Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Anticancer and Anti-inflammatory Drugs from Drugtarget Interaction Descriptors by Machine Learning

Author(s): Songtao Huang and Yanrui Ding*

Volume 19, Issue 9, 2022

Published on: 14 January, 2022

Page: [800 - 810] Pages: 11

DOI: 10.2174/1570180819666220114114752

Price: $65

Abstract

Background: Drug repositioning is an important subject in drug-disease research. In the past, most studies simply used drug descriptors as the feature vector to classify drugs or targets or used qualitative data about drug-target or drug-disease to predict drug-target interactions. These data provide limited information for drug repositioning.

Objective: Considering both drugs and targets and constructing quantitative drug-target interaction descriptors as a method of drug characteristics are of great significance to the study of drug repositioning.

Methods: Taking anticancer and anti-inflammatory drugs as research objects, the interaction sites between drugs and targets were determined by molecular docking. Sixty-seven drug-target interaction descriptors were calculated to describe the drug-target interactions, and 22 important descriptors were screened for drug classification by SVM, LightGBM, and MLP.

Results: The accuracy of SVM, LightGBM, and MLP reached 93.29%, 92.68%, and 94.51%, their Matthews correlation coefficients reached 0.852, 0.840, and 0.882, and their areas under the ROC curve reached 0.977, 0.969, and 0.968, respectively.

Conclusion: Using drug-target interaction descriptors to build machine learning models can obtain better results for drug classification. Number of atom pairs, force field, hydrophobic interactions, and bSASA are the key features for classifying anticancer and anti-inflammatory drugs.

Keywords: Drug-target interaction, molecular docking, descriptors, SVM, LightGBM, MLP.

Graphical Abstract

[1]
Adams, C.P.; Brantner, V.V. Estimating the cost of new drug development: Is it really 802 million dol-lars? Health Aff. (Millwood), 2006, 25(2), 420-428.
[http://dx.doi.org/10.1377/hlthaff.25.2.420 ] [PMID: 16522582]
[2]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230 ] [PMID: 27910877]
[3]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468 ] [PMID: 15286734]
[4]
Chen, L.; Zeng, W-M.; Cai, Y-D.; Feng, K-Y.; Chou, K-C. Predicting Anatomical Therapeutic Chemi-cal (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS One, 2012, 7(4), e35254-e35254.
[http://dx.doi.org/10.1371/journal.pone.0035254 ] [PMID: 22514724]
[5]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F-X.; Pan, Y. Drug repositioning based on compre-hensive similarity measures and Bi-Random walk algorithm. Bioinform, 2016, 32(17), 2664-2671.
[http://dx.doi.org/10.1093/bioinformatics/btw228 ] [PMID: 27153662]
[6]
Jing, X.; Jiang, W.; Zhang, Z.; Wang, Y.; Li, J. HGAlinker: Drug-disease association prediction based on attention mechanism of heterogeneous graph. International Conference on Intelligent Computing, 2020. Oct 2 Springer, Cham, pp. 384-396.
[7]
Yang, M.; Wu, G.; Zhao, Q.; Li, Y.; Wang, J. Computational drug repositioning based on multi-similarities bilinear matrix factorization. Brief. Bioinf., 2020, 22(4), bbaa267.
[http://dx.doi.org/10.1093/bib/bbaa267]
[8]
Napolitano, F.; Zhao, Y.; Moreira, V.M.; Tagliaferri, R.; Kere, J.; D’Amato, M.; Greco, D. Drug reposi-tioning: A machine-learning approach through data integration. J. Cheminform., 2013, 5(1), 30-38.
[http://dx.doi.org/10.1186/1758-2946-5-30 ] [PMID: 23800010]
[9]
Huang, C-H.; Chang, P.M-H.; Hsu, C-W.; Huang, C-Y.F.; Ng, K-L. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory. BMC Bioinformatics, 2016, 17(1)(Suppl. 1), 2.
[http://dx.doi.org/10.1186/s12859-015-0845-0 ] [PMID: 26817825]
[10]
Zhao, K.; So, H.C. Drug repositioning for schizophrenia and depression/anxiety disorders: A machine learning approach leveraging expression data. IEEE J. Biomed. Health Inform., 2019, 23(3), 1304-1315.
[http://dx.doi.org/10.1109/JBHI.2018.2856535 ] [PMID: 30010603]
[11]
Yang, X.G.; Chen, D.; Wang, M.; Xue, Y.; Chen, Y.Z. Prediction of antibacterial compounds by ma-chine learning approaches. J. Comput. Chem., 2009, 30(8), 1202-1211.
[http://dx.doi.org/10.1002/jcc.21148 ] [PMID: 18988254]
[12]
Lv, W.; Xue, Y. Prediction of acetylcholinesterase inhibitors and characterization of correlative mo-lecular descriptors by machine learning methods. Eur. J. Med. Chem., 2010, 45(3), 1167-1172.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.038 ] [PMID: 20053484]
[13]
Merzlikine, A.; Abramov, Y.A.; Kowsz, S.J.; Thomas, V.H.; Mano, T. Development of machine learn-ing models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int. J. Pharm., 2011, 418(2), 207-216.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.065 ] [PMID: 21497190]
[14]
Heider, D.; Verheyen, J.; Hoffmann, D. Machine learning on normalized protein sequences. BMC Res. Notes, 2011, 4(1), 94-103.
[http://dx.doi.org/10.1186/1756-0500-4-94 ] [PMID: 21453485]
[15]
Tian, S.; Wang, J.; Li, Y.; Xu, X.; Hou, T. Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches. Mol. Pharm., 2012, 9(10), 2875-2886.
[http://dx.doi.org/10.1021/mp300198d ] [PMID: 22738405]
[16]
Smusz, S.; Kurczab, R.; Bojarski, A.J. A multidimensional analysis of machine learning methods per-formance in the classification of bioactive compounds. Chemom. Intell. Lab. Syst., 2013, 128, 89-100.
[http://dx.doi.org/10.1016/j.chemolab.2013.08.003]
[17]
Czarnecki, W.M. Weighted tanimoto extreme learning machine with case study in drug discovery. IEEE Comput. Intell. Mag., 2015, 10(3), 19-29.
[http://dx.doi.org/10.1109/MCI.2015.2437312]
[18]
Lancaster, M.C.; Sobie, E.A. Improved prediction of drug-induced torsades de pointes through simu-lations of dynamics and machine learning algorithms. Clin. Pharmacol. Ther., 2016, 100(4), 371-379.
[http://dx.doi.org/10.1002/cpt.367 ] [PMID: 26950176]
[19]
Zhang, R.; Ding, Y. Identification of key features of CNS drugs based on SVM and greedy algo-rithm. Curr. Computeraided Drug Des., 2020, 16(6), 725-733.
[http://dx.doi.org/10.2174/1573409915666191212095340 ] [PMID: 31830888]
[20]
Kowalewski, J.; Ray, A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon, 2020, 6(8), e04639.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04639 ] [PMID: 32802980]
[21]
Rodriguez, S.; Hug, C.; Todorov, P.; Moret, N.; Boswell, S.A.; Evans, K.; Zhou, G.; Johnson, N.T.; Hyman, B.T.; Sorger, P.K.; Albers, M.W.; Sokolov, A. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun., 2021, 12(1), 1033-1045.
[http://dx.doi.org/10.1038/s41467-021-21330-0 ] [PMID: 33589615]
[22]
Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov., 2006, 5(12), 993-996.
[http://dx.doi.org/10.1038/nrd2199 ] [PMID: 17139284]
[23]
Xu, R.; Wang, Q. Large-scale extraction of accurate drug-disease treatment pairs from biomedical lit-erature for drug repurposing. BMC Bioinformatics, 2013, 14, 181-191.
[http://dx.doi.org/10.1186/1471-2105-14-181 ] [PMID: 23742147]
[24]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[25]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602 ] [PMID: 21534921]
[26]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algo-rithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115 ] [PMID: 12001221]
[27]
Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; Qin, C.; Li, Y.; Li, X.; Chen, Y.; Zhu, F. Therapeutic target database 2020: Enriched resource for fa-cilitating research and early development of targeted therapeutics. Nucleic Acids Res., 2020, 48(D1), D1031-D1041.
[http://dx.doi.org/10.1093/nar/gkz981 ] [PMID: 31691823]
[28]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235 ] [PMID: 10592235]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334 ] [PMID: 19499576]
[30]
Li, H.; Leung, K-S.; Wong, M-H.; Ballester, P.J. Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinformatics, 2016, 17(11)(Suppl. 11), 308.
[http://dx.doi.org/10.1186/s12859-016-1169-4 ] [PMID: 28185549]
[31]
Wang, C.; Zhang, Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem., 2017, 38(3), 169-177.
[http://dx.doi.org/10.1002/jcc.24667 ] [PMID: 27859414]
[32]
Dudek, A.Z.; Arodz, T.; Gálvez, J. Computational methods in developing quantitative structure-activity relationships (QSAR): A review. Comb. Chem. High Throughput Screen., 2006, 9(3), 213-228.
[http://dx.doi.org/10.2174/138620706776055539 ] [PMID: 16533155]
[33]
Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res., 2003, 3(null), 1157-1182.
[34]
Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol., 2019, 19(1), 3-26.
[http://dx.doi.org/10.2478/cait-2019-0001]
[35]
Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv., 2017, 50(6), 1-45.
[http://dx.doi.org/10.1145/3136625]
[36]
Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM sigkdd International Conference on Knowledge Discovery and Data Mining, Aug 13, 2016 San Francisco, USA, pp. 785-794.
[37]
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 1189-1232.
[http://dx.doi.org/10.1214/aos/1013203451]
[38]
Ho, T.K. Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, 1995. Aug 14 Montreal, QC, Canada IEEE, pp. 278-282.
[39]
Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algo-rithms. Pattern Recognit., 1997, 30(7), 1145-1159.
[http://dx.doi.org/10.1016/S0031-3203(96)00142-2]
[40]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z ] [PMID: 23379370]
[41]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152.
[http://dx.doi.org/10.1002/jcc.20634 ] [PMID: 17274016]
[42]
Lee, B.; Richards, F.M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol., 1971, 55(3), 379-400.
[http://dx.doi.org/10.1016/0022-2836(71)90324-X ] [PMID: 5551392]
[43]
Jiang, L.; Rizzo, R.C. Pharmacophore-based similarity scoring for DOCK. J. Phys. Chem. B, 2015, 119(3), 1083-1102.
[http://dx.doi.org/10.1021/jp506555w ] [PMID: 25229837]
[44]
Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W. Mold(2), molecu-lar descriptors from 2D structures for chemoinformatics and toxicoinformatics. J. Chem. Inf. Model., 2008, 48(7), 1337-1344.
[http://dx.doi.org/10.1021/ci800038f ] [PMID: 18564836]
[45]
Webb, M.I.; Wu, B.; Jang, T.; Chard, R.A.; Wong, E.W.Y.; Wong, M.Q.; Yapp, D.T.T.; Walsby, C.J. Increasing the bioavailability of Ru(III) anticancer complexes through hydrophobic albumin interac-tions. Chemistry, 2013, 19(50), 17031-17042.
[http://dx.doi.org/10.1002/chem.201302671 ] [PMID: 24203647]
[46]
Lv, Y.; Wang, Y.; Zheng, X.; Liang, G. Reveal the interaction mechanism of five old drugs targeting VEGFR2 through computational simulations. J. Mol. Graph. Model., 2020, 96, 107538.
[http://dx.doi.org/10.1016/j.jmgm.2020.107538 ] [PMID: 31981898]

© 2025 Bentham Science Publishers | Privacy Policy