Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Bioinformatics and Computer Simulation Approaches to the Discovery and Analysis of Bioactive Peptides

Author(s): Zhang Shuli, Liu Linlin, Gao Li*, Zhao Yinghu, Shi Nan, Wang Haibin and Xu Hongyu

Volume 23, Issue 13, 2022

Published on: 14 April, 2022

Page: [1541 - 1555] Pages: 15

DOI: 10.2174/1389201023666220106161016

Price: $65

Abstract

The traditional process of separating and purifying bioactive peptides is laborious and time-consuming. Using a traditional process to identify is difficult, and there is a lack of fast and accurate activity evaluation methods. How to extract bioactive peptides quickly and efficiently is still the focus of bioactive peptides research. In order to improve the present situation of the research, bioinformatics techniques and peptidome methods are widely used in this field. At the same time, bioactive peptides have their own specific pharmacokinetic characteristics, so computer simulation methods have incomparable advantages in studying the pharmacokinetics and pharmacokineticpharmacodynamic correlation models of bioactive peptides. The purpose of this review is to summarize the combined applications of bioinformatics and computer simulation methods in the study of bioactive peptides, concentrating on the role of bioinformatics in simulating the selection of enzymatic hydrolysis and precursor proteins, activity prediction, molecular docking, physicochemical properties, and molecular dynamics. Our review shows that new bioactive peptide molecular sequences with high activity can be obtained by computer-aided design. The significance of the pharmacokinetic-pharmacodynamic correlation model in the study of bioactive peptides is emphasized. Finally, some problems and future development potential of bioactive peptides binding new technologies are being prospected.

Keywords: Bioactive peptides, bioinformatics, computer-aided research methods, functions, molecular design, pharmacokineticpharmacodynamic model.

Graphical Abstract

[1]
Diao, L.; Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet., 2013, 52(10), 855-868.
[http://dx.doi.org/10.1007/s40262-013-0079-0] [PMID: 23719681]
[2]
Beaufays, J.; Lins, L.; Thomas, A.; Brasseur, R. in silico predictions of 3D structures of linear and cyclic peptides with natural and non-proteinogenic residues. J. Pept. Sci., 2012, 18(1), 17-24.
[http://dx.doi.org/10.1002/psc.1410] [PMID: 22033979]
[3]
Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem., 2018, 410(15), 3463-3472.
[http://dx.doi.org/10.1007/s00216-018-0974-1] [PMID: 29516135]
[4]
Fu, Y.; Wu, W.; Zhu, M.; Xiao, Z. in silico assessment of the potential of patatin as a precursor of bioactive peptides. J. Food Biochem., 2016, 40(3), 366-370.
[http://dx.doi.org/10.1111/jfbc.12213]
[5]
Majumder, K.; Wu, J. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res. Int., 2010, 43(5), 1371-1378.
[http://dx.doi.org/10.1016/j.foodres.2010.04.027]
[6]
Udenigwe, C.C.; Okolie, C.L.; Qian, H.; Ohanenye, I.C.; Agyei, D.; Aluko, R.E. Ribulose-1, 5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci. Technol., 2017, 69, 74-82.
[http://dx.doi.org/10.1016/j.tifs.2017.09.001]
[7]
Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Gutiérrez-López, G.; Dávila-Ortiz, G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev., 2012, 4(4), 224-243.
[http://dx.doi.org/10.1007/s12393-012-9058-8]
[8]
Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A review on bioactive peptides: physiological functions, bioavailability and safety. Int. J. Pept. Res. Ther., 2020, 26(1), 139-150.
[http://dx.doi.org/10.1007/s10989-019-09823-5]
[9]
Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol., 2014, 36(2), 137-143.
[http://dx.doi.org/10.1016/j.tifs.2014.02.004]
[10]
Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv., 2011, 29(3), 272-277.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.001] [PMID: 21238564]
[11]
Yanrong, Ren YanroFeifeing, Tian; Peng, Zhou Computational peptide Science. Prog. Chem, 2012, (9), 1674.
[12]
Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 2016, 79, 1-7.
[http://dx.doi.org/10.1016/j.peptides.2016.03.005] [PMID: 26988873]
[13]
Iwaniak, A.; Darewicz, M.; Mogut, D.; Minkiewicz, P. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. J. Funct. Foods, 2019, 61, 103486.
[http://dx.doi.org/10.1016/j.jff.2019.103486]
[14]
Agyei, D.; Bambarandage, E.; Udenigwe, C.C. The role of bioinformatics in the discovery of bioactive peptides. Encyclopedia of Food Chemistry, 2019, 337-349.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21863-5]
[15]
Kęska, P.; Stadnik, J. Taste‐active peptides and amino acids of pork meat as components of dry‐cured meat products: An in‐silico study. J. Sens. Stud., 2017, 32(6), e12301.
[http://dx.doi.org/10.1111/joss.12301]
[16]
Nongonierma, A.B.; Mooney, C.; Shields, D.C.; FitzGerald, R.J. in silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 2014, 57, 43-51.
[http://dx.doi.org/10.1016/j.peptides.2014.04.018] [PMID: 24793774]
[17]
Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54(3), 732-738.
[http://dx.doi.org/10.1021/jf051263l] [PMID: 16448176]
[18]
Koyama, M.; Hattori, S.; Amano, Y.; Watanabe, M.; Nakamura, K. Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity. PLoS One, 2014, 9(9), e105802.
[http://dx.doi.org/10.1371/journal.pone.0105802] [PMID: 25222748]
[19]
Han, J.; Tang, S.; Li, Y.; Bao, W.; Wan, H.; Lu, C.; Zhou, J.; Li, Y.; Cheong, L.; Su, X. In silico analysis and in vivo tests of the tuna dark muscle hydrolysate anti-oxidation effect. RSC Advances, 2018, 8(25), 14109-14119.
[http://dx.doi.org/10.1039/C8RA00889B]
[20]
Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Protasiewicz, M.; Mogut, D. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J. Funct. Foods, 2015, 16, 334-351.
[http://dx.doi.org/10.1016/j.jff.2015.04.038]
[21]
Cole, J. N.; Nizet, V. Bacterial evasion of host antimicrobial peptide defenses. Microbiology spectrum, 2016, 4, (1), 4.1. 04.
[http://dx.doi.org/10.1128/9781555819286.ch15]
[22]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[23]
Yichen, Xiao; Hao, Xiong; Chuan, Xie Nonghua, Lu Research progress in bioinformatics for antimicrobial peptide prediction and molecular design. Biotechnology Bulletin, 2016, 32(12), 23.
[24]
Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 2005, 33(Database issue)(Suppl. 1), D501-D504.
[http://dx.doi.org/10.1093/nar/gki025] [PMID: 15608248]
[25]
Bourne, P.E.; Addess, K.J.; Bluhm, W.F.; Chen, L.; Deshpande, N.; Feng, Z.; Fleri, W.; Green, R.; Merino-Ott, J.C.; Townsend-Merino, W.; Weissig, H.; Westbrook, J.; Berman, H.M. The distribution and query systems of the RCSB Protein Data Bank. Nucleic Acids Res., 2004, 32(Database issue)(Suppl. 1), D223-D225.
[http://dx.doi.org/10.1093/nar/gkh096] [PMID: 14681399]
[26]
Appel, R.D.; Bairoch, A.; Hochstrasser, D.F. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem. Sci., 1994, 19(6), 258-260.
[http://dx.doi.org/10.1016/0968-0004(94)90153-8] [PMID: 8073505]
[27]
Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bairoch, A. Uniprotkb/swiss-prot.Plant bioinformatics; Springer, 2007, pp. 89-112.
[http://dx.doi.org/10.1007/978-1-59745-535-0_4]
[28]
Darewicz, M.; Minkiewicz, P.; Iwaniak, A. The biopep-database of food biologically active peptides and proteinS. In: ANNALS OF NUTRITION AND METABOLISM; KARGER: ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND, 2017, 71, pp. 1170-1170.
[29]
Vijayakumar, V.; Guerrero, A.N.; Davey, N.; Lebrilla, C.B.; Shields, D.C.; Khaldi, N. EnzymePredictor: a tool for predicting and visualizing enzymatic cleavages of digested proteins. J. Proteome Res., 2012, 11(12), 6056-6065.
[http://dx.doi.org/10.1021/pr300721f] [PMID: 23098558]
[30]
Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int., 2008, 91(4), 965-980.
[http://dx.doi.org/10.1093/jaoac/91.4.965] [PMID: 18727559]
[31]
Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Hrynkiewicz, M. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Res. Int., 2016, 89(Pt 1), 27-38.
[http://dx.doi.org/10.1016/j.foodres.2016.08.010] [PMID: 28460914]
[32]
Tingyi, Zhou; Xinchang, Gao; Yali, Dang; Daodong, Pan Jinxuan, Cao Research progress of bioactive peptides based on bioinformatics technology; Food Industry Science and Technology, 2019, p. 12.
[33]
Su, G.; Ren, J.; Yang, B.; Cui, C.; Zhao, M. Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases. Food Chem., 2011, 126(3), 1306-1311.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.083]
[34]
Fu, Y.; Young, J.F.; Løkke, M.M.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J. Funct. Foods, 2016, 24, 196-206.
[http://dx.doi.org/10.1016/j.jff.2016.03.026]
[35]
Udenigwe, C.C. Towards rice bran protein utilization: in silico insight on the role of oryzacystatins in biologically-active peptide production. Food Chem., 2016, 191, 135-138.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.043] [PMID: 26258712]
[36]
Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem., 2015, 172, 400-406.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.083] [PMID: 25442570]
[37]
Pan, D.; Cao, J.; Guo, H.; Zhao, B. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem., 2012, 130(1), 121-126.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.011]
[38]
Tu, M.; Feng, L.; Wang, Z.; Qiao, M.; Shahidi, F.; Lu, W.; Du, M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J. Funct. Foods, 2017, 32, 313-323.
[http://dx.doi.org/10.1016/j.jff.2017.03.015]
[39]
Ndiaye, F.; Vuong, T.; Duarte, J.; Aluko, R.E.; Matar, C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr., 2012, 51(1), 29-37.
[http://dx.doi.org/10.1007/s00394-011-0186-3] [PMID: 21442413]
[40]
Zhu, Q.; Chen, X.; Wu, J.; Zhou, Y.; Qian, Y.; Fang, M.; Xie, J.; Wei, D. Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: in silico gastrointestinal hydrolysis and molecular mechanism. Eur. Food Res. Technol., 2017, 243(10), 1739-1748.
[http://dx.doi.org/10.1007/s00217-017-2879-1]
[41]
Rani, S.; Pooja, K.; Pal, G.K. Exploration of potential angiotensin converting enzyme inhibitory peptides generated from enzymatic hydrolysis of goat milk proteins. Biocatal. Agric. Biotechnol., 2017, 11, 83-88.
[http://dx.doi.org/10.1016/j.bcab.2017.06.008]
[42]
Lafarga, T.; O’Connor, P.; Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 2014, 59, 53-62.
[http://dx.doi.org/10.1016/j.peptides.2014.07.005] [PMID: 25020248]
[43]
Dziuba, B.; Dziuba, M. New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies. Int. J. Mol. Sci., 2014, 15(8), 14531-14545.
[http://dx.doi.org/10.3390/ijms150814531] [PMID: 25141106]
[44]
Tulipano, G.; Faggi, L.; Nardone, A.; Cocchi, D.; Caroli, A.M. Characterisation of the potential of β-lactoglobulin and α-lactalbumin as sources of bioactive peptides affecting incretin function: in silico and in vitro comparative studies. Int. Dairy J., 2015, 48, 66-72.
[http://dx.doi.org/10.1016/j.idairyj.2015.01.008]
[45]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC. Trends Analyt. Chem., 2018, 105, 7-17.
[http://dx.doi.org/10.1016/j.trac.2018.04.005]
[46]
Gu, Y.; Majumder, K.; Wu, J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res. Int., 2011, 44(8), 2465-2474.
[http://dx.doi.org/10.1016/j.foodres.2011.01.051]
[47]
Panjaitan, F.C.A.; Gomez, H.L.R.; Chang, Y-W. In silico analysis of bioactive peptides released from giant grouper (Epinephelus lanceolatus) roe proteins identified by proteomics approach. Molecules, 2018, 23(11), 2910.
[http://dx.doi.org/10.3390/molecules23112910] [PMID: 30413009]
[48]
Tavares, T.; Contreras, M.; Amorim, M.; Martín-Álvarez’s, P.; Pintado, M.; Recio, I.; Malcata, F. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int. Dairy J., 2011, 21(12), 926-933.
[http://dx.doi.org/10.1016/j.idairyj.2011.05.013]
[49]
Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP-a server for in silico prediction of allergens; BMC Bioinformatics, BioMed Central, 2013, pp. 1-9.
[50]
Saha, S.; Raghava, G.P. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 2006, 34, (Web Serverissue)(Suppl. 2), W202-9.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[51]
Wiener, A.; Shudler, M.; Levit, A.; Niv, M.Y. BitterDB: a database of bitter compounds. Nucleic Acids Res., 2012, 40(Database issue), D413-D419.
[http://dx.doi.org/10.1093/nar/gkr755] [PMID: 21940398]
[52]
Reche, P.A.; Zhang, H.; Glutting, J-P.; Reinherz, E.L. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics, 2005, 21(9), 2140-2141.
[http://dx.doi.org/10.1093/bioinformatics/bti269] [PMID: 15657103]
[53]
Lear, S.; Cobb, S.L. Pep-Calc.com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J. Comput. Aided Mol. Des., 2016, 30(3), 271-277.
[http://dx.doi.org/10.1007/s10822-016-9902-7] [PMID: 26909892]
[54]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 2005, 571-607; pp..
[55]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[56]
Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLOS ONE, 2012, 7(10), e45012.
[http://dx.doi.org/10.1371/journal.pone.0045012]
[57]
Ngoh, Y-Y.; Gan, C-Y. Identification of Pinto bean peptides with inhibitory effects on α-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach. Food Chem., 2018, 267, 124-131.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.166] [PMID: 29934146]
[58]
Mudgil, P.; Baby, B.; Ngoh, Y-Y.; Vijayan, R.; Gan, C-Y.; Maqsood, S. Identification and molecular docking study of novel cholesterol esterase inhibitory peptides from camel milk proteins. J. Dairy Sci., 2019, 102(12), 10748-10759.
[http://dx.doi.org/10.3168/jds.2019-16520] [PMID: 31548068]
[59]
Hellberg, S.; Sjöström, M.; Skagerberg, B.; Wold, S. Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem., 1987, 30(7), 1126-1135.
[http://dx.doi.org/10.1021/jm00390a003] [PMID: 3599020]
[60]
Pripp, A.H.; Isaksson, T.; Stepaniak, L.; Sørhaug, T.; Ardö, Y. Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends Food Sci. Technol., 2005, 16(11), 484-494.
[http://dx.doi.org/10.1016/j.tifs.2005.07.003]
[61]
Mikut, R.; Hilpert, K. Interpretable features for the activity prediction of short antimicrobial peptides using fuzzy logic. Int. J. Pept. Res. Ther., 2009, 15(2), 129-137.
[http://dx.doi.org/10.1007/s10989-009-9172-5]
[62]
Ko, S-C.; Kang, N.; Kim, E-A.; Kang, M.C.; Lee, S-H.; Kang, S-M.; Lee, J-B.; Jeon, B-T.; Kim, S-K.; Park, S-J. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochem., 2012, 47(12), 2005-2011.
[http://dx.doi.org/10.1016/j.procbio.2012.07.015]
[63]
Jing, P.; Qian, B.; He, Y.; Zhao, X.; Zhang, J.; Zhao, D.; Lv, Y.; Deng, Y. Screening milk-derived antihypertensive peptides using quantitative structure activity relationship (QSAR) modelling and in vitro/in vivo studies on their bioactivity. Int. Dairy J., 2014, 35(1), 95-101.
[http://dx.doi.org/10.1016/j.idairyj.2013.10.009]
[64]
Mudgil, P.; Baby, B.; Ngoh, Y-Y.; Kamal, H.; Vijayan, R.; Gan, C-Y.; Maqsood, S. Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. Lebensm. Wiss. Technol., 2019, 112, 108193.
[http://dx.doi.org/10.1016/j.lwt.2019.05.091]
[65]
Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study. Peptides, 2015, 68, 17-24.
[http://dx.doi.org/10.1016/j.peptides.2014.07.026] [PMID: 25111373]
[66]
Udenigwe, C.C.; Aluko, R.E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int. J. Mol. Sci., 2011, 12(5), 3148-3161.
[http://dx.doi.org/10.3390/ijms12053148] [PMID: 21686175]
[67]
Iwaniak, A.; Hrynkiewicz, M.; Bucholska, J.; Minkiewicz, P.; Darewicz, M. Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. J. Food Biochem., 2019, 43(1), e12500.
[http://dx.doi.org/10.1111/jfbc.12500] [PMID: 31353496]
[68]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[69]
Geng, H.; Chen, F.; Ye, J.; Jiang, F. Applications of molecular dynamics simulation in structure prediction of peptides and proteins. Comput. Struct. Biotechnol. J., 2019, 17, 1162-1170.
[http://dx.doi.org/10.1016/j.csbj.2019.07.010] [PMID: 31462972]
[70]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[71]
Gurrath, M.; Müller, G.; Kessler, H.; Aumailley, M.; Timpl, R. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur. J. Biochem., 1992, 210(3), 911-921.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17495.x] [PMID: 1483474]
[72]
Bock, J.E.; Gavenonis, J.; Kritzer, J.A. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem. Biol., 2013, 8(3), 488-499.
[http://dx.doi.org/10.1021/cb300515u] [PMID: 23170954]
[73]
Merten, C.; Li, F.; Bravo-Rodriguez, K.; Sanchez-Garcia, E.; Xu, Y.; Sander, W. Solvent-induced conformational changes in cyclic peptides: a vibrational circular dichroism study. Phys. Chem. Chem. Phys., 2014, 16(12), 5627-5633.
[http://dx.doi.org/10.1039/C3CP55018D] [PMID: 24513908]
[74]
Cuniasse, P.; Raynal, I.; Yiotakis, A.; Dive, V. Accounting for conformational variability in NMR structure of cyclopeptides: ensemble averaging of interproton distance and coupling constant restraints. J. Am. Chem. Soc., 1997, 119(22), 5239-5248.
[http://dx.doi.org/10.1021/ja9636810]
[75]
McHugh, S.M.; Rogers, J.R.; Yu, H.; Lin, Y-S. Insights into how cyclic peptides switch conformations. J. Chem. Theory Comput., 2016, 12(5), 2480-2488.
[http://dx.doi.org/10.1021/acs.jctc.6b00193] [PMID: 27031286]
[76]
Ho, B.K.; Dill, K.A. Folding very short peptides using molecular dynamics. PLOS Comput. Biol., 2006, 2(4), e27.
[http://dx.doi.org/10.1371/journal.pcbi.0020027] [PMID: 16617376]
[77]
Voelz, V.A.; Shell, M.S.; Dill, K.A. Predicting peptide structures in native proteins from physical simulations of fragments. PLOS Comput. Biol., 2009, 5(2), e1000281.
[http://dx.doi.org/10.1371/journal.pcbi.1000281] [PMID: 19197352]
[78]
Talmont, F.; Boué, J.; Mollereau, C.; Dietrich, G. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies. PLoS One, 2012, 7(9), e46348.
[79]
Shemesh, R.; Toporik, A.; Levine, Z.; Hecht, I.; Rotman, G.; Wool, A.; Dahary, D.; Gofer, E.; Kliger, Y.; Soffer, M.A.; Rosenberg, A.; Eshel, D.; Cohen, Y. Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J. Biol. Chem., 2008, 283(50), 34643-34649.
[http://dx.doi.org/10.1074/jbc.M805181200] [PMID: 18854305]
[80]
Walshe, V.A.; Hattotuwagama, C.K.; Doytchinova, I.A.; Wong, M.; Macdonald, I.K.; Mulder, A.; Claas, F.H.; Pellegrino, P.; Turner, J.; Williams, I.; Turnbull, E.L.; Borrow, P.; Flower, D.R. Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes. PLoS One, 2009, 4(11), e8095.
[http://dx.doi.org/10.1371/journal.pone.0008095] [PMID: 19956609]
[81]
Kliger, Y.; Levy, O.; Oren, A.; Ashkenazy, H.; Tiran, Z.; Novik, A.; Rosenberg, A.; Amir, A.; Wool, A.; Toporik, A.; Schreiber, E.; Eshel, D.; Levine, Z.; Cohen, Y.; Nold-Petry, C.; Dinarello, C.A.; Borukhov, I. Peptides modulating conformational changes in secreted chaperones: from in silico design to preclinical proof of concept. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13797-13801.
[http://dx.doi.org/10.1073/pnas.0906514106] [PMID: 19666568]
[82]
Wang, G.; Li, X.; Wang, Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009, 37(Database issue)(Suppl. 1), D933-D937.
[http://dx.doi.org/10.1093/nar/gkn823] [PMID: 18957441]
[83]
Monroc, S.; Badosa, E.; Feliu, L.; Planas, M.; Montesinos, E.; Bardají, E. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides, 2006, 27(11), 2567-2574.
[http://dx.doi.org/10.1016/j.peptides.2006.04.019] [PMID: 16730857]
[84]
Sato, A.K.; Viswanathan, M.; Kent, R.B.; Wood, C.R. Therapeutic peptides: technological advances driving peptides into development. Curr. Opin. Biotechnol., 2006, 17(6), 638-642.
[http://dx.doi.org/10.1016/j.copbio.2006.10.002] [PMID: 17049837]
[85]
Latham, P.W. Therapeutic peptides revisited. Nat. Biotechnol., 1999, 17(8), 755-757.
[http://dx.doi.org/10.1038/11686] [PMID: 10429238]
[86]
Meibohm, B.; Derendorf, H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int. J. Clin. Pharmacol. Ther., 1997, 35(10), 401-413.
[PMID: 9352388]
[87]
Derendorf, H.; Meibohm, B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res., 1999, 16(2), 176-185.
[http://dx.doi.org/10.1023/A:1011907920641] [PMID: 10100300]
[88]
Wang, J.; Avant, D.; Green, D.; Seo, S.; Fisher, J.; Mulberg, A.E.; McCune, S.K.; Burckart, G.J. A survey of neonatal pharmacokinetic and pharmacodynamic studies in pediatric drug development. Clin. Pharmacol. Ther., 2015, 98(3), 328-335.
[http://dx.doi.org/10.1002/cpt.149] [PMID: 25975723]
[89]
Pérez-Ruixo, J.J.; Krzyzanski, W.; Bouman-Thio, E.; Miller, B.; Jang, H.; Bai, S.A.; Zhou, H.; Yohrling, J.; Cohen, A.; Burggraaf, J.; Franson, K.; Davis, H.M.; Perez-Ruixo, J.J. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects. Clin. Pharmacokinet., 2009, 48(9), 601-613.
[http://dx.doi.org/10.2165/11317190-000000000-00000] [PMID: 19725594]
[90]
Clowse, M.E.; Behera, M.A.; Anders, C.K.; Copland, S.; Coffman, C.J.; Leppert, P.C.; Bastian, L.A. Ovarian preservation by GnRH agonists during chemotherapy: a meta-analysis. J. Womens Health (Larchmt.), 2009, 18(3), 311-319.
[http://dx.doi.org/10.1089/jwh.2008.0857] [PMID: 19281314]
[91]
Läer, S.; Barrett, J.S.; Meibohm, B.; Läer, S. The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J. Clin. Pharmacol., 2009, 49(8), 889-904.
[http://dx.doi.org/10.1177/0091270009337513] [PMID: 19531673]
[92]
Meibohm, B.; Läer, S.; Panetta, J.C.; Barrett, J.S. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J., 2005, 7(2), E475-E487.
[http://dx.doi.org/10.1208/aapsj070248] [PMID: 16353925]
[93]
Rowland, M.; Peck, C.; Tucker, G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 45-73.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100540] [PMID: 20854171]
[94]
Agoram, B.M.; Martin, S.W.; van der Graaf, P.H. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov. Today, 2007, 12(23-24), 1018-1024.
[http://dx.doi.org/10.1016/j.drudis.2007.10.002] [PMID: 18061880]
[95]
Agersø, H.; Ynddal, L.; Søgaard, B.; Zdravkovic, M. Pharmacokinetic and pharmacodynamic modeling of NN703, a growth hormone secretagogue, after a single po dose to human volunteers. J. Clin. Pharmacol., 2001, 41(2), 163-169.
[http://dx.doi.org/10.1177/00912700122009971] [PMID: 11210396]
[96]
Perez-Ruixo, J.J.; Kimko, H.C.; Chow, A.T.; Piotrovsky, V.; Krzyzanski, W.; Jusko, W.J. Population cell life span models for effects of drugs following indirect mechanisms of action. J. Pharmacokinet. Pharmacodyn., 2005, 32(5-6), 767-793.
[http://dx.doi.org/10.1007/s10928-005-0019-1] [PMID: 16328102]
[97]
Friberg, L.E.; Henningsson, A.; Maas, H.; Nguyen, L.; Karlsson, M.O. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J. Clin. Oncol., 2002, 20(24), 4713-4721.
[http://dx.doi.org/10.1200/JCO.2002.02.140] [PMID: 12488418]
[98]
Wang, Y-M.C.; Krzyzanski, W.; Doshi, S.; Xiao, J.J.; Pérez-Ruixo, J.J.; Chow, A.T. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J., 2010, 12(4), 729-740.
[http://dx.doi.org/10.1208/s12248-010-9234-9] [PMID: 20963535]
[99]
Tang, L.; Persky, A.M.; Hochhaus, G.; Meibohm, B. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci., 2004, 93(9), 2184-2204.
[http://dx.doi.org/10.1002/jps.20125] [PMID: 15295780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy