Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Perspective

Will MXenes be the Next Two-dimensional Material Candidate for Biosensing?

Author(s): Li Fu* and Hassan Karimi-Maleh

Volume 18, Issue 6, 2022

Published on: 08 March, 2022

Page: [570 - 573] Pages: 4

DOI: 10.2174/1573412918666220113111018

[1]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv. Mater., 2011, 23(37), 4248-4253.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[2]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18), 7633-7644.
[http://dx.doi.org/10.1021/acs.chemmater.7b02847]
[3]
Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev., 2018, 47(14), 5109-5124.
[http://dx.doi.org/10.1039/C7CS00838D] [PMID: 29667670]
[4]
Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2(2), 1-17.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[5]
Yu, X.; Cai, X.; Cui, H.; Lee, S-W.; Yu, X-F.; Liu, B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9(45), 17859-17864.
[http://dx.doi.org/10.1039/C7NR05997C] [PMID: 29119157]
[6]
Dai, C.; Chen, Y.; Jing, X.; Xiang, L.; Yang, D.; Lin, H.; Liu, Z.; Han, X.; Wu, R. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano, 2017, 11(12), 12696-12712.
[http://dx.doi.org/10.1021/acsnano.7b07241] [PMID: 29156126]
[7]
Alimohammadi, F.; Sharifian Gh, M.; Attanayake, N.H.; Thenuwara, A.C.; Gogotsi, Y.; Anasori, B.; Strongin, D.R. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir, 2018, 34(24), 7192-7200.
[http://dx.doi.org/10.1021/acs.langmuir.8b00262] [PMID: 29782792]
[8]
Li, Z.; Zhang, H.; Han, J.; Chen, Y.; Lin, H.; Yang, T. Surface nanopore engineering of 2d mxenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater., 2018, 30(25), e1706981.
[http://dx.doi.org/10.1002/adma.201706981] [PMID: 29663543]
[9]
Veronesi, F.; Giavaresi, G.; Fini, M.; Longo, G.; Ioannidu, C.A.; Scotto d’Abusco, A.; Superti, F.; Panzini, G.; Misiano, C.; Palattella, A.; Selleri, P.; Di Girolamo, N.; Garbarino, V.; Politi, L.; Scandurra, R. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater. Sci. Eng. C, 2017, 70(Pt 1), 264-271.
[http://dx.doi.org/10.1016/j.msec.2016.08.076] [PMID: 27770890]
[10]
Wu, L.; Lu, X. Dhanjai; Wu, Z.S.; Dong, Y.; Wang, X.; Zheng, S.; Chen, J. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron., 2018, 107, 69-75.
[http://dx.doi.org/10.1016/j.bios.2018.02.021] [PMID: 29448223]
[11]
Lorencova, L.; Bertok, T.; Dosekova, E.; Holazova, A.; Paprckova, D.; Vikartovska, A.; Sasinkova, V.; Filip, J.; Kasak, P.; Jerigova, M.; Velic, D.; Mahmoud, K.A.; Tkac, J. Electrochemical performance of Ti3C2Tx MXene in aqueous media: Towards ultrasensitive H2O2 sensing. Electrochim. Acta, 2017, 235, 471-479.
[http://dx.doi.org/10.1016/j.electacta.2017.03.073] [PMID: 29109588]
[12]
Wu, D.; Wu, M.; Yang, J.; Zhang, H.; Xie, K.; Lin, C-T.; Yu, A.; Yu, J.; Fu, L. Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. Mater. Lett., 2019, 236, 412-415.
[http://dx.doi.org/10.1016/j.matlet.2018.10.150]
[13]
Yang, Y.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Zhang, C.; Zhou, C.; Xiong, W.; Wang, W.; Cheng, M. Ti3C2 Mxene/Porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B, 2019, 258, 117956.
[http://dx.doi.org/10.1016/j.apcatb.2019.117956]
[14]
Lorencova, L.; Bertok, T.; Filip, J.; Jerigova, M.; Velic, D.; Kasak, P.; Mahmoud, K.A.; Tkac, J. Highly Stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuators B Chem., 2018, 263, 360-368.
[http://dx.doi.org/10.1016/j.snb.2018.02.124]
[15]
Shahzad, F.; Iqbal, A.; Zaidi, S.A.; Hwang, S-W.; Koo, C.M. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J. Ind. Eng. Chem., 2019, 79, 338-344.
[http://dx.doi.org/10.1016/j.jiec.2019.03.061]
[16]
Shankar, S.S.; Shereema, R.M.; Rakhi, R.B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl. Mater. Interfaces, 2018, 10(50), 43343-43351.
[http://dx.doi.org/10.1021/acsami.8b11741] [PMID: 30465433]
[17]
Gao, M.; Xie, Y.; Yang, W.; Lu, L. Fabrication of novel electrochemical sensor based on MXene/MWCNTs composite for sensitive detection of synephrine. Int. J. Electrochem. Sci., 2020, 15, 4619-4630.
[http://dx.doi.org/10.20964/2020.05.79]
[18]
Kalambate, P.K. Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Mikrochim. Acta, 2020, 187(7), 402.
[http://dx.doi.org/10.1007/s00604-020-04366-9] [PMID: 32572633]
[19]
Murugan, N.; Jerome, R.; Preethika, M.; Sundaramurthy, A.; Sundramoorthy, A.K. 2D-Titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric Acid. J. Mater. Sci. Technol., 2021, 72, 122-131.
[http://dx.doi.org/10.1016/j.jmst.2020.07.037]
[20]
Wang, H.; Li, H.; Huang, Y.; Xiong, M.; Wang, F.; Li, C. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens. Bioelectron., 2019, 142, 111531.
[http://dx.doi.org/10.1016/j.bios.2019.111531] [PMID: 31401228]
[21]
Wang, F.; Yang, C.; Duan, M.; Tang, Y.; Zhu, J. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron., 2015, 74, 1022-1028.
[http://dx.doi.org/10.1016/j.bios.2015.08.004] [PMID: 26264270]
[22]
Kumar, S.; Lei, Y.; Alshareef, N.H.; Quevedo-Lopez, M.A.; Salama, K.N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron., 2018, 121, 243-249.
[http://dx.doi.org/10.1016/j.bios.2018.08.076] [PMID: 30219724]
[23]
Rakhi, R.B.; Nayak, P.; Xia, C.; Alshareef, H.N. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep., 2016, 6(1), 36422.
[http://dx.doi.org/10.1038/srep36422] [PMID: 27830757]
[24]
Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett., 2019, 19(2), 1143-1150.
[http://dx.doi.org/10.1021/acs.nanolett.8b04514] [PMID: 30657695]
[25]
Chen, X.; Sun, X.; Xu, W.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Bai, X.; Dong, B.; Song, H. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale, 2018, 10(3), 1111-1118.
[http://dx.doi.org/10.1039/C7NR06958H] [PMID: 29271463]
[26]
Li, M.; Fang, L.; Zhou, H.; Wu, F.; Lu, Y.; Luo, H.; Zhang, Y.; Hu, B. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl. Surf. Sci., 2019, 495, 143554.
[http://dx.doi.org/10.1016/j.apsusc.2019.143554]
[27]
Lei, Y.; Zhao, W.; Zhang, Y.; Jiang, Q.; He, J-H.; Baeumner, A.J.; Wolfbeis, O.S.; Wang, Z.L.; Salama, K.N.; Alshareef, H.N. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small, 2019, 15(19), e1901190.
[http://dx.doi.org/10.1002/smll.201901190] [PMID: 30957964]
[28]
Nah, J.S.; Barman, S.C.; Zahed, M.A.; Sharifuzzaman, Md.; Yoon, H.; Park, C.; Yoon, S.; Zhang, S.; Park, J.Y. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens. Actuators B Chem., 2021, 329, 129206.
[http://dx.doi.org/10.1016/j.snb.2020.129206]
[29]
Xu, B.; Zhu, M.; Zhang, W.; Zhen, X.; Pei, Z.; Xue, Q.; Zhi, C.; Shi, P. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater., 2016, 28(17), 3333-3339.
[http://dx.doi.org/10.1002/adma.201504657] [PMID: 26924616]
[30]
Huang, W.; Wang, Y.; Liang, W-B.; Hu, G-B.; Yao, L-Y.; Yang, Y.; Zhou, K.; Yuan, R.; Xiao, D-R. Two birds with one stone: Surface functionalization and delamination of multilayered Ti3C2Tx MXene by grafting a ruthenium(ii) complex to achieve conductivity-enhanced electrochemiluminescence. Anal. Chem., 2021, 93(3), 1834-1841.
[http://dx.doi.org/10.1021/acs.analchem.0c04782] [PMID: 33389990]
[31]
Fang, Y.; Yang, X.; Chen, T.; Xu, G.; Liu, M.; Liu, J.; Xu, Y. Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens. Actuators B Chem., 2018, 263, 400-407.
[http://dx.doi.org/10.1016/j.snb.2018.02.102]
[32]
Fang, D.; Zhao, D.; Zhang, S.; Huang, Y.; Dai, H.; Lin, Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens. Actuators B Chem., 2020, 305, 127544.
[http://dx.doi.org/10.1016/j.snb.2019.127544]

© 2025 Bentham Science Publishers | Privacy Policy