S.F.; Uprichard, S.L.; Wakita, T.; Chisari, F.V. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA, 2005, 102(26), 9294-9299.
[http://dx.doi.org/10.1073/pnas.0503596102] [PMID: 15939869]
[42]
Bartenschlager, R.; Lohmann, V.; Penin, F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol., 2013, 11(7), 482-496.
[http://dx.doi.org/10.1038/nrmicro3046] [PMID: 23748342]
[43]
Feitelson, M.A.; Larkin, J.D. New animal models of hepatitis B and C. ILAR J., 2001, 42(2), 127-138.
[http://dx.doi.org/10.1093/ilar.42.2.127] [PMID: 11406715]
[44]
Lanford, R.E.; Bigger, C.; Bassett, S.; Klimpel, G. The chimpanzee model of hepatitis C virus infections. ILAR J., 2001, 42(2), 117-126.
[http://dx.doi.org/10.1093/ilar.42.2.117] [PMID: 11406714]
[45]
Billerbeck, E.; de Jong, Y.; Dorner, M.; de la Fuente, C.; Ploss, A. Animal Models for Hepatitis C. In: Hepatitis C Virus: From molecular virology to antiviral therapy; Bartenschlager, R., Ed.; Berlin, 2013; 369, pp. 49-86.
[http://dx.doi.org/10.1007/978-3-642-27340-7_3]
[46]
Bukh, J. Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology, 2012, 142(6), 1279-1287.e3.
[http://dx.doi.org/10.1053/j.gastro.2012.02.016] [PMID: 22537434]
[47]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[48]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[49]
Singh, A.; Gupta, V. BCG vaccine and COVID-19: Why can’t India afford to be complacent. 2020. Available from: https://www.academia.edu/RegisterToDownload/Survey-73
[50]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248, 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[51]
Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[52]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[53]
Chowdhury, A.T.M.M.; Shahbaz, M.; Karim, R.; Islam, J.; Dan, G.; Shuixiang, H. A comparative study on Ivermectin- Doxycycline and Hydroxychloroquine-Azithromycin therapy on COVID19 patients. EJMO, 2021, 5(1), 63-70.
[http://dx.doi.org/10.13140/RG.2.2.22193.81767/3]
[54]
Haas, M.J. HCV Cache: The List. Science-Business EXchange, 2010, 3(1), 3-3.
[http://dx.doi.org/10.1038/scibx.2010.3]
[55]
Hughes, R.E.; Nikolic, K.; Ramsay, R.R. One for all? Hitting multiple Alzheimer’s Disease targets with one drug. Front. Neurosci., 2016, 10, 177.
[http://dx.doi.org/10.3389/fnins.2016.00177] [PMID: 27199640]
[56]
Yarchoan, M.; Arnold, S.E. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes, 2014, 63(7), 2253-2261.
[http://dx.doi.org/10.2337/db14-0287] [PMID: 24931035]
[57]
McCabe, B.; Liberante, F.; Mills, K.I. Repurposing medicinal compounds for blood cancer treatment. Ann. Hematol., 2015, 94(8), 1267-1276.
[http://dx.doi.org/10.1007/s00277-015-2412-1] [PMID: 26048243]
[58]
Winthrop, K.L.; Yamanaka, H.; Valdez, H.; Mortensen, E.; Chew, R.; Krishnaswami, S.; Kawabata, T.; Riese, R. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol., 2014, 66(10), 2675-2684.
[http://dx.doi.org/10.1002/art.38745] [PMID: 24943354]
[59]
Yeh, M.L.; Huang, C.F.; Huang, C.I.; Hsieh, M.Y.; Hou, N.J.; Lin, I.H.; Liang, P.C.; Tsai, Y.S.; Hsieh, M.H.; Lin, Z.Y.; Chen, S.C.; Dai, C.Y.; Huang, J.F.; Yu, M.L.; Chuang, W.L. The prognostic factors between different viral etiologies among advanced hepatocellular carcinoma patients receiving sorafenib treatment. Kaohsiung J. Med. Sci., 2019, 35(10), 624-632.
[http://dx.doi.org/10.1002/kjm2.12105] [PMID: 31254328]
[60]
He, Shanshan; Lin, Billy; Chu, Virginia; Hu, Zongyi; Hu, Xin; Xiao, Jingbo; Wang, Amy Q. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl. Med., 2015, 7(282), 282ra49.
[http://dx.doi.org/10.1126/scitranslmed.3010286]
[61]
Pavlović, D.; Neville, D.C.A.; Argaud, O.; Blumberg, B.; Dwek, R.A.; Fischer, W.B.; Zitzmann, N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6104-6108.
[http://dx.doi.org/10.1073/pnas.1031527100] [PMID: 12719519]
[62]
Premkumar, A.; Wilson, L.; Ewart, G.D.; Gage, P.W. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett., 2004, 557(1-3), 99-103.
[http://dx.doi.org/10.1016/S0014-5793(03)01453-4] [PMID: 14741348]
[63]
Steinmann, E.; Whitfield, T.; Kallis, S.; Dwek, R.A.; Zitzmann, N.; Pietschmann, T.; Bartenschlager, R. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology, 2007, 46(2), 330-338.
[http://dx.doi.org/10.1002/hep.21686] [PMID: 17599777]
[64]
Wang, Y-T.; Hsu, H-J.; Fischer, W.B. Computational modeling of the p7 monomer from HCV and its interaction with small molecule drugs. Springerplus, 2013, 2(1), 324.
[http://dx.doi.org/10.1186/2193-1801-2-324] [PMID: 23961398]
[65]
Stefanucci, A.; Marrone, A.; Agamennone, M. Investigation of the N-BP binding at FPPS by combined computational approaches. Med. Chem., 2015, 11(5), 417-431.
[http://dx.doi.org/10.2174/1573406410666141226132630] [PMID: 25541745]
[66]
Stefanucci, A.; Iobbi, V.; Della Valle, A.; Scioli, G.; Pieretti, S.; Minosi, P.; Mirzaie, S.; Novellino, E.; Mollica, A. In silico identification of tripeptides as lead compounds for the design of KOR ligands. Molecules, 2021, 26(16), 4767.
[http://dx.doi.org/10.3390/molecules26164767] [PMID: 34443366]
[67]
Mathew, S.; Fatima, K.; Fatmi, M.Q.; Archunan, G.; Ilyas, M.; Begum, N.; Azhar, E.; Damanhouri, G.; Qadri, I. Computational docking study of P7 ion channel from HCV genotype 3 and genotype 4 and its interaction with natural compounds. PloS One, 2015, 10(6), e0126510.
[http://dx.doi.org/10.1371/journal.pone.0126510]
[68]
Yadav, P.; Dhiman, U.; Dhamija, P.; Upadhyay, S.K.; Imran, M.; Behera, S.K.; Prasad, T.S.K. Docking of FDA approved drugs targeting NSP-16, NProtein and main protease of SARS-CoV-2 as dual inhibitors. Biointerface Res. Appl. Chem., 2020, 11(3), 9848-9861.
[http://dx.doi.org/10.33263/BRIAC113.98489861]
[69]
Sutton, S.S.; Scott, S.; Magagnoli, J.; Cummings, T.; Hardin, J. Association between the use of antibiotics, antivirals, and hospitalizations among patients with laboratory-confirmed influenza. Clin. Infect. Dis., 2021, 72(4), 566-573.
[http://dx.doi.org/10.1093/cid/ciaa074]
[70]
Ghildiyal, R.; Gupta, S.; Gabrani, R.; Joshi, G.; Gupta, A.; Chaudhary, V.K.; Gupta, V. In silico study of chikungunya polymerase, a potential target for inhibitors. Virusdisease, 2019, 30(3), 394-402.
[http://dx.doi.org/10.1007/s13337-019-00547-0] [PMID: 31803807]
[71]
Agarwal, G.; Gupta, S.; Gabrani, R.; Gupta, A.; Chaudhary, V.K.; Gupta, V. Virtual screening of inhibitors against Envelope glycoprotein of Chikungunya Virus: A drug repositioning approach. Bioinformation, 2019, 15(6), 439-447.
[http://dx.doi.org/10.6026/97320630015439] [PMID: 31312082]
[72]
Lohia, G; Gupta, S; Gupta, V “Method of screening inhibitors against Hepatitis C virus”, on March 30, 2017 (application no. 201711011516) and complete specification filed in March 2018 reference no. R20181009113).
[73]
Atoom, A.M.; Jones, D.M.; Russell, R.S. Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production. Virus Res., 2013, 176(1-2), 199-210.
[http://dx.doi.org/10.1016/j.virusres.2013.06.008] [PMID: 23816605]
[74]
Khaliq, S.; Jahan, S.; Hassan, S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int., 2011, 31(5), 606-617.
[http://dx.doi.org/10.1111/j.1478-3231.2010.02442.x] [PMID: 21457434]
[75]
Foster, T.L.; Thompson, G.S.; Kalverda, A.P.; Kankanala, J.; Bentham, M.; Wetherill, L.F.; Thompson, J.; Barker, A.M.; Clarke, D.; Noerenberg, M.; Pearson, A.R.; Rowlands, D.J.; Homans, S.W.; Harris, M.; Foster, R.; Griffin, S. Structure-guided design affirms inhibitors of hepatitis C virus p7 as a viable class of antivirals targeting virion release. Hepatology, 2014, 59(2), 408-422.
[http://dx.doi.org/10.1002/hep.26685] [PMID: 24022996]
[76]
Kawaoka, T.; Aikata, H.; Teraoka, Y.; Inagaki, Y.; Honda, F.; Hatooka, M.; Morio, K.; Morio, R.; Kobayashi, T.; Nagaoki, Y.; Nakahara, T.; Hiramatsu, A.; Tsuge, M.; Imamura, M.; Kawakami, Y.; Chayama, K. Impact of Hepatitis C Virus eradication on the clinical outcome of patients with Hepatitis C virus-related advanced hepatocellular carcinoma treated with sorafenib. Oncology, 2017, 92(6), 335-346.
[http://dx.doi.org/10.1159/000458532] [PMID: 28245484]

© 2025 Bentham Science Publishers | Privacy Policy