Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

miR-130b表达水平变化促进宫颈癌细胞增殖并靶向CDKN1A基因抑制其凋亡

卷 22, 期 2, 2022

发表于: 08 March, 2022

页: [153 - 168] 页: 16

弟呕挨: 10.2174/1568009622666220111090715

open access plus

摘要

背景:miR-130b 表达的失调与不同癌症的发展有关。然而,关于 miR-130b 在宫颈癌细胞生长和存活中的生物学作用的描述是有限的。 方法:采用逆转录-定量 PCR 方法测定宫颈癌细胞不同生长阶段的 miR-130b 水平。使用基于 SYBR Green 的定量甲基化特异性 PCR 测量 miR-130b 基因上游 DNA 序列的甲基化水平。逆转录定量 PCR、Western 印迹和荧光报告测定用于鉴定 miR-130b 靶向基因。细胞计数试剂盒 8 和彗星测定分别用于确定细胞中的细胞活力和 DNA 损伤水平。 EdU Apopllo488体外流式细胞仪试剂盒、碘化丙啶染色、抗-γ-H2AX抗体染色和Annexin-V凋亡试剂盒随后用于测定DNA合成速率、细胞周期分布、DNA双链断裂计数和水平凋亡细胞。 结果: miR-130b 水平在宫颈癌细胞生长的指数期增加,但在稳定期降低。转录起始位点附近突出的 CpG 岛的甲基化抑制了 miR-130b 基因的表达。 MiR-130b 增加细胞活力,促进 DNA 合成和指数期细胞的 G1 期到 S 期转变,但通过靶向细胞周期蛋白依赖性降低细胞活力,伴随着 DNA 断裂的积累和静止期细胞凋亡率的增加激酶抑制剂 1A mRNA。 结论:miR-130b在指数期促进宫颈癌细胞的生长,而在静止期损害细胞的存活。

关键词: 动力学、miR-130b、表达水平变化、宫颈癌细胞、生长、存活。

图形摘要

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Hoque, M.R.; Haque, E.; Karim, M.R. Cervical cancer in low-income countries: A Bangladeshi perspective. Int. J. Gynaecol. Obstet., 2021, 152(1), 19-25.
[http://dx.doi.org/10.1002/ijgo.13400] [PMID: 32989750]
[3]
Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical cancer worldwide. Curr. Probl. Cancer, 2018, 42(5), 457-465.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.06.003] [PMID: 30064936]
[4]
Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie, 2019, 167, 12-24.
[http://dx.doi.org/10.1016/j.biochi.2019.09.001] [PMID: 31493469]
[5]
Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[6]
Guo, Q.; Yan, J.; Song, T.; Zhong, C.; Kuang, J.; Mo, Y.; Tan, J.; Li, D.; Sui, Z.; Cai, K.; Zhang, J. microRNA-130b-3p contained in MSC-Derived EVs promotes lung cancer progression by regulating the FOXO3/NFE2L2/TXNRD1 axis. Mol. Ther. Oncolytics, 2020, 20, 132-146.
[http://dx.doi.org/10.1016/j.omto.2020.09.005] [PMID: 33575477]
[7]
Mu, H.Q.; He, Y.H.; Wang, S.B.; Yang, S.; Wang, Y.J.; Nan, C.J.; Bao, Y.F.; Xie, Q.P.; Chen, Y.H. MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin. Transl. Oncol., 2020, 22(1), 111-121.
[http://dx.doi.org/10.1007/s12094-019-02217-5] [PMID: 31667686]
[8]
Liao, Y.; Wang, C.; Yang, Z.; Liu, W.; Yuan, Y.; Li, K.; Zhang, Y.; Wang, Y.; Shi, Y.; Qiu, Y.; Zuo, D.; He, W.; Qiu, J.; Guan, X.; Yuan, Y.; Li, B. Dysregulated Sp1/miR-130b-3p/HOXA5 axis contributes to tumor angiogenesis and progression of hepatocellular carcinoma. Theranostics, 2020, 10(12), 5209-5224.
[http://dx.doi.org/10.7150/thno.43640] [PMID: 32373208]
[9]
Huang, S.; Xue, P.; Han, X.; Zhang, C.; Yang, L.; Liu, L.; Wang, X.; Li, H.; Fu, J.; Zhou, Y. Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis., 2020, 11(6), 408.
[http://dx.doi.org/10.1038/s41419-020-2621-y] [PMID: 32483145]
[10]
Huang, Y.; Luo, F. Elevated microRNA-130b-5p or silenced ELK1 inhibits self-renewal ability, proliferation, migration, and invasion abilities, and promotes apoptosis of cervical cancer stem cells. IUBMB Life, 2021, 73(1), 118-129.
[http://dx.doi.org/10.1002/iub.2409] [PMID: 33295145]
[11]
Yang, L.; Wang, Y.; Shi, S.; Xie, L.; Liu, T.; Wang, Y.; Mu, H. The TNF-α-induced expression of miR-130b protects cervical cancer cells from the cytotoxicity of TNF-α. FEBS Open Bio, 2018, 8(4), 614-627.
[http://dx.doi.org/10.1002/2211-5463.12395] [PMID: 29632814]
[12]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[13]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[14]
Yang, C.; Cai, J.; Wang, Q.; Tang, H.; Cao, J.; Wu, L.; Wang, Z. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol. Oncol., 2012, 124(2), 325-334.
[http://dx.doi.org/10.1016/j.ygyno.2011.10.013] [PMID: 22005523]
[15]
Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc., 2006, 1(1), 23-29.
[http://dx.doi.org/10.1038/nprot.2006.5] [PMID: 17406208]
[16]
Końca, K.; Lankoff, A.; Banasik, A.; Lisowska, H.; Kuszewski, T.; Góźdź, S.; Koza, Z.; Wojcik, A. A cross-platform public domain PC image-analysis program for the comet assay. Mutat. Res., 2003, 534(1-2), 15-20.
[http://dx.doi.org/10.1016/S1383-5718(02)00251-6] [PMID: 12504751]
[17]
Sharma, A.; Singh, K.; Almasan, A. Histone H2AX phosphorylation: A marker for DNA damage. Methods Mol. Biol., 2012, 920, 613-626.
[http://dx.doi.org/10.1007/978-1-61779-998-3_40] [PMID: 22941631]
[18]
De Biasio, A.; Blanco, F.J. Proliferating cell nuclear antigen structure and interactions: Too many partners for one dancer? Adv. Protein Chem. Struct. Biol., 2013, 91, 1-36.
[http://dx.doi.org/10.1016/B978-0-12-411637-5.00001-9] [PMID: 23790209]
[19]
Wiese, C.; Rudolph, J.H.; Jakob, B.; Fink, D.; Tobias, F.; Blattner, C.; Taucher-Scholz, G. PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair (Amst.), 2012, 11(5), 511-521.
[http://dx.doi.org/10.1016/j.dnarep.2012.02.006] [PMID: 22456500]
[20]
El-Deiry, W.S. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res., 2016, 76(18), 5189-5191.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2055] [PMID: 27635040]
[21]
Dutto, I.; Tillhon, M.; Prosperi, E. Assessing cell cycle independent function of the CDK inhibitor p21(CDKN¹A) in Dna repair. Methods Mol. Biol., 2016, 1336, 123-139.
[http://dx.doi.org/10.1007/978-1-4939-2926-9_11] [PMID: 26231713]
[22]
Yang, L.; Yang, B.; Wang, Y.; Liu, T.; He, Z.; Zhao, H.; Xie, L.; Mu, H. The CTIP-mediated repair of TNF-α-induced DNA double-strand break was impaired by miR-130b in cervical cancer cell. Cell Biochem. Funct., 2019, 37(7), 534-544.
[http://dx.doi.org/10.1002/cbf.3430] [PMID: 31418900]
[23]
Jakob, B.; Scholz, M.; Taucher-Scholz, G. Characterization of CDKN1A (p21) binding to sites of heavy-ion-induced damage: Colocalization with proteins involved in DNA repair. Int. J. Radiat. Biol., 2002, 78(2), 75-88.
[http://dx.doi.org/10.1080/09553000110090007] [PMID: 11779358]
[24]
Huang, P.; Ouyang, D.J.; Chang, S.; Li, M.Y.; Li, L.; Li, Q.Y.; Zeng, R.; Zou, Q.Y.; Su, J.; Zhao, P.; Pei, L.; Yi, W.J. Chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the NF-κB pathway in breast cancer cells. Cell Commun. Signal., 2018, 16(1), 92.
[http://dx.doi.org/10.1186/s12964-018-0304-4] [PMID: 30497491]
[25]
Han, Y.C.; Vidigal, J.A.; Mu, P.; Yao, E.; Singh, I.; González, A.J.; Concepcion, C.P.; Bonetti, C.; Ogrodowski, P.; Carver, B.; Selleri, L.; Betel, D.; Leslie, C.; Ventura, A. An allelic series of miR-17 ~ 92-mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet., 2015, 47(7), 766-775.
[http://dx.doi.org/10.1038/ng.3321] [PMID: 26029871]
[26]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[27]
Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Hinrichs, A.S.; Gonzalez, J.N.; Gibson, D.; Diekhans, M.; Clawson, H.; Casper, J.; Barber, G.P.; Haussler, D.; Kuhn, R.M.; Kent, W.J. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res., 2019, 47(D1), D853-D858.
[http://dx.doi.org/10.1093/nar/gky1095] [PMID: 30407534]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy