General Review Article

CRISPR介导的表观基因组编辑:癌症治疗管理的未来指示

卷 23, 期 8, 2022

发表于: 14 February, 2022

页: [836 - 853] 页: 18

弟呕挨: 10.2174/1389450123666220117105531

价格: $65

摘要

最近的研究已经阐明了表观遗传标记在某些疾病中的作用,如癌症、2型糖尿病(T2DM)、肥胖和心血管功能障碍等。表观遗传标记如DNA甲基化和组蛋白乙酰化在疾病状态中被随机改变。DNA和组蛋白的甲基化可导致基因表达下调,而组蛋白乙酰化、泛素化和磷酸化则与基因表达增强有关。我们如何精确地针对这种表观遗传畸变来防止疾病的出现?答案在于高效的基因组编辑技术CRISPR与某些效应分子的融合,这些效应分子可以改变表观遗传标记的状态,并使用某些转录激活因子或抑制因子。在这篇综述中,我们讨论了表观遗传编辑作为一种治疗策略的基本原理,以及CRISPR-Cas9技术结合表观遗传效应标识如何有效地编辑表观遗传目标。在后面的部分中,我们讨论了如何用dCas9标记某些表观遗传效应因子,从而引发癌症的表观遗传变化。随着技术的突破,人们对探索癌症和非传染性疾病(如II型糖尿病和肥胖)的表观遗传背景越来越感兴趣,这使得进行大规模的表观基因组研究成为可能。

关键词: 表观遗传学,CRISPR, dCas9,表观效应,表观遗传标记,DeepCRISPR,组蛋白修饰,DNA甲基化。

« Previous
图形摘要

[1]
Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337(6099): 1190-5.
[http://dx.doi.org/10.1126/science.1222794] [PMID: 22955828]
[2]
Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 2016; 17(5): 284-99.
[http://dx.doi.org/10.1038/nrg.2016.13] [PMID: 26972587]
[3]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[4]
Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochimica et biophysica acta (BBA)-general subjects 2009; 1790(9): 863-8.
[5]
Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283(17): 3181-93.
[http://dx.doi.org/10.1111/febs.13768] [PMID: 27248712]
[6]
Waddington CH. Towards a theoretical biology. Nature 1968; 218(5141): 525-7.
[http://dx.doi.org/10.1038/218525a0] [PMID: 5650959]
[7]
Gökbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146(19): dev164772.
[http://dx.doi.org/10.1242/dev.164772] [PMID: 31554624]
[8]
Esteller M. Epigenetics in evolution and disease. Lancet 2008; 372: S90-6.
[http://dx.doi.org/10.1016/S0140-6736(08)61887-5]
[9]
Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102(30): 10604-9.
[http://dx.doi.org/10.1073/pnas.0500398102] [PMID: 16009939]
[10]
Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 2009; 41(2): 240-5.
[http://dx.doi.org/10.1038/ng.286] [PMID: 19151718]
[11]
Chi AS, Bernstein BE. Developmental biology. Pluripotent chromatin state. Science 2009; 323(5911): 220-1.
[http://dx.doi.org/10.1126/science.1166261] [PMID: 19131621]
[12]
Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454(7205): 766-70.
[http://dx.doi.org/10.1038/nature07107] [PMID: 18600261]
[13]
Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8(4): 286-98.
[http://dx.doi.org/10.1038/nrg2005] [PMID: 17339880]
[14]
Voigt P, Reinberg D. Epigenome editing. Nat Biotechnol 2013; 31(12): 1097-9.
[http://dx.doi.org/10.1038/nbt.2756] [PMID: 24316647]
[15]
Richa R, Sinha RP. Hydroxymethylation of DNA: An epigenetic marker. EXCLI J 2014; 13: 592-610.
[PMID: 26417286]
[16]
Fu S, Wu H, Zhang H, Lian CG, Lu Q. DNA methylation/hydroxymethylation in melanoma. Oncotarget 2017; 8(44): 78163-73.
[http://dx.doi.org/10.18632/oncotarget.18293] [PMID: 29100458]
[17]
Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol 2018; 196: 34-9.
[http://dx.doi.org/10.1016/j.clim.2018.03.011] [PMID: 29574040]
[18]
Deltour S, Chopin V, Leprince D. Modifications épigénétiques et cancer. médecine/sciences 2005; 21(4): 405-11.
[19]
Zhang L, Eugeni EE, Parthun MR, Freitas MA. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003; 112(2): 77-86.
[http://dx.doi.org/10.1007/s00412-003-0244-6] [PMID: 12937907]
[20]
Bird A. Perceptions of epigenetics. Nature 2007; 447(7143): 396-8.
[http://dx.doi.org/10.1038/nature05913] [PMID: 17522671]
[21]
Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129(4): 823-37.
[http://dx.doi.org/10.1016/j.cell.2007.05.009] [PMID: 17512414]
[22]
Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448(7153): 553-60.
[http://dx.doi.org/10.1038/nature06008] [PMID: 17603471]
[23]
Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 2002; 14(3): 286-98.
[http://dx.doi.org/10.1016/S0955-0674(02)00335-6] [PMID: 12067650]
[24]
Davie JK, Dent SY. Transcriptional control: An activating role for arginine methylation. Curr Biol 2002; 12(2): R59-61.
[http://dx.doi.org/10.1016/S0960-9822(01)00674-1] [PMID: 11818080]
[25]
Zhang Y, Reinberg D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15(18): 2343-60.
[http://dx.doi.org/10.1101/gad.927301] [PMID: 11562345]
[26]
Noma K , Allis CD, Grewal SI. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 2001; 293(5532): 1150-5.
[http://dx.doi.org/10.1126/science.1064150] [PMID: 11498594]
[27]
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410(6824): 116-20.
[http://dx.doi.org/10.1038/35065132] [PMID: 11242053]
[28]
Watson JD, Baker TA, Gann A, Levine M, Losik R. Molecular biology of the gene. (7th ed.). Boston: Pearson/CSH Press 2014.
[29]
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics 2012; 7(10): 1098-108.
[http://dx.doi.org/10.4161/epi.21975] [PMID: 22948226]
[30]
Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausió J. Histone ubiquitination: A tagging tail unfolds? BioEssays 2002; 24(2): 166-74.
[http://dx.doi.org/10.1002/bies.10038] [PMID: 11835281]
[31]
Nickel BE, Davie JR. Structure of polyubiquitinated histone H2A. Biochemistry 1989; 28(3): 964-8.
[http://dx.doi.org/10.1021/bi00429a007] [PMID: 2540826]
[32]
West MH, Bonner WM. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res 1980; 8(20): 4671-80.
[http://dx.doi.org/10.1093/nar/8.20.4671] [PMID: 6255427]
[33]
Mechelli A, Crinion JT, Noppeney U, et al. Neurolinguistics: Structural plasticity in the bilingual brain. Nature 2004; 431(7010): 757.
[http://dx.doi.org/10.1038/431757a] [PMID: 15483594]
[34]
Celli GB, Denchi EL, de Lange T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 2006; 8(8): 885-90.
[http://dx.doi.org/10.1038/ncb1444] [PMID: 16845382]
[35]
Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012; 2: 26.
[http://dx.doi.org/10.3389/fonc.2012.00026] [PMID: 22649782]
[36]
Sims RJ III, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 2005; 280(51): 41789-92.
[http://dx.doi.org/10.1074/jbc.C500395200] [PMID: 16263726]
[37]
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8): 597-610.
[http://dx.doi.org/10.1038/nrg1655] [PMID: 16136652]
[38]
Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. nature 2009; 462(7271): 315-22.
[39]
Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. DNA Methylation: Development. Genetic Disease and Cancer 2006; pp. 211-50.
[40]
Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008; 30(6): 755-66.
[http://dx.doi.org/10.1016/j.molcel.2008.05.007] [PMID: 18514006]
[41]
Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science 2007; 315(5815): 1141-3.
[42]
Ball MP, Li JB, Gao Y, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27(4): 361-8.
[http://dx.doi.org/10.1038/nbt.1533] [PMID: 19329998]
[43]
Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31(9): 2305-12.
[http://dx.doi.org/10.1093/nar/gkg332] [PMID: 12711675]
[44]
Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 2004; 318(2): 544-55.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.058] [PMID: 15120635]
[45]
Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448(7154): 714-7.
[http://dx.doi.org/10.1038/nature05987] [PMID: 17687327]
[46]
Lewis BA, Hanover JA. O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 2014; 289(50): 34440-8.
[http://dx.doi.org/10.1074/jbc.R114.595439] [PMID: 25336654]
[47]
Slawson C, Hart GW. O-GlcNAc signalling: Implications for cancer cell biology. Nat Rev Cancer 2011; 11(9): 678-84.
[http://dx.doi.org/10.1038/nrc3114] [PMID: 21850036]
[48]
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: Emerging roles in development and epigenetics. Semin Cell Devel Biol 2010; 21(6): 646-54.
[49]
Zhang S, Roche K, Nasheuer HP, Lowndes NF. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 2011; 286(43): 37483-95.
[http://dx.doi.org/10.1074/jbc.M111.284885] [PMID: 21896475]
[50]
Sinclair DA, Syrzycka M, Macauley MS, et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci USA 2009; 106(32): 13427-32.
[http://dx.doi.org/10.1073/pnas.0904638106] [PMID: 19666537]
[51]
Kassis JA, Kennison JA. Recruitment of polycomb complexes: A role for SCM. Mol Cell Biol 2010; 30(11): 2581-3.
[http://dx.doi.org/10.1128/MCB.00231-10] [PMID: 20351178]
[52]
Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2013; 493(7433): 561-4.
[http://dx.doi.org/10.1038/nature11742] [PMID: 23222540]
[53]
Mariappa D, Pathak S, van Aalten DM. A sweet TET-à-tête-synergy of TET proteins and O-GlcNAc transferase in transcription. EMBO J 2013; 32(5): 612-3.
[http://dx.doi.org/10.1038/emboj.2013.26] [PMID: 23403924]
[54]
Deplus R, Delatte B, Schwinn MK, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 2013; 32(5): 645-55.
[http://dx.doi.org/10.1038/emboj.2012.357] [PMID: 23353889]
[55]
Hanover JA, Krause MW, Love DC. Bittersweet memories: Linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 2012; 13(5): 312-21.
[http://dx.doi.org/10.1038/nrm3334] [PMID: 22522719]
[56]
Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80: 825-58.
[http://dx.doi.org/10.1146/annurev-biochem-060608-102511] [PMID: 21391816]
[57]
Yang X, Su K, Roos MD, Chang Q, Paterson AJ, Kudlow JE. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci USA 2001; 98(12): 6611-6.
[http://dx.doi.org/10.1073/pnas.111099998] [PMID: 11371615]
[58]
Yang X, Zhang F, Kudlow JE. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: Coupling protein O-GlcNAcylation to transcriptional repression. Cell 2002; 110(1): 69-80.
[http://dx.doi.org/10.1016/S0092-8674(02)00810-3] [PMID: 12150998]
[59]
Copeland RJ, Bullen JW, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: Roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 2008; 295(1): E17-28.
[http://dx.doi.org/10.1152/ajpendo.90281.2008] [PMID: 18445751]
[60]
Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 2013; 24(6): 301-9.
[http://dx.doi.org/10.1016/j.tem.2013.02.002] [PMID: 23647930]
[61]
Phueaouan T, Chaiyawat P, Netsirisawan P, et al. Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol Rep 2013; 30(6): 2929-36.
[http://dx.doi.org/10.3892/or.2013.2794] [PMID: 24126823]
[62]
Metere A, Chiesa C, Di Cosimo C, Fierro G, Giacomelli L, Pietraforte D. A novel approach to study oxidative stress in thyroid diseases: A preliminary study. Eur Rev Med Pharmacol Sci 2012; 16(5): 646-52.
[PMID: 22774406]
[63]
Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of breast cancer: Clinical status of epi-drugs and phytochemicals. Breast Cancer Metastasis and Drug Resistance 2019; pp. 293-310.
[64]
Singh AK, Bishayee A, Pandey AK. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients 2018; 10(6): 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]
[65]
Curran KM, Bracha S, Wong CP, Beaver LM, Stevens JF, Ho E. Sulforaphane absorption and histone deacetylase activity following single dosing of broccoli sprout supplement in normal dogs. Vet Med Sci 2018; 4(4): 357-63.
[http://dx.doi.org/10.1002/vms3.118] [PMID: 30117668]
[66]
Cianfruglia L, Minnelli C, Laudadio E, Scirè A, Armeni T. Side effects of curcumin: Epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants 2019; 8(9): 382.
[http://dx.doi.org/10.3390/antiox8090382] [PMID: 31505772]
[67]
Brait M, Ford JG, Papaiahgari S, et al. Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomarkers Prev 2009; 18(11): 2984-91.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-1245] [PMID: 19861513]
[68]
Singh NP, Miranda K, Singh UP, Nagarkatti P, Nagarkatti M. Diethylstilbestrol (DES) induces autophagy in thymocytes by regulating Beclin-1 expression through epigenetic modulation. Toxicology 2018; 410: 49-58.
[http://dx.doi.org/10.1016/j.tox.2018.08.012] [PMID: 30153466]
[69]
Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 2019; 52: 37-47.
[http://dx.doi.org/10.1016/j.jtemb.2018.11.006] [PMID: 30732897]
[70]
Xi S, Xu H, Shan J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 2013; 123(3): 1241-61.
[http://dx.doi.org/10.1172/JCI61271] [PMID: 23426183]
[71]
Kaur G, Begum R, Thota S, Batra S. A systematic review of smoking-related epigenetic alterations. Arch Toxicol 2019; 93(10): 2715-40.
[http://dx.doi.org/10.1007/s00204-019-02562-y] [PMID: 31555878]
[72]
Xie Y, Zhou JJ, Zhao Y, Zhang T, Mei LZH. H. pylori modifies methylation of global genomic DNA and the gastrin gene promoter in gastric mucosal cells and gastric cancer cells. Microb Pathog 2017; 108: 129-36.
[http://dx.doi.org/10.1016/j.micpath.2017.05.003] [PMID: 28478202]
[73]
Yousefi B, Mohammadlou M, Abdollahi M, et al. Epigenetic changes in gastric cancer induction by Helicobacter pylori. J Cell Physiol 2019; 234(12): 21770-84.
[http://dx.doi.org/10.1002/jcp.28925] [PMID: 31169314]
[74]
Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4(2): 143-53.
[http://dx.doi.org/10.1038/nrc1279] [PMID: 14732866]
[75]
Futscher BW, O’Meara MM, Kim CJ, et al. Aberrant methylation of the maspin promoter is an early event in human breast cancer. Neoplasia 2004; 6(4): 380-9.
[http://dx.doi.org/10.1593/neo.04115] [PMID: 15256060]
[76]
Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41(2): 178-86.
[http://dx.doi.org/10.1038/ng.298] [PMID: 19151715]
[77]
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochimica et Biophysica Acta (BBA)-. Rev Can 2007; 1775(1): 138-62.
[78]
Esteller M. Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet 2007; 16(Spec No 1): R50-9.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[79]
Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4): 391-400.
[http://dx.doi.org/10.1038/ng1531] [PMID: 15765097]
[80]
Vaquero A, Sternglanz R, Reinberg D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007; 26(37): 5505-20.
[http://dx.doi.org/10.1038/sj.onc.1210617] [PMID: 17694090]
[81]
Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004; 6(8): 731-40.
[http://dx.doi.org/10.1038/ncb1151] [PMID: 15235609]
[82]
Kondo Y, Shen L, Suzuki S, et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 2007; 37(11): 974-83.
[http://dx.doi.org/10.1111/j.1872-034X.2007.00141.x] [PMID: 17584191]
[83]
Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 2008; 105(26): 9047-52.
[http://dx.doi.org/10.1073/pnas.0803623105] [PMID: 18579779]
[84]
Ling C, Poulsen P, Simonsson S, et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest 2007; 117(11): 3427-35.
[http://dx.doi.org/10.1172/JCI30938] [PMID: 17948130]
[85]
Parra M. Class IIa HDACs - new insights into their functions in physiology and pathology. FEBS J 2015; 282(9): 1736-44.
[http://dx.doi.org/10.1111/febs.13061] [PMID: 25244360]
[86]
Kabra DG, Pfuhlmann K, García-Cáceres C, et al. Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun 2016; 7(1): 10782.
[http://dx.doi.org/10.1038/ncomms10782] [PMID: 26923837]
[87]
Zhang L, Du J, Yano N, et al. Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice. J Cell Biochem 2017; 118(8): 2395-408.
[http://dx.doi.org/10.1002/jcb.25902] [PMID: 28109123]
[88]
Inagaki T, Tachibana M, Magoori K, et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 2009; 14(8): 991-1001.
[http://dx.doi.org/10.1111/j.1365-2443.2009.01326.x] [PMID: 19624751]
[89]
Multhaup ML, Seldin MM, Jaffe AE, et al. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes. Cell Metab 2015; 21(1): 138-49.
[http://dx.doi.org/10.1016/j.cmet.2014.12.014] [PMID: 25565211]
[90]
Campanella G, Gunter MJ, Polidoro S, et al. Epigenome-wide association study of adiposity and future risk of obesity-related diseases. Int J Obes 2018; 42(12): 2022-35.
[http://dx.doi.org/10.1038/s41366-018-0064-7] [PMID: 29713043]
[91]
Xiong X, Chen M, Lim WA, Zhao D, Qi LS. CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 2016; 17: 131-54.
[http://dx.doi.org/10.1146/annurev-genom-083115-022258] [PMID: 27216776]
[92]
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13(11): 722-36.
[http://dx.doi.org/10.1038/nrmicro3569] [PMID: 26411297]
[93]
van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 2009; 34(8): 401-7.
[http://dx.doi.org/10.1016/j.tibs.2009.05.002] [PMID: 19646880]
[94]
Bashtrykov P, Jeltsch A. Epigenome editing in the brain. Neuroepigenomics in Aging and Disease 2017; pp. 409-24.
[95]
Heller EA, Cates HM, Peña CJ, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 2014; 17(12): 1720-7.
[http://dx.doi.org/10.1038/nn.3871] [PMID: 25347353]
[96]
Stover JD, Farhang N, Berrett KC, Gertz J, Lawrence B, Bowles RD. CRISPR epigenome editing of AKAP150 in DRG neurons abolishes degenerative IVD-induced neuronal activation. Mol Ther 2017; 25(9): 2014-27.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.010] [PMID: 28676344]
[97]
Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016; 85: 227-64.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014607] [PMID: 27145843]
[98]
Jang YY, Cai L, Ye Z. Genome editing systems in novel therapies. Discov Med 2016; 21(113): 57-64.
[PMID: 26896603]
[99]
Moos WH, Pinkert CA, Irwin MH, et al. Epigenetic treatment of persistent viral infections. Drug Dev Res 2017; 78(1): 24-36.
[http://dx.doi.org/10.1002/ddr.21366] [PMID: 27761936]
[100]
Mussolino C, Alzubi J, Pennucci V, Turchiano G, Cathomen T. Genome and epigenome editing to treat disorders of the hematopoietic system. Hum Gene Ther 2017; 28(11): 1105-15.
[http://dx.doi.org/10.1089/hum.2017.149] [PMID: 28806883]
[101]
Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: Mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11(5): 266-79.
[http://dx.doi.org/10.1038/nrneurol.2015.57] [PMID: 25896087]
[102]
Vojta A, Dobrinić P, Tadić V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44(12): 5615-28.
[http://dx.doi.org/10.1093/nar/gkw159] [PMID: 26969735]
[103]
Enríquez P. Focus: Epigenetics: CRISPR-mediated epigenome editing. Yale J Biol Med 2016; 89(4): 471-86.
[PMID: 28018139]
[104]
Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA. An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 2012; 9(6): 588-90.
[http://dx.doi.org/10.1038/nmeth.1994] [PMID: 22543349]
[105]
Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335(6069): 720-3.
[http://dx.doi.org/10.1126/science.1215670] [PMID: 22223738]
[106]
Thakore PI, D’Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015; 12(12): 1143-9.
[http://dx.doi.org/10.1038/nmeth.3630] [PMID: 26501517]
[107]
Kearns NA, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 2015; 12(5): 401-3.
[http://dx.doi.org/10.1038/nmeth.3325] [PMID: 25775043]
[108]
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5): 510-7.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[109]
Hu J, Lei Y, Wong WK, et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 2014; 42(7): 4375-90.
[http://dx.doi.org/10.1093/nar/gku109] [PMID: 24500196]
[110]
Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 2015; 12(4): 326-8.
[http://dx.doi.org/10.1038/nmeth.3312] [PMID: 25730490]
[111]
Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10(10): 973-6.
[http://dx.doi.org/10.1038/nmeth.2600] [PMID: 23892895]
[112]
McDonald JI, Celik H, Rois LE, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 2016; 5(6): 866-74.
[http://dx.doi.org/10.1242/bio.019067] [PMID: 27170255]
[113]
Amabile A, Migliara A, Capasso P, et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 2016; 167(1): 219-232.e14.
[http://dx.doi.org/10.1016/j.cell.2016.09.006] [PMID: 27662090]
[114]
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014; 159(3): 635-46.
[http://dx.doi.org/10.1016/j.cell.2014.09.039] [PMID: 25307933]
[115]
Morita S, Noguchi H, Horii T, et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 2016; 34(10): 1060-5.
[http://dx.doi.org/10.1038/nbt.3658] [PMID: 27571369]
[116]
Huang YH, Su J, Lei Y, et al. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 2017; 18(1): 176.
[http://dx.doi.org/10.1186/s13059-017-1306-z] [PMID: 28923089]
[117]
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536): 583-8.
[http://dx.doi.org/10.1038/nature14136] [PMID: 25494202]
[118]
Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 2017; 10(1): 24.
[http://dx.doi.org/10.1186/s13072-017-0129-1] [PMID: 28503202]
[119]
Cheng Y, Xie N, Jin P, Wang T. DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct 2015; 33(4): 161-73.
[http://dx.doi.org/10.1002/cbf.3101] [PMID: 25776144]
[120]
Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics. Nat Rev Genet 2017; 18(1): 51-66.
[http://dx.doi.org/10.1038/nrg.2016.138] [PMID: 27867193]
[121]
Lau CH, Suh Y. Genome and epigenome editing in mechanistic studies of human aging and aging-related disease. Gerontology 2017; 63(2): 103-17.
[http://dx.doi.org/10.1159/000452972] [PMID: 27974723]
[122]
Möglich A, Hegemann P. Biotechnology: Programming genomes with light. Nature 2013; 500(7463): 406-8.
[http://dx.doi.org/10.1038/500406a] [PMID: 23969454]
[123]
Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 2015; 12(6): 535-40.
[http://dx.doi.org/10.1038/nmeth.3360] [PMID: 25867848]
[124]
Maeder ML, Angstman JF, Richardson ME, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013; 31(12): 1137-42.
[http://dx.doi.org/10.1038/nbt.2726] [PMID: 24108092]
[125]
Konermann S, Brigham MD, Trevino A, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013; 500(7463): 472-6.
[http://dx.doi.org/10.1038/nature12466] [PMID: 23877069]
[126]
Choudhury SR, Cui Y, Narayanan A, et al. Optogenetic regulation of site-specific subtelomeric DNA methylation. Oncotarget 2016; 7(31): 50380-91.
[http://dx.doi.org/10.18632/oncotarget.10394] [PMID: 27391261]
[127]
Lo CL, Choudhury SR, Irudayaraj J, Zhou FC. Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics. Sci Rep 2017; 7(1): 42047.
[http://dx.doi.org/10.1038/srep42047] [PMID: 28181538]
[128]
Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 2015; 11(3): 198-200.
[http://dx.doi.org/10.1038/nchembio.1753] [PMID: 25664691]
[129]
Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 2015; 33(7): 755-60.
[http://dx.doi.org/10.1038/nbt.3245] [PMID: 26076431]
[130]
Nguyen DP, Miyaoka Y, Gilbert LA, et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun 2016; 7(1): 12009.
[http://dx.doi.org/10.1038/ncomms12009] [PMID: 27363581]
[131]
Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 2017; 8(1): 560.
[http://dx.doi.org/10.1038/s41467-017-00644-y] [PMID: 28916764]
[132]
Bertero A, Pawlowski M, Ortmann D, et al. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 2016; 143(23): 4405-18.
[http://dx.doi.org/10.1242/dev.138081] [PMID: 27899508]
[133]
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[134]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[135]
Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 2013; 41(14): e141.
[http://dx.doi.org/10.1093/nar/gkt464] [PMID: 23748566]
[136]
Ho TT, Zhou N, Huang J, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 2015; 43(3): e17.
[http://dx.doi.org/10.1093/nar/gku1198] [PMID: 25414344]
[137]
Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 2016; 6(1): 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382]
[138]
Han J, Zhang J, Chen L, et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 2014; 11(7): 829-35.
[http://dx.doi.org/10.4161/rna.29624] [PMID: 25137067]
[139]
Covarrubias S, Robinson EK, Shapleigh B, et al. CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. J Biol Chem 2017; 292(51): 20911-20.
[http://dx.doi.org/10.1074/jbc.M117.799155] [PMID: 29051223]
[140]
Hirosawa M, Fujita Y, Parr CJC, et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res 2017; 45(13): e118.
[http://dx.doi.org/10.1093/nar/gkx309] [PMID: 28525578]
[141]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[142]
Yoshida M, Yokota E, Sakuma T, et al. Development of an integrated CRISPRi targeting ΔNp63 for treatment of squamous cell carcinoma. Oncotarget 2018; 9(49): 29220-32.
[http://dx.doi.org/10.18632/oncotarget.25678] [PMID: 30018747]
[143]
Zhang X, Wang W, Shan L, et al. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 2018; 9(4): 380-3.
[http://dx.doi.org/10.1007/s13238-017-0491-6] [PMID: 29164491]
[144]
Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 2016; 7(29): 46545-56.
[http://dx.doi.org/10.18632/oncotarget.10234] [PMID: 27356740]
[145]
Wang H, Guo R, Du Z, et al. Epigenetic targeting of granulin in hepatoma cells by synthetic CRISPR dCas9 epi-suppressors. Mol Ther Nucleic Acids 2018; 11: 23-33.
[http://dx.doi.org/10.1016/j.omtn.2018.01.002] [PMID: 29858058]
[146]
Garcia-Bloj B, Moses C, Sgro A, et al. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2016; 7(37): 60535-54.
[http://dx.doi.org/10.18632/oncotarget.11142] [PMID: 27528034]
[147]
Fujita T, Fujii H. New Directions for Epigenetics: Application of Engineered DNA-Binding Molecules to Locus-Specific Epigenetic Research. In: Handbook of Epigenetics. Academic Press 2017; pp. 635-52.
[148]
Wang Q, Dai L, Wang Y, et al. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett 2019; 448: 132-43.
[http://dx.doi.org/10.1016/j.canlet.2019.01.040] [PMID: 30771439]
[149]
Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75(3): 473-86.
[http://dx.doi.org/10.1152/physrev.1995.75.3.473] [PMID: 7624391]
[150]
Bailey CJ. Potential new treatments for type 2 diabetes. Trends Pharmacol Sci 2000; 21(7): 259-65.
[http://dx.doi.org/10.1016/S0165-6147(00)01506-6] [PMID: 10871894]
[151]
Ingelsson E, McCarthy MI. Human genetics of obesity and type 2 diabetes mellitus: Past, present, and future. Circ Genom Precis Med 2018; 11(6): e002090.
[http://dx.doi.org/10.1161/CIRCGEN.118.002090] [PMID: 29899044]
[152]
Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 2003; 1(1): E20.
[http://dx.doi.org/10.1371/journal.pbio.0000020] [PMID: 14551916]
[153]
Mambiya M, Shang M, Wang Y, et al. The play of genes and non-genetic factors on type 2 diabetes. Front Public Health 2019; 7: 349.
[http://dx.doi.org/10.3389/fpubh.2019.00349] [PMID: 31803711]
[154]
Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27(9): 851-7.
[http://dx.doi.org/10.1038/nbt.1562] [PMID: 19680244]
[155]
van Overbeek M, Capurso D, Carter MM, et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 2016; 63(4): 633-46.
[http://dx.doi.org/10.1016/j.molcel.2016.06.037] [PMID: 27499295]
[156]
Hu M, Cherkaoui I, Misra S, Rutter GA. Functional genomics in pancreatic β cells: Recent advances in gene deletion and genome editing technologies for diabetes research. Front Endocrinol (Lausanne) 2020; 11: 576632.
[http://dx.doi.org/10.3389/fendo.2020.576632] [PMID: 33162936]
[157]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160]
[158]
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529(7587): 490-5.
[http://dx.doi.org/10.1038/nature16526] [PMID: 26735016]
[159]
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6): 1380-9.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[160]
Giménez CA, Ielpi M, Mutto A, Grosembacher L, Argibay P, Pereyra-Bonnet F. CRISPR-on system for the activation of the endogenous human INS gene. Gene Ther 2016; 23(6): 543-7.
[http://dx.doi.org/10.1038/gt.2016.28] [PMID: 27052801]
[161]
Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D. β cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Reports 2018; 11(6): 1407-15.
[http://dx.doi.org/10.1016/j.stemcr.2018.11.006] [PMID: 30503261]
[162]
Grotz AK, Navarro-Guerrero E, Bevacqua RJ, et al. A genome-wide CRISPR screen identifies regulators of beta cell function involved in type 2 diabetes risk. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.28.445984]
[163]
Pithadia A, Brender JR, Fierke CA, Ramamoorthy A. Inhibition of IAPP aggregation and toxicity by natural products and derivatives. Journal of diabetes research 2016; 2016
[http://dx.doi.org/10.1155/2016/2046327]
[164]
Zou X, Ouyang H, Yu T, et al. Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death Dis 2019; 10(11): 823.
[http://dx.doi.org/10.1038/s41419-019-2056-5] [PMID: 31659151]
[165]
Saxena NK, Vertino PM, Anania FA, Sharma D. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J Biol Chem 2007; 282(18): 13316-25.
[http://dx.doi.org/10.1074/jbc.M609798200] [PMID: 17344214]
[166]
Bao D, Ma Y, Zhang X, et al. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep 2015; 5(1): 15942.
[http://dx.doi.org/10.1038/srep15942] [PMID: 26537785]
[167]
Roh JI, Lee J, Park SU, et al. CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 2018; 67(2): 229-37.
[http://dx.doi.org/10.1538/expanim.17-0123] [PMID: 29343656]
[168]
Cho B, Kim SJ, Lee EJ, et al. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res 2018; 27(3): 289-300.
[http://dx.doi.org/10.1007/s11248-018-0074-1] [PMID: 29691708]
[169]
Tanihara F, Hirata M, Nguyen NT, et al. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Anim Sci J 2019; 90(1): 55-61.
[http://dx.doi.org/10.1111/asj.13129] [PMID: 30368976]
[170]
van Tol N, van der Zaal BJ. Artificial transcription factor-mediated regulation of gene expression. Plant Sci 2014; 225: 58-67.
[http://dx.doi.org/10.1016/j.plantsci.2014.05.015] [PMID: 25017160]
[171]
Heiderscheit EA, Eguchi A, Spurgat MC, Ansari AZ. Reprogramming cell fate with artificial transcription factors. FEBS Lett 2018; 592(6): 888-900.
[http://dx.doi.org/10.1002/1873-3468.12993] [PMID: 29389011]
[172]
Ren K, Xu R, Huang J, Zhao J, Shi W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother Pharmacol 2017; 80(2): 243-50.
[http://dx.doi.org/10.1007/s00280-017-3356-z] [PMID: 28600629]
[173]
Wang G, Chow RD, Bai Z, et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat Immunol 2019; 20(11): 1494-505.
[http://dx.doi.org/10.1038/s41590-019-0500-4] [PMID: 31611701]
[174]
Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS, Hemann MT. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci USA 2016; 113(27): E3892-900.
[http://dx.doi.org/10.1073/pnas.1600582113] [PMID: 27325776]
[175]
Liu G, Zhang Y, Zhang T. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J 2019; 18: 35-44.
[http://dx.doi.org/10.1016/j.csbj.2019.11.006] [PMID: 31890142]
[176]
Störtz F, Minary P. crisprSQL: A novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res 2021; 49(D1): D855-61.
[http://dx.doi.org/10.1093/nar/gkaa885] [PMID: 33084893]
[177]
Chuai G, Ma H, Yan J, et al. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol 2018; 19(1): 80.
[http://dx.doi.org/10.1186/s13059-018-1459-4] [PMID: 29945655]
[178]
Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 2016; 24(3): 645-54.
[http://dx.doi.org/10.1038/mt.2016.8] [PMID: 26782639]
[179]
Amrani N, Gao XD, Liu P, et al. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol 2018; 19(1): 214.
[http://dx.doi.org/10.1186/s13059-018-1591-1] [PMID: 30518407]
[180]
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268): 84-8.
[http://dx.doi.org/10.1126/science.aad5227] [PMID: 26628643]
[181]
Tan Y, Chu AHY, Bao S, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 2019; 116(42): 20969-76.
[http://dx.doi.org/10.1073/pnas.1906843116] [PMID: 31570596]
[182]
Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and epigenetics strategies to reverse breast cancer. Cells 2019; 8(10): 1214.
[http://dx.doi.org/10.3390/cells8101214] [PMID: 31597272]
[183]
Ginley-Hidinger M, Carleton JB, Rodriguez AC, Berrett KC, Gertz J. Sufficiency analysis of estrogen responsive enhancers using synthetic activators. Life Sci Alliance 2019; 2(5): e201900497.
[http://dx.doi.org/10.26508/lsa.201900497] [PMID: 31570515]
[184]
Wojtal D, Kemaladewi DU, Malam Z, et al. Spell checking nature: Versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet 2016; 98(1): 90-101.
[http://dx.doi.org/10.1016/j.ajhg.2015.11.012] [PMID: 26686765]
[185]
Singh R, Chandel S, Dey D, et al. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40(9): BSR20202160.
[http://dx.doi.org/10.1042/BSR20202160] [PMID: 32815547]
[186]
Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 2009; 5(7): 401-8.
[http://dx.doi.org/10.1038/nrendo.2009.102] [PMID: 19488075]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy