Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Interaction Among Noncoding RNAs, DNA Damage Reactions, and Genomic Instability in the Hypoxic Tumor: Is it Therapeutically Exploitable Practice?

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 3, 2023

Published on: 18 February, 2022

Page: [200 - 215] Pages: 16

DOI: 10.2174/1566524022666220120123557

Price: $65

Abstract

Hypoxia is a classical function of the tumor's microenvironment with a substantial effect on the development and therapeutic response of cancer. When put in hypoxic environments, cells undergo several biological reactions, including activation of signaling pathways that control proliferation, angiogenesis, and death. These pathways have been adapted by cancer cells to allow tumors to survive and even develop in hypoxic conditions, and poor prognosis is associated with tumor hypoxia. The most relevant transcriptional regulator in response to hypoxia, Hypoxia-inducible factor-1 alpha (HIF-1α), has been shown to modulate hypoxic gene expression and signaling transduction networks significantly. The significance of non-coding RNAs in hypoxic tumor regions has been revealed in an increasing number of studies over the past few decades. In regulating hypoxic gene expression, these hypoxia-responsive ncRNAs play pivotal roles. Hypoxia, a general characteristic of the tumor's microenvironment, significantly affects the expression of genes and is closely associated with the development of cancer. Indeed, the number of known hypoxia-associated lncRNAs has increased dramatically, demonstrating the growing role of lncRNAs in cascades and responses to hypoxia signaling. Decades of research have helped us create an image of the shift in hypoxic cancer cells' DNA repair capabilities. Emerging evidence suggests that hypoxia can trigger genetic instability in cancer cells because of microenvironmental tumor stress. Researchers have found that critical genes' expression is coordinately repressed by hypoxia within the DNA damage and repair pathways. In this study, we include an update of current knowledge on the presentation, participation, and potential clinical effect of ncRNAs in tumor hypoxia, DNA damage reactions, and genomic instability, with a specific emphasis on their unusual cascade of molecular regulation and malignant progression induced by hypoxia.

Keywords: Hypoxia, tumor microenvironment, non-coding RNAs, DNA damage and repair, genomic instability, tumor hypoxia, phenotypes.

[1]
Lin SC, Liao WL, Lee JC, Tsai SJ. Hypoxia-regulated gene network in drug resistance and cancer progression. Exp Biol Med (Maywood) 2014; 239(7): 779-92.
[http://dx.doi.org/10.1177/1535370214532755] [PMID: 24812122]
[2]
Peitzsch C, Perrin R, Hill RP, Dubrovska A, Kurth I. Hypoxia as a biomarker for radioresistant cancer stem cells. Int J Radiat Biol 2014; 90(8): 636-52.
[http://dx.doi.org/10.3109/09553002.2014.916841] [PMID: 24844374]
[3]
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3(10): 721-32.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[4]
Corrado C, Fontana S. Hypoxia and HIF signaling: One axis with divergent effects. Int J Mol Sci 2020; 21(16): 5611.
[http://dx.doi.org/10.3390/ijms21165611] [PMID: 32764403]
[5]
McNeill LA, Hewitson KS, Claridge TD, Seibel JF, Horsfall LE, Schofield CJ. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J 2002; 367(Pt 3): 571-5.
[http://dx.doi.org/10.1042/bj20021162] [PMID: 12215170]
[6]
Koivunen P, Hirsilä M, Günzler V, Kivirikko KI, Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 2004; 279(11): 9899-904.
[http://dx.doi.org/10.1074/jbc.M312254200] [PMID: 14701857]
[7]
Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005; 2005(306): re12.
[http://dx.doi.org/10.1126/stke.3062005re12] [PMID: 16234508]
[8]
Geismann C, Arlt A. Coming in the air: Hypoxia meets epigenetics in pancreatic cancer. Cells 2020; 9(11): 2353.
[http://dx.doi.org/10.3390/cells9112353] [PMID: 33113836]
[9]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10: 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[10]
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137(11-12): 865-79.
[http://dx.doi.org/10.1007/s00439-018-1955-3] [PMID: 30386939]
[11]
Davalos V, Esteller M. Disruption of long noncoding RNAs targets cancer hallmark pathways in lung tumorigenesis. Cancer Res 2019; 79(12): 3028-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0910] [PMID: 31201165]
[12]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[13]
Bartonicek N, Maag JL, Dinger ME. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer 2016; 15(1): 43.
[http://dx.doi.org/10.1186/s12943-016-0530-6] [PMID: 27233618]
[14]
Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM. ATM activation and signaling under hypoxic conditions. Mol Cell Biol 2009; 29(2): 526-37.
[http://dx.doi.org/10.1128/MCB.01301-08] [PMID: 18981219]
[15]
Yeom CJ, Goto Y, Zhu Y, Hiraoka M, Harada H. Microenvironments and cellular characteristics in the micro tumor cords of malignant solid tumors. Int J Mol Sci 2012; 13(11): 13949-65.
[http://dx.doi.org/10.3390/ijms131113949] [PMID: 23203043]
[16]
Hammond EM, Asselin MC, Forster D, O’Connor JP, Senra JM, Williams KJ. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 2014; 26(5): 277-88.
[http://dx.doi.org/10.1016/j.clon.2014.02.002] [PMID: 24602562]
[17]
Hughes VS, Wiggins JM, Siemann DW. Tumor oxygenation and cancer therapy-then and now. Br J Radiol 2019; 92(1093): 20170955.
[http://dx.doi.org/10.1259/bjr.20170955] [PMID: 29513032]
[18]
Henze A-T, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest 2016; 126(10): 3672-9.
[http://dx.doi.org/10.1172/JCI84427] [PMID: 27482883]
[19]
Schoonen PM, Kok YP, Wierenga E, et al. Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells. Mol Oncol 2019; 13(11): 2422-40.
[http://dx.doi.org/10.1002/1878-0261.12573] [PMID: 31529615]
[20]
Rahal OM, Wolfe AR, Mandal PK, et al. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys 2018; 100(4): 1034-43.
[http://dx.doi.org/10.1016/j.ijrobp.2017.11.043] [PMID: 29485045]
[21]
Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 2006; 82(10): 699-757.
[http://dx.doi.org/10.1080/09553000601002324] [PMID: 17118889]
[22]
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21(10): 1516-54.
[http://dx.doi.org/10.1089/ars.2013.5378] [PMID: 24512032]
[23]
Ashton J, Bristow R. Bad neighbours: Hypoxia and genomic instability in prostate cancer. Br J Radiol 2020; 93(1115): 20200087.
[http://dx.doi.org/10.1259/bjr.20200087] [PMID: 32551913]
[24]
Chan N, Milosevic M, Bristow RG. Tumor hypoxia, DNA repair and prostate cancer progression: New targets and new therapies. Future Oncol 2007; 3(3): 329-41.
[http://dx.doi.org/10.2217/14796694.3.3.329] [PMID: 17547528]
[25]
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015; 3: 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[26]
Haase VH. The VHL tumor suppressor: Master regulator of HIF. Curr Pharm Des 2009; 15(33): 3895-903.
[http://dx.doi.org/10.2174/138161209789649394] [PMID: 19671042]
[27]
Okumura F, Uematsu K, Byrne SD, et al. Parallel regulation of von Hippel-Lindau disease by pVHL-mediated degradation of B-Myb and hypoxia-inducible factor α. Mol Cell Biol 2016; 36(12): 1803-17.
[http://dx.doi.org/10.1128/MCB.00067-16] [PMID: 27090638]
[28]
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18(1): 83.
[http://dx.doi.org/10.1186/s12964-020-00586-x] [PMID: 32493394]
[29]
Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J 2018; 285(16): 2926-43.
[http://dx.doi.org/10.1111/febs.14577] [PMID: 29893496]
[30]
Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 2007; 26(2): 241-8.
[http://dx.doi.org/10.1007/s10555-007-9056-0] [PMID: 17440683]
[31]
Starska K, Forma E, Jóźwiak P, et al. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1α; expression, tumor invasiveness, and patient prognosis. Tumour Biol 2015; 36(4): 2309-21.
[http://dx.doi.org/10.1007/s13277-014-2838-4] [PMID: 25412955]
[32]
Petersen I. Antiangiogenesis, anti-VEGF(R) and outlook. Recent Results Cancer Res 2007; 176: 189-99.
[http://dx.doi.org/10.1007/978-3-540-46091-6_16] [PMID: 17607926]
[33]
Koritzinsky M, Seigneuric R, Magagnin MG, van den Beucken T, Lambin P, Wouters BG. The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiother Oncol 2005; 76(2): 177-86.
[http://dx.doi.org/10.1016/j.radonc.2005.06.036] [PMID: 16098621]
[34]
Koritzinsky M, Magagnin MG, van den Beucken T, et al. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 2006; 25(5): 1114-25.
[http://dx.doi.org/10.1038/sj.emboj.7600998] [PMID: 16467844]
[35]
Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 2005; 16(4-5): 487-501.
[http://dx.doi.org/10.1016/j.semcdb.2005.03.009] [PMID: 15896987]
[36]
Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 2004; 64(6): 2054-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3196] [PMID: 15026343]
[37]
Papp-Szabó E, Josephy PD, Coomber BL. Microenvironmental influences on mutagenesis in mammary epithelial cells. Int J Cancer 2005; 116(5): 679-85.
[http://dx.doi.org/10.1002/ijc.21088] [PMID: 15849743]
[38]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[39]
Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014; 9: 47-71.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104720] [PMID: 23937437]
[40]
Shen Y, Yang J, Zhao J, Xiao C, Xu C, Xiang Y. The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: A survival mechanism in methotrexate-resistant choriocarcinoma cells. Exp Cell Res 2015; 334(2): 207-18.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.010] [PMID: 25912909]
[41]
Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of Tumor-Associated Macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10(11): 2156-70.
[http://dx.doi.org/10.1016/j.apsb.2020.04.004] [PMID: 33304783]
[42]
Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74(3): 665-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[43]
Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1α; and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211(5): 781-90.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[44]
Liu Q, Liu L, Zhao Y, et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-1α; and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 2011; 10(6): 1113-23.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1010] [PMID: 21460102]
[45]
Jackson AL, Zhou B, Kim WY. HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets 2010; 14(10): 1047-57.
[http://dx.doi.org/10.1517/14728222.2010.511617] [PMID: 20854179]
[46]
Harrison LR, Micha D, Brandenburg M, et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J Clin Invest 2011; 121(3): 1075-87.
[http://dx.doi.org/10.1172/JCI43505] [PMID: 21393866]
[47]
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21(6): 354-61.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[48]
Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9(6): 703-19.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[49]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[50]
Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab 2018; 27(2): 281-98.
[http://dx.doi.org/10.1016/j.cmet.2017.10.005] [PMID: 29129785]
[51]
Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: New players ushered toward an old arena. J Biomed Sci 2017; 24(1): 53.
[http://dx.doi.org/10.1186/s12929-017-0358-4] [PMID: 28789687]
[52]
Chang YN, Zhang K, Hu ZM, et al. Hypoxia-regulated lncRNAs in cancer. Gene 2016; 575(1): 1-8.
[http://dx.doi.org/10.1016/j.gene.2015.08.049] [PMID: 26341058]
[53]
Dong J, Xu J, Wang X, Jin B. Influence of the interaction between long noncoding RNAs and hypoxia on tumorigenesis. Tumour Biol 2016; 37(2): 1379-85.
[http://dx.doi.org/10.1007/s13277-015-4457-0] [PMID: 26608368]
[54]
Gómez-Maldonado L, Tiana M, Roche O, et al. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 2015; 34(20): 2609-20.
[http://dx.doi.org/10.1038/onc.2014.200] [PMID: 25023702]
[55]
Kuo T-C, Kung H-J, Shih J-W. Signaling in and out: Long-noncoding RNAs in tumor hypoxia. J Biomed Sci 2020; 27(1): 59.
[http://dx.doi.org/10.1186/s12929-020-00654-x] [PMID: 32370770]
[56]
Lin A, Li C, Xing Z, et al. The LINK-A lncRNA activates normoxic HIF1α; signalling in triple-negative breast cancer. Nat Cell Biol 2016; 18(2): 213-24.
[http://dx.doi.org/10.1038/ncb3295] [PMID: 26751287]
[57]
García-Venzor A, Mandujano-Tinoco EA, Lizarraga F, et al. Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. Biochim Biophys Acta Mol Cell Res 2019; 1866(12): 118523.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118523] [PMID: 31401107]
[58]
Lin HC, Yeh CC, Chao LY, et al. The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget 2017; 9(12): 10470-82.
[http://dx.doi.org/10.18632/oncotarget.23732] [PMID: 29535820]
[59]
Peng F, Wang JH, Fan WJ, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 2018; 37(8): 1062-74.
[http://dx.doi.org/10.1038/onc.2017.368] [PMID: 29106390]
[60]
Wu W, Hu Q, Nie E, et al. Hypoxia induces H19 expression through direct and indirect Hif-1α; activity, promoting oncogenic effects in glioblastoma. Sci Rep 2017; 7: 45029.
[http://dx.doi.org/10.1038/srep45029] [PMID: 28327666]
[61]
Matouk IJ, Mezan S, Mizrahi A, et al. The oncofetal H19 RNA connection: Hypoxia, p53 and cancer. Biochim Biophys Acta 2010; 1803(4): 443-51.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.010] [PMID: 20117150]
[62]
Voellenkle C, Garcia-Manteiga JM, Pedrotti S, et al. Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep 2016; 6: 24141.
[http://dx.doi.org/10.1038/srep24141] [PMID: 27063004]
[63]
Hong Q, Li O, Zheng W, et al. LncRNA HOTAIR regulates HIF-1α;/AXL signaling through inhibition of miR-217 in renal cell carcinoma. Cell Death Dis 2017; 8(5): e2772.
[http://dx.doi.org/10.1038/cddis.2017.181] [PMID: 28492542]
[64]
Zhai W, Sun Y, Jiang M, et al. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α;/C-MYC axis under hypoxia. Oncogene 2016; 35(37): 4866-80.
[http://dx.doi.org/10.1038/onc.2016.19] [PMID: 26973243]
[65]
Chen X, Liu M, Meng F, Sun B, Jin X, Jia C. The long noncoding RNA HIF1A-AS2 facilitates cisplatin resistance in bladder cancer. J Cell Biochem 2019; 120(1): 243-52.
[http://dx.doi.org/10.1002/jcb.27327] [PMID: 30216500]
[66]
Qiu JJ, Lin XJ, Zheng TT, Tang XY, Hua KQ. Natural antisense transcript of hypoxia-inducible factor 1 regulates hypoxic cell apoptosis in epithelial ovarian cancer. OncoTargets Ther 2018; 11: 9101-10.
[http://dx.doi.org/10.2147/OTT.S173816] [PMID: 30588022]
[67]
Xu Y, Luo X, He W, et al. Long noncoding RNA PVT1/miR-150/HIG2 axis regulates the proliferation, invasion and the balance of Iron metabolism of hepatocellular carcinoma. Cell Physiol Biochem 2018; 49(4): 1403-19.
[http://dx.doi.org/10.1159/000493445] [PMID: 30205391]
[68]
Liu Z, Wang Y, Wang L, et al. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38(1): 194.
[http://dx.doi.org/10.1186/s13046-019-1188-x] [PMID: 31088485]
[69]
Luo F, Sun B, Li H, et al. A MALAT1/HIF-2α; feedback loop contributes to arsenite carcinogenesis. Oncotarget 2016; 7(5): 5769-87.
[http://dx.doi.org/10.18632/oncotarget.6806] [PMID: 26735578]
[70]
Yang X, Yao B, Niu Y, et al. Hypoxia-induced lncRNA EIF3J-AS1 accelerates hepatocellular carcinoma progression via targeting miR-122-5p/CTNND2 axis. Biochem Biophys Res Commun 2019; 518(2): 239-45.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.039] [PMID: 31421822]
[71]
Ray SK, Mukherjee S. LncRNAs as new architects in cancer biomarkers, and potential therapeutic targets in addition to interface with epitranscriptomics: Is incipient targets in cancer? Curr Cancer Drug Targets 2021; 21(5): 416-27.
[http://dx.doi.org/10.2174/1568009620666210106122421] [PMID: 33413062]
[72]
Wei X, Wang C, Ma C, Sun W, Li H, Cai Z. Long noncoding RNA ANRIL is activated by hypoxia-inducible factor-1α; and promotes osteosarcoma cell invasion and suppresses cell apoptosis upon hypoxia. Cancer Cell Int 2016; 16: 73.
[http://dx.doi.org/10.1186/s12935-016-0349-7] [PMID: 27688736]
[73]
Liu X, Wang Y, Sun L, et al. Long noncoding RNA BC005927 upregulates EPHB4 and promotes gastric cancer metastasis under hypoxia. Cancer Sci 2018; 109(4): 988-1000.
[http://dx.doi.org/10.1111/cas.13519] [PMID: 29383777]
[74]
Zhang J, Jin HY, Wu Y, et al. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol 2019; 21(9): 1142-51.
[http://dx.doi.org/10.1007/s12094-019-02035-9] [PMID: 30690667]
[75]
Hu Y, Wang J, Qian J, et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res 2014; 74(23): 6890-902.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0686] [PMID: 25277524]
[76]
Wang Y, Liu X, Zhang H, et al. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 2014; 16(12): 1094-106.
[http://dx.doi.org/10.1016/j.neo.2014.10.008] [PMID: 25499222]
[77]
Deng SJ, Chen HY, Ye Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene 2018; 37(44): 5811-28.
[http://dx.doi.org/10.1038/s41388-018-0382-1] [PMID: 29970904]
[78]
Li X, Deng SJ, Zhu S, et al. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget 2016; 7(5): 6000-14.
[http://dx.doi.org/10.18632/oncotarget.6830] [PMID: 26755660]
[79]
Zeng Z, Xu FY, Zheng H, et al. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics 2019; 9(18): 5298-314.
[http://dx.doi.org/10.7150/thno.34559] [PMID: 31410216]
[80]
Liu M, Zhong J, Zeng Z, et al. Hypoxia-induced feedback of HIF-1α; and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics 2019; 9(16): 4795-810.
[http://dx.doi.org/10.7150/thno.30988] [PMID: 31367258]
[81]
Li H, Wang X, Wen C, et al. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer 2017; 16(1): 169.
[http://dx.doi.org/10.1186/s12943-017-0738-0] [PMID: 29121972]
[82]
Ou ZL, Zhang M, Ji LD, et al. Long noncoding RNA FEZF1-AS1 predicts poor prognosis and modulates pancreatic cancer cell proliferation and invasion through miR-142/HIF-1α; and miR-133a/EGFR upon hypoxia/normoxia. J Cell Physiol 2019; 234: 15407-19.
[http://dx.doi.org/10.1002/jcp.28188] [PMID: 30693518]
[83]
Zhang W, Yuan W, Song J, Wang S, Gu X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α. Biochimie 2018; 144: 21-7.
[http://dx.doi.org/10.1016/j.biochi.2017.10.002] [PMID: 29017924]
[84]
Yang F, Huo XS, Yuan SX, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 2013; 49(6): 1083-96.
[http://dx.doi.org/10.1016/j.molcel.2013.01.010] [PMID: 23395002]
[85]
Tong J, Xu X, Zhang Z, et al. Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy. Haematologica 2019; 104: 218289.
[http://dx.doi.org/10.3324/haematol.2019.218289] [PMID: 31289203]
[86]
Shih JW, Chiang WF, Wu ATH, et al. Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1α; co-activator driving oral cancer progression. Nat Commun 2017; 8: 15874.
[http://dx.doi.org/10.1038/ncomms15874] [PMID: 28639619]
[87]
Zhao R, Sun F, Bei X, et al. Upregulation of the long non-coding RNA FALEC promotes proliferation and migration of prostate cancer cell lines and predicts prognosis of PCa patients. Prostate 2017; 77(10): 1107-17.
[http://dx.doi.org/10.1002/pros.23367] [PMID: 28585762]
[88]
Bacci L, Aiello A, Ripoli C, et al. H19-dependent transcriptional regulation of beta3 and beta4 integrins upon estrogen and hypoxia favors metastatic potential in prostate Cancer. Int J Mol Sci 2019; 20(16): 4012.
[http://dx.doi.org/10.3390/ijms20164012] [PMID: 31426484]
[89]
Zhou C, Ye L, Jiang C, Bai J, Chi Y, Zhang H. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α; activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol 2015; 36(12): 9179-88.
[http://dx.doi.org/10.1007/s13277-015-3453-8] [PMID: 26088446]
[90]
Kong X, Zhao Y, Li X, Tao Z, Hou M, Ma H. Overexpression of HIF-2alphadependent NEAT1 promotes the progression of non-small cell lung cancer through miR-101-3p/SOX9/Wnt/beta-catenin signal pathway. Cell Physiol Biochem 2019; 52(3): 368-81.
[http://dx.doi.org/10.33594/000000026] [PMID: 30845377]
[91]
Yuan S, Xiang Y, Wang G, et al. Hypoxia-sensitive LINC01436 is regulated by E2F6 and acts as an oncogene by targeting miR-30a-3p in non-small cell lung cancer. Mol Oncol 2019; 13(4): 840-56.
[http://dx.doi.org/10.1002/1878-0261.12437] [PMID: 30614188]
[92]
Moreau PR, Örd T, Downes NL, et al. Transcriptional profiling of hypoxia-regulated non-coding RNAs in human primary endothelial cells. Front Cardiovasc Med 2018; 5: 159.
[http://dx.doi.org/10.3389/fcvm.2018.00159] [PMID: 30456215]
[93]
Zhang W, Wang J, Chai R, et al. Hypoxia-regulated lncRNA CRPAT4 promotes cell migration via regulating AVL9 in clear cell renal cell carcinomas. OncoTargets Ther 2018; 11: 4537-45.
[http://dx.doi.org/10.2147/OTT.S169155] [PMID: 30122945]
[94]
Alsahafi E, Begg K, Amelio I, et al. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. Cell Death Dis 2019; 10(8): 540.
[http://dx.doi.org/10.1038/s41419-019-1769-9] [PMID: 31308358]
[95]
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2014; 49(1): 1-15.
[http://dx.doi.org/10.3109/10409238.2013.838205] [PMID: 24099156]
[96]
Fan L, Li J, Yu Z, Dang X, Wang K. The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BioMed Res Int 2014; 2014: 239356.
[http://dx.doi.org/10.1155/2014/239356] [PMID: 24895555]
[97]
Kietzmann T, Mennerich D, Dimova EY. Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol 2016; 4: 11.
[http://dx.doi.org/10.3389/fcell.2016.00011] [PMID: 26942179]
[98]
Olcina M, Lecane PS, Hammond EM. Targeting hypoxic cells through the DNA damage response. Clin Cancer Res 2010; 16(23): 5624-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0286] [PMID: 20876254]
[99]
Koshiji M, To KK, Hammer S, et al. HIF-1α; induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 2005; 17(6): 793-803.
[http://dx.doi.org/10.1016/j.molcel.2005.02.015] [PMID: 15780936]
[100]
To KKW, Sedelnikova OA, Samons M, Bonner WM, Huang LE. The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. EMBO J 2006; 25(20): 4784-94.
[http://dx.doi.org/10.1038/sj.emboj.7601369] [PMID: 17024177]
[101]
Li T, Xiao Y, Huang T. HIF 1α; induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. Oncol Rep 2018; 39(3): 1072-80.
[http://dx.doi.org/10.3892/or.2018.6182] [PMID: 29328452]
[102]
Xue M, Li X, Li Z, Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α;-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol 2014; 35(7): 6901-12.
[http://dx.doi.org/10.1007/s13277-014-1925-x] [PMID: 24737584]
[103]
Sallé-Lefort S, Miard S, Nolin MA, et al. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α; axis. Int J Oncol 2016; 49(4): 1731-6.
[http://dx.doi.org/10.3892/ijo.2016.3630] [PMID: 27499160]
[104]
Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629: 16-28.
[http://dx.doi.org/10.1016/j.gene.2017.07.069] [PMID: 28756022]
[105]
Slemc L, Kunej T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumour Biol 2016; 37(11): 14851-61.
[http://dx.doi.org/10.1007/s13277-016-5331-4] [PMID: 27644243]
[106]
Wei Y, Zhang Y, Meng Q, Cui L, Xu C. Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA. Am J Transl Res 2019; 11(11): 6838-49.
[PMID: 31814891]
[107]
Liang G, Liu Z, Tan L, Su AN, Jiang WG, Gong C. HIF1α;-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res 2017; 37(8): 4337-43.
[http://dx.doi.org/10.21873/anticanres.11827] [PMID: 28739726]
[108]
Kenneth NS, Rocha S. Regulation of gene expression by hypoxia. Biochem J 2008; 414(1): 19-29.
[http://dx.doi.org/10.1042/BJ20081055] [PMID: 18651837]
[109]
Melvin A, Mudie S, Rocha S. Further insights into the mechanism of hypoxia-induced NFκB. [corrected]. Cell Cycle 2011; 10(6): 879-82.
[http://dx.doi.org/10.4161/cc.10.6.14910] [PMID: 21325892]
[110]
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal 2013; 25(9): 1895-903.
[http://dx.doi.org/10.1016/j.cellsig.2013.05.018] [PMID: 23707522]
[111]
Leonard MO, Howell K, Madden SF, et al. Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung. Am J Respir Crit Care Med 2008; 178(9): 977-83.
[http://dx.doi.org/10.1164/rccm.200712-1890OC] [PMID: 18689465]
[112]
Lee MY, Joung YH, Lim EJ, et al. Phosphorylation and activation of STAT proteins by hypoxia in breast cancer cells. Breast 2006; 15(2): 187-95.
[http://dx.doi.org/10.1016/j.breast.2005.05.005] [PMID: 16084091]
[113]
Levy DE, Inghirami G. STAT3: A multifaceted oncogene. Proc Natl Acad Sci USA 2006; 103(27): 10151-2.
[http://dx.doi.org/10.1073/pnas.0604042103] [PMID: 16801534]
[114]
Pawlus MR, Wang L, Hu CJ. STAT3 and HIF1α; cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 2014; 33(13): 1670-9.
[http://dx.doi.org/10.1038/onc.2013.115] [PMID: 23604114]
[115]
Yang J, Ahmed A, Poon E, et al. Small-molecule activation of p53 blocks hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxia. Mol Cell Biol 2009; 29(8): 2243-53.
[http://dx.doi.org/10.1128/MCB.00959-08] [PMID: 19223463]
[116]
Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10(12): 1321-8.
[http://dx.doi.org/10.1038/nm1146] [PMID: 15558054]
[117]
Puisségur MP, Mazure NM, Bertero T, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 2011; 18(3): 465-78.
[http://dx.doi.org/10.1038/cdd.2010.119] [PMID: 20885442]
[118]
Costales MG, Haga CL, Velagapudi SP, Childs-Disney JL, Phinney DG, Disney MD. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J Am Chem Soc 2017; 139(9): 3446-55.
[http://dx.doi.org/10.1021/jacs.6b11273] [PMID: 28240549]
[119]
Zhang ZC, Tang C, Dong Y, et al. Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci 2017; 13(11): 1398-408.
[http://dx.doi.org/10.7150/ijbs.22249] [PMID: 29209144]
[120]
Gibson SL, Bindra RS, Glazer PM. Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res 2005; 65(23): 10734-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1160] [PMID: 16322218]
[121]
Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ. DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol 2006; 26(5): 1598-609.
[http://dx.doi.org/10.1128/MCB.26.5.1598-1609.2006] [PMID: 16478982]
[122]
Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 2003; 278(14): 12207-13.
[http://dx.doi.org/10.1074/jbc.M212360200] [PMID: 12519769]
[123]
Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008; 8(3): 180-92.
[http://dx.doi.org/10.1038/nrc2344] [PMID: 18273037]
[124]
Flamant L, Roegiers E, Pierre M, et al. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer 2012; 12: 391.
[http://dx.doi.org/10.1186/1471-2407-12-391] [PMID: 22954140]
[125]
Meng AX, Jalali F, Cuddihy A, et al. Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 2005; 76(2): 168-76.
[http://dx.doi.org/10.1016/j.radonc.2005.06.025] [PMID: 16026872]
[126]
Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 2005; 569(1-2): 75-85.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.03.013] [PMID: 15603753]
[127]
Bindra RS, Glazer PM. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Lett 2007; 252(1): 93-103.
[http://dx.doi.org/10.1016/j.canlet.2006.12.011] [PMID: 17275176]
[128]
Hashimoto T, Murata Y, Urushihara Y, Shiga S, Takeda K, Hosoi Y. Severe hypoxia increases expression of ATM and DNA-PKcs and it increases their activities through Src and AMPK signaling pathways. Biochem Biophys Res Commun 2018; 505(1): 13-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.068] [PMID: 30224064]
[129]
Begg K, Tavassoli M. Inside the hypoxic tumour: Reprogramming of the DDR and radioresistance. Cell Death Discov 2020; 6: 77.
[http://dx.doi.org/10.1038/s41420-020-00311-0] [PMID: 32864165]
[130]
Lu Y, Chu A, Turker MS, Glazer PM. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol 2011; 31(16): 3339-50.
[http://dx.doi.org/10.1128/MCB.01121-10] [PMID: 21670155]
[131]
Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JM. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res (Amst) 2012; 9(3): 225-36.
[http://dx.doi.org/10.1016/j.scr.2012.07.001] [PMID: 22903042]
[132]
Cowman S, Fan YN, Pizer B, Sée V. Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in some brain tumour cells. BMC Cancer 2019; 19(1): 300.
[http://dx.doi.org/10.1186/s12885-019-5476-9] [PMID: 30943920]
[133]
Rodríguez-Jiménez FJ, Moreno-Manzano V, Lucas-Dominguez R, Sánchez-Puelles J-M. Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells 2008; 26(8): 2052-62.
[http://dx.doi.org/10.1634/stemcells.2007-1016] [PMID: 18511603]
[134]
Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 2009; 69(3): 1221-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2516] [PMID: 19141645]
[135]
Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013; 14: 319.
[http://dx.doi.org/10.1186/1471-2164-14-319] [PMID: 23663360]
[136]
Chen F, Chen J, Yang L, et al. Extracellular vesicle-packaged HIF-1α;-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol 2019; 21(4): 498-510.
[http://dx.doi.org/10.1038/s41556-019-0299-0] [PMID: 30936474]
[137]
Naderi-Meshkin H, Lai X, Amirkhah R, Vera J, Rasko JEJ, Schmitz U. Exosomal lncRNAs and cancer: connecting the missing links. Bioinformatics 2019; 35(2): 352-60.
[http://dx.doi.org/10.1093/bioinformatics/bty527] [PMID: 30649349]
[138]
Zheng Y, Tian X, Wang T, et al. Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol Cancer 2019; 18(1): 61.
[http://dx.doi.org/10.1186/s12943-019-0978-2] [PMID: 30925926]
[139]
Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 2017; 16(1): 143.
[http://dx.doi.org/10.1186/s12943-017-0714-8] [PMID: 28841829]
[140]
Lang HL, Hu GW, Zhang B, et al. Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 2017; 38(2): 785-98.
[http://dx.doi.org/10.3892/or.2017.5742] [PMID: 28656228]
[141]
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α; and noncoding RNAs in cancer. J Exp Clin Cancer Res 2020; 39(1): 27.
[http://dx.doi.org/10.1186/s13046-020-1535-y] [PMID: 32014012]
[142]
Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2009; 2(9): 807-13.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0094] [PMID: 19723895]
[143]
Niu Y, Jin Y, Deng SC, et al. MiRNA-646-mediated reciprocal repression between HIF-1α; and MIIP contributes to tumorigenesis of pancreatic cancer. Oncogene 2018; 37(13): 1743-58.
[http://dx.doi.org/10.1038/s41388-017-0082-2] [PMID: 29343850]
[144]
Zhu S, He C, Deng S, et al. MiR-548an, transcriptionally downregulated by HIF1α;/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Mol Cancer Ther 2016; 15(9): 2209-19.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0877] [PMID: 27353169]
[145]
Cheng X, Qiu J, Wang S, et al. Comprehensive circular RNA profiling identifies CircFAM120A as a new biomarker of hypoxic lung adenocarcinoma. Ann Transl Med 2019; 7(18): 442.
[http://dx.doi.org/10.21037/atm.2019.08.79] [PMID: 31700878]
[146]
Wang J, Yang K, Yuan W, Gao Z. Determination of serum exosomal H19 as a noninvasive biomarker for bladder Cancer diagnosis and prognosis. Med Sci Monit 2018; 24: 9307-16.
[http://dx.doi.org/10.12659/MSM.912018] [PMID: 30576305]
[147]
Berrondo C, Flax J, Kucherov V, et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 2016; 11(1): e0147236.
[http://dx.doi.org/10.1371/journal.pone.0147236] [PMID: 26800519]
[148]
Qiu JJ, Lin XJ, Zheng TT, Tang XY, Zhang Y, Hua KQ. The exosomal long noncoding RNA aHIF is upregulated in serum from patients with endometriosis and promotes angiogenesis in endometriosis. Reprod Sci 2019; 26(12): 1590-602.
[http://dx.doi.org/10.1177/1933719119831775] [PMID: 30808247]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy