Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Mini-Review Article

Nanoformulation of Glycyrrhizic Acid as a Potent Antiviral Agent Against Covid-19

Author(s): Sayani Ghosh and Prasun Patra*

Volume 1, Issue 1, 2022

Published on: 02 March, 2022

Article ID: e140122200231 Pages: 7

DOI: 10.2174/2666731201666220114111711

Abstract

In many previous studies, liquorice plant (Glycyrrhiza glabra) extracts have been found to contain more than 300 natural compounds, most of which are triterpenoids and flavonoids, and show promising results in clinical studies for treating many microbial and viral infections. Triterpenoids, like glycyrrhizic acid, have shown anti-SARS-CoV activity in vitro. Experimentally, certain glycyrrhizic acid derivatives have shown increased activity by many folds against SARS-associated viruses. These compounds can potentially inhibit the replication cycle of SARS-associated viruses by interfering with the viral gene expression or by inhibiting the spike protein expression, which in turn inhibits the adhesion and entry of the virus. Although the therapeutic has shown great antiviral activity in vitro, but in vivo, its efficiency deteriorates till it reaches the liver for metabolism. In the current review, we analyze the unique replication strategy of SARS-CoV-2 and glycyrrhizic acid as a potential drug against SARS-CoV-2. We also discuss possible nanoformulations of glycyrrhizic acid for efficient drug delivery in humans and as a potent therapeutic strategy for COVID-19.

Keywords: COVID-19, glycyrrhizic acid, antiviral, nanoformulation, targeted drug delivery, viral infections.

Graphical Abstract

[1]
Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 2020; 12(2): 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[3]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[4]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[5]
Hirabayashi K, Iwata S, Matsumoto H, et al. Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1) in vitro. Chem Pharm Bull (Tokyo) 1991; 39(1): 112-5.
[http://dx.doi.org/10.1248/cpb.39.112] [PMID: 1646687]
[6]
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice. Front Pharmacol 2021; 12: 680674.
[http://dx.doi.org/10.3389/fphar.2021.680674] [PMID: 34295250]
[7]
Chrzanowski J, Chrzanowska A, Graboń W. Glycyrrhizin: An old weapon against a novel coronavirus. Phytother Res 2021; 35(2): 629-36.
[http://dx.doi.org/10.1002/ptr.6852] [PMID: 32902005]
[8]
Shetty R, Ghosh A, Honavar SG, Khamar P, Sethu S. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future. Indian J Ophthalmol 2020; 68(5): 693-702.
[http://dx.doi.org/10.4103/ijo.IJO_639_20] [PMID: 32317431]
[9]
Ksiazek TG, Erdman D, Goldsmith CS, et al. SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1953-66.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[10]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[11]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[12]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[13]
Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 2016; 96: 59-126.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.008] [PMID: 27712628]
[14]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[15]
Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annu Rev Microbiol 2019; 73: 529-57.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[16]
Zeng C-X, Yang Q, Hu Q. A comparison of the distribution of two glycyrrhizic acid epimers in rat tissues. Eur J Drug Metab Pharmacokinet 2006; 31(4): 253-8.
[http://dx.doi.org/10.1007/BF03190464] [PMID: 17315535]
[17]
Kim YW, Zhao RJ, Park SJ, et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 2008; 154(1): 165-73.
[http://dx.doi.org/10.1038/bjp.2008.79] [PMID: 18332856]
[18]
Ram A, Mabalirajan U, Das M, et al. Glycyrrhizin alleviates experimental allergic asthma in mice. Int Immunopharmacol 2006; 6(9): 1468-77.
[http://dx.doi.org/10.1016/j.intimp.2006.04.020] [PMID: 16846841]
[19]
Takii H, Kometani T, Nishimura T, Nakae T, Okada S, Fushiki T. Antidiabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice. Biol Pharm Bull 2001; 24(5): 484-7.
[http://dx.doi.org/10.1248/bpb.24.484] [PMID: 11379765]
[20]
Yang Y, Shi Q, Liu Z, et al. The synergistic anti-asthmatic effects of glycyrrhizin and salbutamol. Acta Pharmacol Sin 2010; 31(4): 443-9.
[http://dx.doi.org/10.1038/aps.2009.207] [PMID: 20228825]
[21]
Xu H, Fabricant DS, Piersen CE, et al. A preliminary RAPD-PCR analysis of Cimicifuga species and other botanicals used for women’s health. Phytomedicine 2002; 9(8): 757-62.
[http://dx.doi.org/10.1078/094471102321621403] [PMID: 12587700]
[22]
Ikeda K. Glycyrrhizin injection therapy prevents hepatocellular carcinogenesis in patients with interferon-resistant active chronic hepatitis C. Hepatol Res 2007; 37(2)(Suppl. 2): S287-93.
[http://dx.doi.org/10.1111/j.1872-034X.2007.00199.x] [PMID: 17877497]
[23]
Su X, Wu L, Hu M, Dong W, Xu M, Zhang P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed Pharmacother 2017; 95: 670-8.
[http://dx.doi.org/10.1016/j.biopha.2017.08.123] [PMID: 28886526]
[24]
Graebin CS, Verli H, Guimarães JA. Glycyrrhizin and glycyrrhetic acid: scaffolds to promising new pharmacologically active compounds. J Braz Chem Soc 2010; 21: 1595-615.
[http://dx.doi.org/10.1590/S0103-50532010000900002]
[25]
Baltina LA, Kondratenko RM, Baltina LA Jr, Plyasunova OA, Pokrovskii AG, Tolstikov GA. Prospects for the creation of new antiviral drugs based on glycyrrhizic acid and its derivatives (a review). Pharm Chem J 2009; 43(10): 539-48.
[http://dx.doi.org/10.1007/s11094-010-0348-2] [PMID: 32214533]
[26]
Baltina LA. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr Med Chem 2003; 10(2): 155-71.
[http://dx.doi.org/10.2174/0929867033368538] [PMID: 12570715]
[27]
Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48(4): 1256-9.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[28]
Musharraf SG, Kanwal N, Arfeen QU. Stress degradation studies and stability-indicating TLC-densitometric method of glycyrrhetic acid. Chem Cent J 2013; 7(1): 9.
[http://dx.doi.org/10.1186/1752-153X-7-9] [PMID: 23327365]
[29]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[30]
Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2005; 2(4): 297-310.
[http://dx.doi.org/10.2174/156720105774370267] [PMID: 16305433]
[31]
Fang J-Y, Hung C-F, Hua S-C, Hwang T-L. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells. Ultrasonics 2009; 49(1): 39-46.
[http://dx.doi.org/10.1016/j.ultras.2008.04.009] [PMID: 18554679]
[32]
Pouton CW. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11(Suppl. 2): S93-8.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[33]
Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 2008; 13: 245-51.
[http://dx.doi.org/10.1016/j.cocis.2008.01.005]
[34]
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nanoemulsions. Curr Opin Colloid Interface Sci 2005; 10: 102-10.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[35]
Méndez J, Monteagudo A, Griebenow K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug Chem 2012; 23(4): 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[36]
Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011; 32(21): 4976-86.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[37]
Lapeyre V, Ancla C, Catargi B, Ravaine V. Glucose-responsive microgels with a core-shell structure. J Colloid Interface Sci 2008; 327(2): 316-23.
[http://dx.doi.org/10.1016/j.jcis.2008.08.039] [PMID: 18804779]
[38]
Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 2002; 54(1): 79-98.
[http://dx.doi.org/10.1016/S0169-409X(01)00241-1] [PMID: 11755707]
[39]
Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 2002; 54(5): 613-30.
[http://dx.doi.org/10.1016/S0169-409X(02)00041-8] [PMID: 12204595]
[40]
Gao Q, Xu Y, Wu D, Shen W, Deng F. Synthesis, characterization, and in vitro pH-controllable drug release from mesoporous silica spheres with switchable gates. Langmuir 2010; 26(22): 17133-8.
[http://dx.doi.org/10.1021/la102952n] [PMID: 20939524]
[41]
Salehi R, Davaran S, Rashidi MR, Entezami AA. Thermosensitive nanoparticles prepared from poly(N-isopropylacrylamide-acrylamide-vinilpyrrolidone) and its blend with poly(lactide-co-glycolide) for efficient drug delivery system. J Appl Polym Sci 2009; 111: 1905-10.
[http://dx.doi.org/10.1002/app.29199]
[42]
Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001; 53(3): 321-39.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[43]
Xiong Q, Lim YJ, Li D, Pu K, Liang L, Duan H. Photoactive nanocarriers for controlled delivery. Adv Funct Mater 2020; 30: 1903896.
[http://dx.doi.org/10.1002/adfm.201903896]
[44]
Ojea-Jiménez I, Comenge J, García-Fernández L, Megson ZA, Casals E, Puntes VF. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab 2013; 14(5): 518-30.
[http://dx.doi.org/10.2174/13892002113149990008] [PMID: 23116108]
[45]
Jain TK, Roy I, De TK, Maitra A. Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier. J Am Chem Soc 1998; 120: 11092-5.
[http://dx.doi.org/10.1021/ja973849x]
[46]
Rasouli S, Davaran S, Rasouli F, Mahkam M, Salehi R. Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery. Drug Deliv 2014; 21(3): 155-63.
[http://dx.doi.org/10.3109/10717544.2013.838714] [PMID: 24107075]
[47]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321-32.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[48]
Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2007; 2: 147-57.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[49]
Laquintana V, Denora N, Lopalco A, et al. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells. Mol Pharm 2014; 11(3): 859-71.
[http://dx.doi.org/10.1021/mp400536z] [PMID: 24410438]
[50]
Bhuleier E, Wehner W, Vogtle F. “Cascade”-and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978; 2: 155-8.
[http://dx.doi.org/10.1055/s-1978-24702]
[51]
Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005; 5(12): 917-27.
[http://dx.doi.org/10.1038/nri1732] [PMID: 16322745]

© 2025 Bentham Science Publishers | Privacy Policy