Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Polymer Supported Proline-Based Organocatalysts in Asymmetric Aldol Reactions: A Review

Author(s): Rubina Shajahan, Rithwik Sarang and Anas Saithalavi*

Volume 9, Issue 2, 2022

Published on: 24 February, 2022

Page: [124 - 146] Pages: 23

DOI: 10.2174/2213337209666220112094231

Price: $65

Abstract

The use of proline-based organocatalysts has acquired significant attention in organic synthesis, especially in enantioselective synthesis. Proline and its derivatives are proven to be quite effective chiral organocatalysts for a variety of transformations, including the aldol reaction, which is considered as one of the important C-C bond forming reactions in organic synthesis. The use of chiral organocatalysts has several advantages over its metal-mediated analogues. Subsequently, a large number of highly efficient proline-based organocatalysts, including polymer-supported chiral analogues, have been identified for aldol reaction. The use of polymer-supported organocatalysts exhibited remarkable stability under the reaction conditions and offered the best results, particularly in terms of its recyclability and reusability. These potential benefits along with their economic and green chemistry advantages have led to the search for many polymer-supported proline catalysts. In this review, recent developments in exploring various polymer immobilized proline- based chiral organocatalysts for asymmetric aldol reactions are described.

Keywords: Organocatalysis, polymer support, proline, asymmetric synthesis, aldol reaction, compounds.

Graphical Abstract

[1]
List, B. Introduction; organocatalysis. Chem. Rev., 2007, 107, 5413-5415.
[http://dx.doi.org/10.1021/cr078412e]
[2]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis-after the gold rush. Chem. Soc. Rev., 2009, 38(8), 2178-2189.
[http://dx.doi.org/10.1039/b903816g] [PMID: 19623342]
[3]
Buckley, B.R. Organocatalysis. Annu. Rep. Prog. Chem. Sect. B Org. Chem, 2009, 105, 113-128.
[4]
Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New Strategies for Organic Catalysis. The firsthighly enantio selective organocatalytic diels−alder reaction. J. Am. Chem. Soc., 2000, 122, 4243-4244.
[http://dx.doi.org/10.1021/ja000092s]
[5]
List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122, 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[6]
a Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of optically active polycyclic organic compounds. German Patent DE 2102623, 1971.
b Hajos, Z.G.; Parrish, D.R.J. Org.Chem, 1974, 39, 1615-1621.
[http://dx.doi.org/10.1021/jo00925a003]
[7]
Dondoni, A.; Massi, A. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int. Ed. Engl., 2008, 47(25), 4638-4660.
[http://dx.doi.org/10.1002/anie.200704684] [PMID: 18421733]
[8]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[9]
Oliveira, V.G.; Cardoso, M.F.C.; Forezi, L.S.M. Organocatalysis:a brief overview on its evolution and applications. Catalysts, 2018, 8, 605.
[http://dx.doi.org/10.3390/catal8120605]
[10]
Heravi, M.M.; Asadi, S. Recent applications of organocatalysts in asymmetric aldol reactions. Tetrahedron Asymmetry, 2012, 23, 1431-1465.
[http://dx.doi.org/10.1016/j.tetasy.2012.10.002]
[11]
Nelson, D.L.; Cox, M.M. Lehninger. Principles of Biochemistry, 4th ed; W.H. Freeman and Company: New York, 2005.
[12]
List, B. Proline-catalysed asymmetric reactions. Tetrahedron, 2002, 58, 5573-5590.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]
[13]
Dalko, P.I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. Engl., 2001, 40(20), 3726-3748.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D] [PMID: 11668532]
[14]
Berkessel, A.; Groeger, H. Asymmetric organocatalysis: From biomimetic concepts to applications in asymmetric synthesis; Wiley-VCH, 2006.
[15]
Gaunt, M.J.; Johansson, C.C.C.; McNally, A.; Vo, N.T. Enantioselective organocatalysis. Drug Discov. Today, 2007, 12(1-2), 8-27.
[http://dx.doi.org/10.1016/j.drudis.2006.11.004] [PMID: 17198969]
[16]
Sunoj, R.B. Proline-derived organocatalysis and synergism between theory and experiments. Computat. Mol. Sci., 2011, 1, 920-931.
[http://dx.doi.org/10.1002/wcms.37]
[17]
List, B. The direct catalytic asymmetric three-component mannich reaction. J. Am. Chem. Soc., 2000, 122, 9336.
[http://dx.doi.org/10.1021/ja001923x]
[18]
Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Highly diastereo- and enantioselective direct aldol reactions of aldehydes and ketones catalyzed by siloxyproline in the presence of water. Chemistry, 2007, 13(36), 10246-10256.
[http://dx.doi.org/10.1002/chem.200700363] [PMID: 17896333]
[19]
Mitsumori, S.; Zhang, H.; Ha-Yeon Cheong, P.; Houk, K.N.; Tanaka, F.; Barbas, C.F., III. Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J. Am. Chem. Soc., 2006, 128(4), 1040-1041.
[http://dx.doi.org/10.1021/ja056984f] [PMID: 16433496]
[20]
Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Meo, P.L.; Noto, R. Advances towards highly active and stereoselective simple and cheap proline-based organocatalysts. Eur. J. Org. Chem., 2010, 29, 5696-5704.
[http://dx.doi.org/10.1002/ejoc.201000913]
[21]
D’Elia, V.; Zwicknagl, H.; Reiser, O. Short α/β-peptides as catalysts for intra- and intermolecular aldol reactions. J. Org. Chem., 2008, 73(8), 3262-3265.
[http://dx.doi.org/10.1021/jo800168h] [PMID: 18341352]
[22]
Metrano, A.J.; Chinn, A.J.; Shugrue, C.R.; Stone, E.A.; Kim, B.; Miller, S.J. Asymmetric catalysis mediated by synthetic peptides, version 2.0: Expansion of scope and mechanisms. Chem. Rev., 2020, 120(20), 11479-11615.
[http://dx.doi.org/10.1021/acs.chemrev.0c00523] [PMID: 32969640]
[23]
Krattiger, P.; Kovasy, R.; Revell, J.D.; Ivan, S.; Wennemers, H. Increased structural complexity leads to higher activity:  Peptides as efficient and versatile catalysts for asymmetric aldol reaction. Org. Lett., 2005, 7, 1101-1103.
[http://dx.doi.org/10.1021/ol0500259] [PMID: 15760149]
[24]
Trost, B.M.; Fleming, I. , 1991.
[25]
Schetter, B.; Mahrwald, R. Modern aldol methods for the total synthesis of polyketides. Angew. Chem. Int. Ed., 2006, 45(45), 7506-7525.
[http://dx.doi.org/10.1002/anie.200602780] [PMID: 17103481]
[26]
Paterson, I. New asymmetric aldol methodology using boron enolates. Chem. Ind., 1988, 12, 390-394.
[27]
Mandal, S.; Mandal, S.; Ghosh, S.K.; Ghosh, A.P.; Saha, R.; Banerjee, S.; Sah, B. Review of the aldolreaction. Synth. Commun., 2016, 46, 1327-1342.
[http://dx.doi.org/10.1080/00397911.2016.1206938]
[28]
a Richter, V. Petersburg am 17. Berichte der deutschenchemischen(in German), 1869, 2, 552-55.
b Borodin, A. UebereinenneuenAbkömmling des Valerals” (On a new derivative of valerian aldehyde). Ber. Dtsch. Chem. Ges., 1873, 6, 982-985. [in German].
[http://dx.doi.org/10.1002/cber.18730060232]
[29]
Wurtz, C.A. On an aldehyde alcohol. Bullet Soc. Chim. Paris., 1872, 17, 436-442.
[30]
Guillena, G.; Nájera, C.; Ramón, D.J. Tetrahedron Asymmetry, 2007, 18, 2249-2293.
[http://dx.doi.org/10.1016/j.tetasy.2007.09.025]
[31]
Tafida, U.I.; Uzairu, A.; Abechi, S.E. Mechanism and rate constant of proline-catalysed asymmetric aldol reaction of acetone and p-nitrobenzaldehyde in solution medium: Density-functional theory computation. J. Adv. Res., 2018, 12, 11-19.
[http://dx.doi.org/10.1016/j.jare.2018.03.002] [PMID: 30013799]
[32]
Mestres, R. A green look at the aldol reaction. Green Chem., 2004, 6, 583-603.
[http://dx.doi.org/10.1039/b409143b]
[33]
Braun, M.; Devant, R. (R) and (S)-2-acetoxy-1,1,2-triphenylethanol – effective synthetic equivalents of a chiral acetate enolate. Tetrahedron Lett., 1984, 25, 5031.
[http://dx.doi.org/10.1016/S0040-4039(01)91110-4]
[34]
Li, J.J.; Johnson, D.S.; Sliskovic, D.R.; Roth, B.D. Contemporary Drug Synthesis; , 2004, p. 118. Wiley-Interscience: USA
[35]
Li, C.; Feng, X.W.; Wang, N.; Zhou, Y.J.; Yu, X.Q. Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction. Green Chem., 2008, 10, 616-618.
[http://dx.doi.org/10.1039/b803406k]
[36]
Shams, F.; Aliabad, J.M.; Rouhani, M. Asymmetric cross-aldol reaction of isatin and ketones catalysed by crude earthworm extract as efficient biocatalyst. Green Chem. Lett. Rev., 2020, 13, 258-264.
[http://dx.doi.org/10.1080/17518253.2020.1808084]
[37]
Hayashi, T.; Uoxumi, Y.; Yamaxaki, A. Silver(I)catalysed asymmetric aldol reaction of isocyanoacetate. Tetrahedron Lett., 1991, 32, 2799-2802.
[http://dx.doi.org/10.1016/0040-4039(91)85090-R]
[38]
Nagayama, S.; Kobayashi, S. A novel chiral lead(II) catalyst for enantioselective aldol reactions in aqueous media. J. Am. Chem. Soc., 2000, 122, 11531-11532.
[http://dx.doi.org/10.1021/ja001234l]
[39]
Schneider, J.F.; Ladd, C.L.; Bräse, S. Proline as an asymmetric organocatalyst, in sustainable catalysis: without metals or other endangered elements, part 1. In: Green chemistry series; , 2015. RSC Publishing: UK
[40]
Trost, B.M.; Brindle, C.S. The direct catalytic asymmetric aldol reaction. Chem. Soc. Rev., 2010, 39(5), 1600-1632.
[http://dx.doi.org/10.1039/b923537j] [PMID: 20419212]
[41]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[42]
Kristensen, T.E.; Hansen, T. Polymer-supported chiral organocat-alysts: Synthetic strategies for the road towards affordable polymeric immobilization. Eur. J. Org. Chem., 2010, 2010(17), 3179-3204.
[http://dx.doi.org/10.1002/ejoc.201000319]
[43]
Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Pericàs, M.A. Highly enantioselective α-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst. Org. Lett., 2007, 9(10), 1943-1946.
[http://dx.doi.org/10.1021/ol070526p] [PMID: 17439136]
[44]
Benaglia, M.; Cinquini, M.; Cozzi, F.; Puglisi, A.; Celentano, G. Poly (ethyleneGlycol) supportd proline: A versatile catalyst for the enantioselective aldol and imino aldol reactions. Adv. Synth. Catal., 2002, 5, 533-542.
[http://dx.doi.org/10.1002/1615-4169(200207)344:5<533::AID-ADSC533>3.0.CO;2-Y]
[45]
Liu, Y.X.; Sun, Y.N.; Tan, H.H.; Liu, W.; Tao, J.C. Linear polystyrene anchored L-proline, new recyclable organocatalysts for the aldol reaction in the presence of water. Tetrahedron Asymmetry, 2007, 18, 2649-2656.
[http://dx.doi.org/10.1016/j.tetasy.2007.10.032]
[46]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene-supported proline and prolinamide.Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and a-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48, 255-259.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.040]
[47]
Gruttadauria, M.; Giacalone, F.; Noto, R. Polymeric chiral catalyst design and chiral polymers; John Wiley & Sons: USA, 2011, pp. 63-87.
[48]
Ayats, C.; Henseler, A.H.; Pericàs, M.A. A solid-supported organocatalyst for continuous-flow enantioselective aldol reactions. ChemSusChem, 2012, 5(2), 320-325.
[http://dx.doi.org/10.1002/cssc.201100570] [PMID: 22442839]
[49]
Font, D.; Jimeno, C.; Pericàs, M.A. Polystyrene-supported hydroxyproline: an insoluble, recyclable organocatalyst for the asymmetric aldol reaction in water. Org. Lett., 2006, 8(20), 4653-4655.
[http://dx.doi.org/10.1021/ol061964j] [PMID: 16986973]
[50]
Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Perics, M.A. Toward an Artificial Aldolase. Org. Lett., 2010, 12, 2678.
[http://dx.doi.org/10.1021/ol100738h] [PMID: 18095700]
[51]
Xu, H.; Hu, X. New synthetic route for weak base anion exchangers based on crosslinked polystyrene. J. Polym. Sci. Part A, 1998, 36, 2151-2154.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19980915)36:12<2151::AID-POLA22>3.0.CO;2-4]
[52]
Itsuno, S.; Watanabe, K.; El-Shehawy, A.A. Enantioselective synthesis of chiral homoallyl alcohols and homoallylamines by nucleophilic addition of an allylboron reagent modified by a polymer-supported chiral ligand. Adv. Synth. Catal., 2001, 343, 89-94.
[http://dx.doi.org/10.1002/1615-4169(20010129)343:1<89::AID-ADSC89>3.0.CO;2-6]
[53]
Itsuno, S.; El-Shehawy, A.A. Synthesis of novel chiral monomers by means of Umani-Ronchi–Savoiaallylation and their polymerization. Polym. Adv. Technol., 2001, 12, 670-679.
[http://dx.doi.org/10.1002/pat.87]
[54]
Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericàs, M.A. Toward an artificial aldolase. Org. Lett., 2008, 10(2), 337-340.
[http://dx.doi.org/10.1021/ol702901z] [PMID: 18095700]
[55]
Ozçubukçu, S.; Ozkal, E.; Jimeno, C.; Pericàs, M.A. A highly active catalyst for Huisgen 1,3-dipolar cycloadditions based on the tris(triazolyl)methanol-Cu(I) structure. Org. Lett., 2009, 11(20), 4680-4683.
[http://dx.doi.org/10.1021/ol9018776] [PMID: 19775097]
[56]
Llanes, P.; Sayalero, S.; Rodríguez-Escrich, C.; Pericàs, M.A. Asymmetric cross- and self-aldol reactions of aldehydes in water with a polystyrene-supported triazolyl proline organocatalyst. Green Chem., 2016, 18, 3507-3512.
[http://dx.doi.org/10.1039/C6GC00792A]
[57]
Evans, A.C.; Lu, A.; Ondeck, C.; Longbottom, D.A.; O’Reilly, R.K. Organocatalytic tunable amino acid polymers prepared by controlled radical polymerization. Macromolecules, 2010, 43, 6374-6380.
[http://dx.doi.org/10.1021/ma1008447]
[58]
Ikeda, A.; Terada, K.; Shiotsuki, M.; Sanda, F. Synthesis of polymers bearing proline moieties in the side chains and their application as catalysts for asymmetric induction. J. Polym. Sci. A Polym. Chem., 2011, 49, 3783-3796.
[http://dx.doi.org/10.1002/pola.24813]
[59]
Lu, A.; Cotanda, P.; Patterson, J.P.; Longbottom, D.A.; O’Reilly, R.K. Aldol reactions catalyzed by L-proline functionalized polymeric nanoreactors in water. Chem. Commun. (Camb.), 2012, 48(78), 9699-9701.
[http://dx.doi.org/10.1039/c2cc35170f] [PMID: 22911135]
[60]
Liu, K.; Xu, W.; Wang, Q.; Tang, Y.; Sheng, W.; Shen, Y.; Shi, L. Self-assembly of L-proline functional thermoresponsive double hydrophlic block copolymers for aldol reaction in water: The influence of POEGA block content. Colloid Polym. Sci., 2018, 296, 1109-1117.
[http://dx.doi.org/10.1007/s00396-018-4327-6]
[61]
Jia, X.; Chen, M.; Hu, Z. Temperature-responsive hairy particle- supported proline for direct asymmetric aldol reaction in water. RSC Advances, 2015, 5, 89149-89156.
[http://dx.doi.org/10.1039/C5RA16393E]
[62]
Pan, G.; Zhang, Y.; Guo, X.; Li, C.; Zhang, H. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron., 2010, 26(3), 976-982.
[http://dx.doi.org/10.1016/j.bios.2010.08.040] [PMID: 20837394]
[63]
Zu, B.Y.; Pan, G.Q.; Guo, X.Z.; Zhang, Y.; Zhang, H.Q. Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization. J. Polym. Sci. A Polym. Chem., 2009, 47, 3257-3270.
[http://dx.doi.org/10.1002/pola.23389]
[64]
Wang, S.; Liu, P.; Wang, W.; Zhang, Z.; Li, G.B. Hyperbranched polyethylene-supported L-proline: A highly selective and recyclable organocatalyst for asymmetric aldol reactions. Catal. Sci. Technol., 2015, 5, 3798-3805.
[http://dx.doi.org/10.1039/C5CY00250H]
[65]
Liu, Y.; Tong, Q.; Ge, L.; Zhang, Y.; Hua, L.; Fan, Y. A novel poly(N-isopropyl-acrylamine-co-L-proline) catalyst for aldol reaction: synthesis, catalytic performance and recyclability. RSC Advances, 2014, 4, 50412.
[http://dx.doi.org/10.1039/C4RA05951D]
[66]
Doyaguez, E.G.; Corrales, G.; Garrido, L.; Hernandez, R.J.; Gallardo, A.; Mayoralas, F.A. Linear Copolymers of proline methacrylate and styrene as catalysts for aldol reactions in water: Effect of the copolymer aggregation on the enantioselectivity. Macromolecules, 2011, 44, 6268-6276.
[http://dx.doi.org/10.1021/ma201159n]
[67]
Lu, A.; Smart, T.P.; Epps, T.H., III; Longbottom, D.A.; O’Reilly, R.K. L-Proline functionalized polymers prepared by raft polymerization and their assemblies as supported organocatalysts. Macromolecules, 2011, 44(18), 7233-7241.
[http://dx.doi.org/10.1021/ma201256m] [PMID: 22053116]
[68]
Li, X.; Chen, M.; Yang, B.; Zhang, S.; Jia, X.; Hu, Z. Combining RAFT precipitation polymerization and surface-initiated RAFT polymerization: An efficient approach to prepare hairy particles-supported proline. RSC Advances, 2014, 4, 43278-43285.
[http://dx.doi.org/10.1039/C4RA06176D]
[69]
Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev., 2009, 109(11), 6102-6211.
[http://dx.doi.org/10.1021/cr900162q] [PMID: 19905011]
[70]
Zhou, L.; Chu, B.F.; Xu, X.Y.; Xu, L.; Liu, N.; Wu, Z.Q. Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric aldol reaction using helical polyisocyanides bearing proline pendants. ACS Macro Lett., 2017, 6, 824-829.
[http://dx.doi.org/10.1021/acsmacrolett.7b00439]
[71]
Nothling, M.D. A.simple design of an enzyme-inspired supported catalyst based on a catalytic triad. Chem, 2017, 2, 732-745.
[http://dx.doi.org/10.1016/j.chempr.2017.04.004]
[72]
Sagamanova, I.K.; Sayalero, S.; MartínezArranz, S.; Albéniz, A.C.; Pericàs, M.A Asymmetric organocatalysts supported on vinyl addition polynorbornenes for work in aqueous media. Catal. Sci. Technol., 2015, 5, 754-764.
[http://dx.doi.org/10.1039/C4CY01344A]
[73]
Doyagüez, E.G.; Hernández, R.J.; Corrales, G.; Mayoralas, F.A.; Gallardo, A. Water-soluble pendant copolymers bearing proline and permethylated β-cyclodextrin: pH-dependent catalytic nanoreactors. Macromolecules, 2012, 45, 7676-7683.
[http://dx.doi.org/10.1021/ma301615a]
[74]
Doyagüez, E.G.; Parra, F.; Corrales, G.; Fernandez-Mayoralas, A.; Gallardo, New hydroxyproline based methacrylicpolybetaines: Synthesis, pH sensitivity and catalytic activity. Polymer (Guildf.), 2009, 50, 4438-4446.
[http://dx.doi.org/10.1016/j.polymer.2009.07.022]
[75]
Wu, C.; Long, X.; Fu, X.; Wang, G.; Mirza, Z.A. Efficient synthesis of zirconium poly(styrene-phenylvinylphosphonate)phosphate supported proline as a recyclable catalyst for direct asymmetric aldol reactions in water. RSC Advances, 2015, 5, 3168-3176.
[http://dx.doi.org/10.1039/C4RA11208C]
[76]
Lu, A.; Moatsou, D.; Portman, I.H.; Longbottom, D.A.; O’Reilly, R.K. Recyclable L-proline functional nanoreactors with temperature-tuned activity based on core–shell nanogels. ACS Macro Lett., 2014, 3, 1235-1239.
[http://dx.doi.org/10.1021/mz500704y]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy