Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Construction of Biomimetic-Responsive Nanocarriers and their Applications in Tumor Targeting

Author(s): Xuexia Tian, Anhua Shi* and Junzi Wu*

Volume 22, Issue 12, 2022

Published on: 17 March, 2022

Page: [2255 - 2273] Pages: 19

DOI: 10.2174/1871520622666220106105315

Price: $65

Abstract

Background: At present, tumors are leading cause of death. Biomimetic nanocarriers for precision cancer therapy are attracting increasing attention. Nanocarriers with a good biocompatible surface could reduce the recognition and elimination of nanoparticles as foreign substances by the immune system, offer specific targeting, and improve the efficacy of precision medicine for tumors, thereby providing outstanding prospects for application in cancer therapy. In particular, cell membrane biomimetic camouflaged nanocarriers have become a research hotspot because of their excellent biocompatibility, prolonged circulation in the blood, and tumor targeting.

Objective: The objective of this study is to summarize the biological targeting mechanisms of different cell membraneencapsulated nanocarriers in cancer therapy. In this article, the characteristics, applications, and stages of progress of bionic encapsulated nanocarriers for different cell membranes are discussed, as are the field’s developmental prospects.

Methods: The findings on the characteristics of bionic encapsulated nanocarriers for different cell membranes and tumor treatment have been analyzed and summarized.

Results: Biomimetic nanosystems based on various natural cell and hybrid cell membranes have been shown to efficiently control targeted drug delivery systems. They can reduce immune system clearance, prolong blood circulation time, and improve drug loading and targeting, thereby enhancing the diagnosis and treatment of tumors and reducing the spread of CTCs.

Conclusion: With advances in the development of biomimetic nanocarrier DDSs, novel ideas for tumor treatment and drug delivery have been emerged. However, there are still some problems in biomimetic nanosystems. Therefore, it needs to be optimized through further research, from the laboratory to the clinic to benefit a wide range of patients.

Keywords: Biomimetic nanocarriers, tumor-targeted therapy, cell membrane, cancer, cancer therapy, biocompatible surface.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zhang, H.; Dong, S.; Li, Z.; Feng, X.; Xu, W.; Tulinao, C.M.S.; Jiang, Y.; Ding, J. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci, 2020, 15(4), 397-415.
[http://dx.doi.org/10.1016/j.ajps.2019.11.004] [PMID: 32952666]
[3]
Chen, Z.; Wang, Z.; Gu, Z. Bioinspired and biomimetic nanomedicines. Acc. Chem. Res., 2019, 52(5), 1255-1264.
[http://dx.doi.org/10.1021/acs.accounts.9b00079] [PMID: 30977635]
[4]
Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng., 2013, 15, 253-282.
[http://dx.doi.org/10.1146/annurev-bioeng-071812-152409] [PMID: 23642243]
[5]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[6]
Perry, J.L.; Herlihy, K.P.; Napier, M.E.; Desimone, J.M. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res., 2011, 44(10), 990-998.
[http://dx.doi.org/10.1021/ar2000315] [PMID: 21809808]
[7]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[8]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[9]
Chen, L.T.; Weiss, L. The role of the sinus wall in the passage of erythrocytes through the spleen. Blood, 1973, 41(4), 529-537.
[http://dx.doi.org/10.1182/blood.V41.4.529.529] [PMID: 4688868]
[10]
Pautu, V.; Lepeltier, E.; Mellinger, A.; Riou, J.; Debuigne, A.; Jérôme, C.; Clere, N.; Passirani, C. pH-responsive lipid nanocapsules: A promising strategy for improved resistant melanoma cell internalization. Cancers (Basel), 2021, 13(9), 2028.
[http://dx.doi.org/10.3390/cancers13092028] [PMID: 33922267]
[11]
Li, J.; Tang, W.; Yang, Y.; Shen, Q.; Yu, Y.; Wang, X.; Fu, Y.; Li, C. A programmed cell-mimicking nanoparticle driven by potato alkaloid for targeted cancer chemoimmunotherapy. Adv. Healthc. Mater., 2021, 10(13), e2100311.
[http://dx.doi.org/10.1002/adhm.202100311] [PMID: 33963820]
[12]
He, T.; He, J.; Younis, M.R.; Blum, N.T.; Lei, S.; Zhang, Y.; Huang, P.; Lin, J. Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor. ACS Appl. Mater. Interfaces, 2021, 13(19), 22204-22212.
[http://dx.doi.org/10.1021/acsami.1c03211] [PMID: 33956444]
[13]
Gaafar, P.M.E.; El-Salamouni, N.S.; Farid, R.M.; Hazzah, H.A.; Helmy, M.W.; Abdallah, O.Y. Pegylated liquisomes: A novel combined passive targeting nanoplatform of L-carnosine for breast cancer. Int. J. Pharm., 2021, 602, 120666.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120666] [PMID: 33933646]
[14]
Deng, H.; Dai, F.; Ma, G.; Zhang, X. Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance. Adv. Mater., 2015, 27(24), 3645-3653.
[http://dx.doi.org/10.1002/adma.201501420] [PMID: 25946668]
[15]
Feng, L.; Cheng, L.; Dong, Z.; Tao, D.; Barnhart, T.E.; Cai, W.; Chen, M.; Liu, Z. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano, 2017, 11(1), 927-937.
[http://dx.doi.org/10.1021/acsnano.6b07525] [PMID: 28027442]
[16]
Zeng, X.; Luo, M.; Liu, G.; Wang, X.; Tao, W.; Lin, Y.; Ji, X.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. (Weinh.), 2018, 5(10), 1800510.
[http://dx.doi.org/10.1002/advs.201800510] [PMID: 30356942]
[17]
Zhang, R.; Song, X.; Liang, C.; Yi, X.; Song, G.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L.; Liu, Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 2017, 138, 13-21.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.025] [PMID: 28550753]
[18]
Feng, X.; Xu, W.; Li, Z.; Song, W.; Ding, J.; Chen, X. Immunomodulatory nanosystems. Adv. Sci. (Weinh.), 2019, 6(17), 1900101.
[http://dx.doi.org/10.1002/advs.201900101] [PMID: 31508270]
[19]
Ji, X.; Wang, C.; Tang, M.; Guo, D.; Peng, F.; Zhong, Y.; Song, B.; Su, Y.; He, Y. Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence. Nanoscale, 2018, 10(30), 14455-14463.
[http://dx.doi.org/10.1039/C8NR03107J] [PMID: 30022196]
[20]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63, 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[21]
Zhang, M.; Hagan, C.T., IV; Min, Y.; Foley, H.; Tian, X.; Yang, F.; Mi, Y.; Au, K.M.; Medik, Y.; Roche, K.; Wagner, K.; Rodgers, Z.; Wang, A.Z. Nanoparticle co-delivery of wortmannin and cisplatin synergistically enhances chemoradiotherapy and reverses platinum resistance in ovarian cancer models. Biomaterials, 2018, 169, 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.055] [PMID: 29631163]
[22]
Fraga, S.; Brandão, A.; Soares, M.E.; Morais, T.; Duarte, J.A.; Pereira, L.; Soares, L.; Neves, C.; Pereira, E. Bastos, Mde.L.; Carmo, H. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine, 2014, 10(8), 1757-1766.
[http://dx.doi.org/10.1016/j.nano.2014.06.005] [PMID: 24941462]
[23]
Liu, X.; Li, H.; Chen, Y.; Jin, Q.; Ren, K.; Ji, J. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv. Healthc. Mater., 2014, 3(9), 1439-1447.
[http://dx.doi.org/10.1002/adhm.201300617] [PMID: 24550205]
[24]
Rao, L.; Cai, B.; Bu, L.L.; Liao, Q.Q.; Guo, S.S.; Zhao, X.Z.; Dong, W.F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano, 2017, 11(4), 3496-3505.
[http://dx.doi.org/10.1021/acsnano.7b00133] [PMID: 28272874]
[25]
Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater., 2017, 29(35), 1701429.
[http://dx.doi.org/10.1002/adma.201701429] [PMID: 28722140]
[26]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[27]
Michael, M.; Doherty, M.M. Tumoral drug metabolism: overview and its implications for cancer therapy. J. Clin. Oncol., 2005, 23(1), 205-229.
[http://dx.doi.org/10.1200/JCO.2005.02.120] [PMID: 15625375]
[28]
Risinger, M.; Kalfa, T.A. Red cell membrane disorders: structure meets function. Blood, 2020, 136(11), 1250-1261.
[http://dx.doi.org/10.1182/blood.2019000946] [PMID: 32702754]
[29]
Richardson, K.J.; Kuck, L.; Simmonds, M.J. Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(4), H866-H872.
[http://dx.doi.org/10.1152/ajpheart.00441.2020] [PMID: 32857630]
[30]
Repsold, L.; Joubert, A.M. Eryptosis: An erythrocyte’s suicidal type of cell death. BioMed Res. Int., 2018, 2018, 9405617.
[http://dx.doi.org/10.1155/2018/9405617] [PMID: 29516014]
[31]
Sosale, N.G.; Spinler, K.R.; Alvey, C.; Discher, D.E. Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific ‘Marker of Self’ CD47, and target physical properties. Curr. Opin. Immunol., 2015, 35, 107-112.
[http://dx.doi.org/10.1016/j.coi.2015.06.013] [PMID: 26172292]
[32]
Velliquette, R.W.; Aeschlimann, J.; Kirkegaard, J.; Shakarian, G.; Lomas-Francis, C.; Westhoff, C.M. Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion, 2019, 59(2), 730-737.
[http://dx.doi.org/10.1111/trf.15033] [PMID: 30516833]
[33]
Pietsch, E.C.; Dong, J.; Cardoso, R.; Zhang, X.; Chin, D.; Hawkins, R.; Dinh, T.; Zhou, M.; Strake, B.; Feng, P.H.; Rocca, M.; Santos, C.D.; Shan, X.; Danet-Desnoyers, G.; Shi, F.; Kaiser, E.; Millar, H.J.; Fenton, S.; Swanson, R.; Nemeth, J.A.; Attar, R.M. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J., 2017, 7(2), e536.
[http://dx.doi.org/10.1038/bcj.2017.7] [PMID: 28234345]
[34]
Puro, R.J.; Bouchlaka, M.N.; Hiebsch, R.R.; Capoccia, B.J.; Donio, M.J.; Manning, P.T.; Frazier, W.A.; Karr, R.W.; Pereira, D.S. Development of AO-176, a Next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol. Cancer Ther., 2020, 19(3), 835-846.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1079] [PMID: 31879362]
[35]
Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm. Sin. B, 2019, 9(4), 675-689.
[http://dx.doi.org/10.1016/j.apsb.2019.01.011] [PMID: 31384529]
[36]
Guo, J.; Agola, J.O.; Serda, R.; Franco, S.; Lei, Q.; Wang, L.; Minster, J.; Croissant, J.G.; Butler, K.S.; Zhu, W.; Brinker, C.J. Biomimetic rebuilding of multifunctional red blood cells: Modular design using functional components. ACS Nano, 2020, 14(7), 7847-7859.
[http://dx.doi.org/10.1021/acsnano.9b08714] [PMID: 32391687]
[37]
Ma, Z.; Liu, S.; Ke, Y.; Wang, H.; Chen, R.; Xiang, Z.; Xie, Z.; Shi, Q.; Yin, J. Biomimetic nano-NOS mediated local NO release for inhibiting cancer-associated platelet activation and disrupting tumor vascular barriers. Biomaterials, 2020, 255, 120141.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120141] [PMID: 32505753]
[38]
Zhao, Y.; Wang, J.; Cai, X.; Ding, P.; Lv, H.; Pei, R. Metal-organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl. Mater. Interfaces, 2020, 12(21), 23697-23706.
[http://dx.doi.org/10.1021/acsami.0c04363] [PMID: 32362109]
[39]
Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; Zhang, L.; Lu, W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release, 2017, 264, 102-111.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.027] [PMID: 28842313]
[40]
Han, S.; Wang, W.; Wang, S.; Wang, S.; Ju, R.; Pan, Z.; Yang, T.; Zhang, G.; Wang, H.; Wang, L. Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages. Nanoscale, 2019, 11(42), 20206-20220.
[http://dx.doi.org/10.1039/C9NR03353J] [PMID: 31621735]
[41]
Long, Y.; Wu, X.; Li, Z.; Fan, J.; Hu, X.; Liu, B. PEGylated WS2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater. Sci., 2020, 8(18), 5088-5105.
[http://dx.doi.org/10.1039/D0BM00972E] [PMID: 32812542]
[42]
Chen, H.; Sha, H.; Zhang, L.; Qian, H.; Chen, F.; Ding, N.; Ji, L.; Zhu, A.; Xu, Q.; Meng, F.; Yu, L.; Zhou, Y.; Liu, B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomedicine, 2018, 13, 5347-5359.
[http://dx.doi.org/10.2147/IJN.S165109] [PMID: 30254439]
[43]
Liu, J.M.; Zhang, D.D.; Fang, G.Z.; Wang, S. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials, 2018, 165, 39-47.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.042] [PMID: 29501968]
[44]
Fan, J.; Liu, B.; Long, Y.; Wang, Z.; Tong, C.; Wang, W.; You, P.; Liu, X. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Acta Biomater., 2020, 113, 554-569.
[http://dx.doi.org/10.1016/j.actbio.2020.06.025] [PMID: 32569637]
[45]
Li, J.; Zhang, X.; Jiang, J.; Wang, Y.; Jiang, H.; Zhang, J.; Nie, X.; Liu, B. Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo. Toxicol. Sci., 2019, 167(1), 269-281.
[http://dx.doi.org/10.1093/toxsci/kfy235] [PMID: 30239936]
[46]
Mohme, M.; Riethdorf, S.; Pantel, K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol., 2017, 14(3), 155-167.
[http://dx.doi.org/10.1038/nrclinonc.2016.144] [PMID: 27644321]
[47]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[48]
Nolan, E.; Savas, P.; Policheni, A.N.; Darcy, P.K.; Vaillant, F.; Mintoff, C.P.; Dushyanthen, S.; Mansour, M.; Pang, J.B.; Fox, S.B.; Perou, C.M.; Visvader, J.E.; Gray, D.H.D.; Loi, S.; Lindeman, G.J. Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab). Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci. Transl. Med., 2017, 9(393), eaal4922.
[http://dx.doi.org/10.1126/scitranslmed.aal4922] [PMID: 28592566]
[49]
Vonderheide, R.H.; Nathanson, K.L. Immunotherapy at large: the road to personalized cancer vaccines. Nat. Med., 2013, 19(9), 1098-1100.
[http://dx.doi.org/10.1038/nm.3317] [PMID: 24013748]
[50]
Li, L.; Yang, S.; Song, L.; Zeng, Y.; He, T.; Wang, N.; Yu, C.; Yin, T.; Liu, L.; Wei, X.; Wu, Q.; Wei, Y.; Yang, L.; Gong, C. An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy. Theranostics, 2018, 8(3), 860-873.
[http://dx.doi.org/10.7150/thno.19826] [PMID: 29344312]
[51]
Yadav, M.; Jhunjhunwala, S.; Phung, Q.T.; Lupardus, P.; Tanguay, J.; Bumbaca, S.; Franci, C.; Cheung, T.K.; Fritsche, J.; Weinschenk, T.; Modrusan, Z.; Mellman, I.; Lill, J.R.; Delamarre, L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014, 515(7528), 572-576.
[http://dx.doi.org/10.1038/nature14001] [PMID: 25428506]
[52]
Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230), 69-74.
[http://dx.doi.org/10.1126/science.aaa4971] [PMID: 25838375]
[53]
Gubin, M.M.; Artyomov, M.N.; Mardis, E.R.; Schreiber, R.D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest., 2015, 125(9), 3413-3421.
[http://dx.doi.org/10.1172/JCI80008] [PMID: 26258412]
[54]
Sauter, B.; Albert, M.L.; Francisco, L.; Larsson, M.; Somersan, S.; Bhardwaj, N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med., 2000, 191(3), 423-434.
[http://dx.doi.org/10.1084/jem.191.3.423] [PMID: 10662788]
[55]
Liang, X.; Ye, X.; Wang, C.; Xing, C.; Miao, Q.; Xie, Z.; Chen, X.; Zhang, X.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release, 2019, 296, 150-161.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.027] [PMID: 30682441]
[56]
He, C.; Duan, X.; Guo, N.; Chan, C.; Poon, C.; Weichselbaum, R.R.; Lin, W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun., 2016, 7, 12499.
[http://dx.doi.org/10.1038/ncomms12499] [PMID: 27530650]
[57]
Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun., 2016, 7, 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[58]
Pei, Q.; Hu, X.; Zheng, X.; Liu, S.; Li, Y.; Jing, X.; Xie, Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano, 2018, 12(2), 1630-1641.
[http://dx.doi.org/10.1021/acsnano.7b08219] [PMID: 29346736]
[59]
Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater., 2016, 28(18), 3460-3466.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[60]
Hu, C.M.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[61]
Pierigè, F.; Serafini, S.; Rossi, L.; Magnani, M. Cell-based drug delivery. Adv. Drug Deliv. Rev., 2008, 60(2), 286-295.
[http://dx.doi.org/10.1016/j.addr.2007.08.029] [PMID: 17997501]
[62]
Muzykantov, V.R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv., 2010, 7(4), 403-427.
[http://dx.doi.org/10.1517/17425241003610633] [PMID: 20192900]
[63]
Liu, W.; Ruan, M.; Wang, Y.; Song, R.; Ji, X.; Xu, J.; Dai, J.; Xue, W. Light-triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small, 2018, 14(38), e1801754.
[http://dx.doi.org/10.1002/smll.201801754] [PMID: 30141569]
[64]
Ding, H.; Lv, Y.; Ni, D.; Wang, J.; Tian, Z.; Wei, W.; Ma, G. Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale, 2015, 7(21), 9806-9815.
[http://dx.doi.org/10.1039/C5NR02470F] [PMID: 25962428]
[65]
Wang, X.H.; Peng, H.S.; Yang, L.; You, F.T.; Teng, F.; Hou, L.L.; Wolfbeis, O.S. Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12471-12475.
[PMID: 25044871]
[66]
Hu, Q.; Gao, M.; Feng, G.; Liu, B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew. Chem. Int. Ed. Engl., 2014, 53(51), 14225-14229.
[http://dx.doi.org/10.1002/anie.201408897] [PMID: 25318447]
[67]
Yang, Z.; Lee, J.H.; Jeon, H.M.; Han, J.H.; Park, N.; He, Y.; Lee, H.; Hong, K.S.; Kang, C.; Kim, J.S. Folate-based near-infrared fluorescent theranostic gemcitabine delivery. J. Am. Chem. Soc., 2013, 135(31), 11657-11662.
[http://dx.doi.org/10.1021/ja405372k] [PMID: 23865715]
[68]
Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, 2013, 3(5), 317-330.
[http://dx.doi.org/10.7150/thno.5284] [PMID: 23650479]
[69]
Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 2011, 40(1), 340-362.
[http://dx.doi.org/10.1039/B915149B] [PMID: 20694259]
[70]
Yuan, Y.; Liu, J.; Liu, B. Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem. Int. Ed. Engl., 2014, 53(28), 7163-7168.
[http://dx.doi.org/10.1002/anie.201402189] [PMID: 24861823]
[71]
Li, Y.; Wen, T.; Zhao, R.; Liu, X.; Ji, T.; Wang, H.; Shi, X.; Shi, J.; Wei, J.; Zhao, Y.; Wu, X.; Nie, G. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano, 2014, 8(11), 11529-11542.
[http://dx.doi.org/10.1021/nn5047647] [PMID: 25375193]
[72]
Jian, W.H.; Yu, T.W.; Chen, C.J.; Huang, W.C.; Chiu, H.C.; Chiang, W.H. Indocyanine green-encapsulated hybrid polymeric nanomicelles for photothermal cancer therapy. Langmuir, 2015, 31(22), 6202-6210.
[http://dx.doi.org/10.1021/acs.langmuir.5b00963] [PMID: 25985856]
[73]
Ren, H.; Liu, J.; Li, Y.; Wang, H.; Ge, S.; Yuan, A.; Hu, Y.; Wu, J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater., 2017, 59, 269-282.
[http://dx.doi.org/10.1016/j.actbio.2017.06.035] [PMID: 28663143]
[74]
Ren, H.; Liu, J.; Su, F.; Ge, S.; Yuan, A.; Dai, W.; Wu, J.; Hu, Y. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(4), 3463-3473.
[http://dx.doi.org/10.1021/acsami.6b14885] [PMID: 28067039]
[75]
Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun., 2015, 6, 8785.
[http://dx.doi.org/10.1038/ncomms9785] [PMID: 26525216]
[76]
Machlus, K.R.; Italiano, J.E., Jr The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol., 2013, 201(6), 785-796.
[http://dx.doi.org/10.1083/jcb.201304054] [PMID: 23751492]
[77]
Anitua, E.; Andia, I.; Ardanza, B.; Nurden, P.; Nurden, A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost., 2004, 91(1), 4-15.
[http://dx.doi.org/10.1160/TH03-07-0440] [PMID: 14691563]
[78]
Estevez, B.; Du, X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda), 2017, 32(2), 162-177.
[http://dx.doi.org/10.1152/physiol.00020.2016] [PMID: 28228483]
[79]
Broos, K.; Feys, H.B.; De Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev., 2011, 25(4), 155-167.
[http://dx.doi.org/10.1016/j.blre.2011.03.002] [PMID: 21496978]
[80]
Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev., 2015, 29(3), 153-162.
[http://dx.doi.org/10.1016/j.blre.2014.10.003] [PMID: 25468720]
[81]
Rubenstein, D.A.; Yin, W. Platelet-activation mechanisms and vascular remodeling. Compr. Physiol., 2018, 8(3), 1117-1156.
[http://dx.doi.org/10.1002/cphy.c170049] [PMID: 29978900]
[82]
Cimmino, G.; Golino, P. Platelet biology and receptor pathways. J. Cardiovasc. Transl. Res., 2013, 6(3), 299-309.
[http://dx.doi.org/10.1007/s12265-012-9445-9] [PMID: 23307175]
[83]
Golino, P.; Crea, F.; Willerson, J.T. How to study the effects of platelet aggregation and thrombosis on coronary vasomotion and their clinical relevance. Ital. Heart J., 2002, 3(4), 220-225.
[PMID: 12025369]
[84]
Kannan, M.; Ahmad, F.; Saxena, R. Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings. Blood Rev., 2019, 37, 100583.
[http://dx.doi.org/10.1016/j.blre.2019.05.007] [PMID: 31133440]
[85]
Palankar, R.; Kohler, T.P.; Krauel, K.; Wesche, J.; Hammerschmidt, S.; Greinacher, A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J. Thromb. Haemost., 2018, 16(6), 1187-1197.
[http://dx.doi.org/10.1111/jth.13955] [PMID: 29350833]
[86]
Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H.N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater., 2015, 27(44), 7043-7050.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[87]
George, D. Platelet-derived growth factor receptors: a therapeutic target in solid tumors. Semin. Oncol., 2001, 28(5)(Suppl. 17), 27-33.
[http://dx.doi.org/10.1016/S0093-7754(01)90100-9] [PMID: 11740804]
[88]
Schwarz, S.; Gockel, L.M.; Naggi, A.; Barash, U.; Gobec, M.; Bendas, G.; Schlesinger, M. Glycosaminoglycans as tools to decipher the platelet tumor cell interaction: A focus on P-selectin. Molecules, 2020, 25(5), 1039.
[http://dx.doi.org/10.3390/molecules25051039] [PMID: 32110917]
[89]
Qi, C.; Wei, B.; Zhou, W.; Yang, Y.; Li, B.; Guo, S.; Li, J.; Ye, J.; Li, J.; Zhang, Q.; Lan, T.; He, X.; Cao, L.; Zhou, J.; Geng, J.; Wang, L. P-selectin-mediated platelet adhesion promotes tumor growth. Oncotarget, 2015, 6(9), 6584-6596.
[http://dx.doi.org/10.18632/oncotarget.3164] [PMID: 25762641]
[90]
Mege, D.; Aubert, M.; Lacroix, R.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Involvement of platelets in cancers. Semin. Thromb. Hemost., 2019, 45(6), 569-575.
[http://dx.doi.org/10.1055/s-0039-1693475] [PMID: 31382305]
[91]
Coupland, L.A.; Chong, B.H.; Parish, C.R. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res., 2012, 72(18), 4662-4671.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4010] [PMID: 22836751]
[92]
Ying, M.; Zhuang, J.; Wei, X.; Zhang, X.; Zhang, Y.; Jiang, Y.; Dehaini, D.; Chen, M.; Gu, S.; Gao, W.; Lu, W.; Fang, R.H.; Zhang, L. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater., 2018, 28(22), 1801032.
[http://dx.doi.org/10.1002/adfm.201801032] [PMID: 30319322]
[93]
Zhuang, J.; Gong, H.; Zhou, J.; Zhang, Q.; Gao, W.; Fang, R.H.; Zhang, L. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv., 2020, 6(13), eaaz6108.
[http://dx.doi.org/10.1126/sciadv.aaz6108] [PMID: 32258408]
[94]
Zhuang, J.; Kuo, C.H.; Chou, L.Y.; Liu, D.Y.; Weerapana, E.; Tsung, C.K. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano, 2014, 8(3), 2812-2819.
[http://dx.doi.org/10.1021/nn406590q] [PMID: 24506773]
[95]
Zhang, H.; Chen, W.; Gong, K.; Chen, J. Nanoscale zeolitic imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG oligodeoxynucleotides. ACS Appl. Mater. Interfaces, 2017, 9(37), 31519-31525.
[http://dx.doi.org/10.1021/acsami.7b09583] [PMID: 28841289]
[96]
Fouad, T.M.; Kogawa, T.; Liu, D.D.; Shen, Y.; Masuda, H.; El-Zein, R.; Woodward, W.A.; Chavez-MacGregor, M.; Alvarez, R.H.; Arun, B.; Lucci, A.; Krishnamurthy, S.; Babiera, G.; Buchholz, T.A.; Valero, V.; Ueno, N.T. Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast Cancer Res. Treat., 2015, 152(2), 407-416.
[http://dx.doi.org/10.1007/s10549-015-3436-x] [PMID: 26017070]
[97]
Li, J.; Sharkey, C.C.; Wun, B.; Liesveld, J.L.; King, M.R. Genetic engineering of platelets to neutralize circulating tumor cells. J. Control. Release, 2016, 228, 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.036] [PMID: 26921521]
[98]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[99]
Wan, L.; Pantel, K.; Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat. Med., 2013, 19(11), 1450-1464.
[http://dx.doi.org/10.1038/nm.3391] [PMID: 24202397]
[100]
Rosenberg, S.A. IL-2: the first effective immunotherapy for human cancer. J. Immunol., 2014, 192(12), 5451-5458.
[http://dx.doi.org/10.4049/jimmunol.1490019] [PMID: 24907378]
[101]
Rizza, P.; Moretti, F.; Belardelli, F. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity, 2010, 43(3), 204-209.
[http://dx.doi.org/10.3109/08916930903510880] [PMID: 20187707]
[102]
Hejna, M.; Raderer, M.; Zielinski, C.C. Inhibition of metastases by anticoagulants. J. Natl. Cancer Inst., 1999, 91(1), 22-36.
[http://dx.doi.org/10.1093/jnci/91.1.22] [PMID: 9890167]
[103]
Amirkhosravi, A.; Mousa, S.A.; Amaya, M.; Meyer, T.; Davila, M.; Robson, T.; Francis, J.L. Assessment of anti-metastatic effects of anticoagulant and antiplatelet agents using animal models of experimental lung metastasis. Methods Mol. Biol., 2010, 663, 241-259.
[http://dx.doi.org/10.1007/978-1-60761-803-4_10] [PMID: 20617422]
[104]
Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76, 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[105]
Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small, 2020, 16(22), e2001704.
[http://dx.doi.org/10.1002/smll.202001704] [PMID: 32338436]
[106]
Ye, H.; Wang, K.; Wang, M.; Liu, R.; Song, H.; Li, N.; Lu, Q.; Zhang, W.; Du, Y.; Yang, W.; Zhong, L.; Wang, Y.; Yu, B.; Wang, H.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials, 2019, 206, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.024] [PMID: 30921730]
[107]
Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer, 2011, 11(2), 123-134.
[http://dx.doi.org/10.1038/nrc3004] [PMID: 21258396]
[108]
Alves, C.S.; Burdick, M.M.; Thomas, S.N.; Pawar, P.; Konstantopoulos, K. The dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am. J. Physiol. Cell Physiol., 2008, 294(4), C907-C916.
[http://dx.doi.org/10.1152/ajpcell.00463.2007] [PMID: 18234849]
[109]
Borsig, L.; Wong, R.; Feramisco, J.; Nadeau, D.R.; Varki, N.M.; Varki, A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3352-3357.
[http://dx.doi.org/10.1073/pnas.061615598] [PMID: 11248082]
[110]
Demers, M.; Wagner, D.D. Targeting platelet function to improve drug delivery. OncoImmunology, 2012, 1(1), 100-102.
[http://dx.doi.org/10.4161/onci.1.1.17962] [PMID: 22720224]
[111]
Jurasz, P.; Alonso-Escolano, D.; Radomski, M.W. Platelet--cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharmacol., 2004, 143(7), 819-826.
[http://dx.doi.org/10.1038/sj.bjp.0706013] [PMID: 15492016]
[112]
Labelle, M.; Begum, S.; Hynes, R.O. Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. USA, 2014, 111(30), E3053-E3061.
[http://dx.doi.org/10.1073/pnas.1411082111] [PMID: 25024172]
[113]
Xu, L.; Gao, F.; Fan, F.; Yang, L. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials, 2018, 159, 59-67.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.028] [PMID: 29309994]
[114]
Nash, G.F.; Turner, L.F.; Scully, M.F.; Kakkar, A.K. Platelets and cancer. Lancet Oncol., 2002, 3(7), 425-430.
[http://dx.doi.org/10.1016/S1470-2045(02)00789-1] [PMID: 12142172]
[115]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[116]
van Es, N.; Sturk, A.; Middeldorp, S.; Nieuwland, R. Effects of cancer on platelets. Semin. Oncol., 2014, 41(3), 311-318.
[http://dx.doi.org/10.1053/j.seminoncol.2014.04.015] [PMID: 25023347]
[117]
Tesfamariam, B. Involvement of platelets in tumor cell metastasis. Pharmacol. Ther., 2016, 157, 112-119.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.005] [PMID: 26615781]
[118]
Poggi, A.; Stella, M.; Donati, M.B. The importance of blood cell-vessel wall interactions in tumour metastasis. Baillieres Clin. Haematol., 1993, 6(3), 731-752.
[http://dx.doi.org/10.1016/S0950-3536(05)80196-9] [PMID: 8025349]
[119]
Liu, G.; Zhao, X.; Zhang, Y.; Xu, J.; Xu, J.; Li, Y.; Min, H.; Shi, J.; Zhao, Y.; Wei, J.; Wang, J.; Nie, G. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv. Mater., 2019, 31(32), e1900795.
[http://dx.doi.org/10.1002/adma.201900795] [PMID: 31222856]
[120]
Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-based drug delivery systems. Adv. Mater., 2018, 30(22), e1706245.
[http://dx.doi.org/10.1002/adma.201706245] [PMID: 29577477]
[121]
Dupré, A.; Malik, H.Z. Inflammation and cancer: What a surgical oncologist should know. Eur. J. Surg. Oncol., 2018, 44(5), 566-570.
[http://dx.doi.org/10.1016/j.ejso.2018.02.209] [PMID: 29530345]
[122]
Kumar, S.; Gupta, E.; Kaushik, S.; Jyoti, A. Neutrophil extracellular traps: Formation and involvement in disease progression. Iran. J. Allergy Asthma Immunol., 2018, 17(3), 208-220.
[PMID: 29908538]
[123]
Peres, R.S.; Menezes, G.B.; Teixeira, M.M.; Cunha, F.Q. Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol. Res., 2016, 112, 37-48.
[http://dx.doi.org/10.1016/j.phrs.2016.01.015] [PMID: 26808082]
[124]
Ostan, R.; Lanzarini, C.; Pini, E.; Scurti, M.; Vianello, D.; Bertarelli, C.; Fabbri, C.; Izzi, M.; Palmas, G.; Biondi, F.; Martucci, M.; Bellavista, E.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients, 2015, 7(4), 2589-2621.
[http://dx.doi.org/10.3390/nu7042589] [PMID: 25859884]
[125]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[126]
Murata, M. Inflammation and cancer. Environ. Health Prev. Med., 2018, 23(1), 50.
[http://dx.doi.org/10.1186/s12199-018-0740-1] [PMID: 30340457]
[127]
Khandia, R.; Munjal, A. Interplay between inflammation and cancer. Adv. Protein Chem. Struct. Biol., 2020, 119, 199-245.
[http://dx.doi.org/10.1016/bs.apcsb.2019.09.004] [PMID: 31997769]
[128]
Ritter, B.; Greten, F.R. Modulating inflammation for cancer therapy. J. Exp. Med., 2019, 216(6), 1234-1243.
[http://dx.doi.org/10.1084/jem.20181739] [PMID: 31023715]
[129]
Garley, M.; Jabłońska, E.; Dąbrowska, D. NETs in cancer. Tumour Biol., 2016, 37(11), 14355-14361.
[http://dx.doi.org/10.1007/s13277-016-5328-z] [PMID: 27614687]
[130]
Malech, H.L.; DeLeo, F.R.; Quinn, M.T. The role of neutrophils in the immune system: An overview. Methods Mol. Biol., 2020, 2087, 3-10.
[http://dx.doi.org/10.1007/978-1-0716-0154-9_1] [PMID: 31728979]
[131]
Karsten, C.B.; Mehta, N.; Shin, S.A.; Diefenbach, T.J.; Slein, M.D.; Karpinski, W.; Irvine, E.B.; Broge, T.; Suscovich, T.J.; Alter, G. A versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosis. J. Immunol. Methods, 2019, 471, 46-56.
[http://dx.doi.org/10.1016/j.jim.2019.05.006] [PMID: 31132351]
[132]
Crameri, R.; Blaser, K. Allergy and immunity to fungal infections and colonization. Eur. Respir. J., 2002, 19(1), 151-157.
[http://dx.doi.org/10.1183/09031936.02.00229102] [PMID: 11843314]
[133]
Nishimura, M.; Epstein, W.L.; Fukuyama, K. Autotransplantation of hepatic granulomas into the skin of mice with Schistosoma mansoni infection. J. Invest. Dermatol., 1982, 79(3), 153-157.
[http://dx.doi.org/10.1111/1523-1747.ep12500045] [PMID: 7050252]
[134]
Zhou, X.; Yang, L.; Fan, X.; Zhao, X.; Chang, N.; Yang, L.; Li, L. Neutrophil chemotaxis and NETosis in murine chronic liver injury via cannabinoid receptor 1/Gαi/o/ROS/p38 MAPK signaling pathway. Cells, 2020, 9(2), 373.
[http://dx.doi.org/10.3390/cells9020373]
[135]
Santos, C.M.M.; Ribeiro, D.; Silva, A.M.S.; Fernandes, E. 2,3-Diarylxanthones as potential inhibitors of arachidonic acid metabolic pathways. Inflammation, 2017, 40(3), 956-964.
[http://dx.doi.org/10.1007/s10753-017-0540-6] [PMID: 28285462]
[136]
Cabel, L.; Proudhon, C.; Gortais, H.; Loirat, D.; Coussy, F.; Pierga, J.Y.; Bidard, F.C. Circulating tumor cells: clinical validity and utility. Int. J. Clin. Oncol., 2017, 22(3), 421-430.
[http://dx.doi.org/10.1007/s10147-017-1105-2] [PMID: 28238187]
[137]
Castro-Giner, F.; Aceto, N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med., 2020, 12(1), 31.
[http://dx.doi.org/10.1186/s13073-020-00728-3] [PMID: 32192534]
[138]
García, S.A.; Weitz, J.; Schölch, S. Circulating tumor cells. Methods Mol. Biol., 2018, 1692, 213-219.
[http://dx.doi.org/10.1007/978-1-4939-7401-6_18] [PMID: 28986899]
[139]
Wang, H.S.; Hung, Y.; Su, C.H.; Peng, S.T.; Guo, Y.J.; Lai, M.C.; Liu, C.Y.; Hsu, J.W. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp. Cell Res., 2005, 304(1), 116-126.
[http://dx.doi.org/10.1016/j.yexcr.2004.10.015] [PMID: 15707579]
[140]
Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; Nakasone, E.S.; Hearn, S.A.; Küttner, V.; Qiu, J.; Almeida, A.S.; Perurena, N.; Kessenbrock, K.; Goldberg, M.S.; Egeblad, M. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med., 2016, 8(361), 361ra138.
[http://dx.doi.org/10.1126/scitranslmed.aag1711] [PMID: 27798263]
[141]
Kang, T.; Zhu, Q.; Wei, D.; Feng, J.; Yao, J.; Jiang, T.; Song, Q.; Wei, X.; Chen, H.; Gao, X.; Chen, J. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano, 2017, 11(2), 1397-1411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[142]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[143]
Smigiel, K.S.; Parks, W.C. Macrophages, wound healing, and fibrosis: Recent insights. Curr. Rheumatol. Rep., 2018, 20(4), 17.
[http://dx.doi.org/10.1007/s11926-018-0725-5] [PMID: 29550962]
[144]
Moore, E.M.; West, J.L. Harnessing macrophages for vascularization in tissue engineering. Ann. Biomed. Eng., 2019, 47(2), 354-365.
[http://dx.doi.org/10.1007/s10439-018-02170-4] [PMID: 30535815]
[145]
Essandoh, K.; Li, Y.; Huo, J.; Fan, G.C. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock, 2016, 46(2), 122-131.
[http://dx.doi.org/10.1097/SHK.0000000000000604] [PMID: 26954942]
[146]
Dalby, E. Activating murine macrophages in vitro. Methods Mol. Biol., 2018, 1784, 111-117.
[http://dx.doi.org/10.1007/978-1-4939-7837-3_11] [PMID: 29761393]
[147]
Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology, 2018, 223(1), 101-111.
[http://dx.doi.org/10.1016/j.imbio.2017.10.005] [PMID: 29032836]
[148]
Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol., 2019, 70, 459-466.
[http://dx.doi.org/10.1016/j.intimp.2019.02.050] [PMID: 30861466]
[149]
Ruytinx, P.; Proost, P.; Van Damme, J.; Struyf, S. Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol., 2018, 9, 1930.
[http://dx.doi.org/10.3389/fimmu.2018.01930] [PMID: 30245686]
[150]
Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, 53(5), 676-688.
[http://dx.doi.org/10.1165/rcmb.2015-0012OC] [PMID: 25870903]
[151]
Liu, H.; Dong, H.; Jiang, L.; Li, Z.; Ma, X. Bleomycin inhibits proliferation and induces apoptosis in TPC-1 cells through reversing M2-macrophages polarization. Oncol. Lett., 2018, 16(3), 3858-3866.
[http://dx.doi.org/10.3892/ol.2018.9103] [PMID: 30127999]
[152]
Tekin, C.; Aberson, H.L.; Bijlsma, M.F.; Spek, C.A. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer, 2020, 20(1), 1183.
[http://dx.doi.org/10.1186/s12885-020-07697-1] [PMID: 33267818]
[153]
Cheng, J.; Zhang, R.; Li, C.; Tao, H.; Dou, Y.; Wang, Y.; Hu, H.; Zhang, J. A targeting nanotherapy for abdominal aortic aneurysms. J. Am. Coll. Cardiol., 2018, 72(21), 2591-2605.
[http://dx.doi.org/10.1016/j.jacc.2018.08.2188] [PMID: 30466517]
[154]
Zhang, Y.; Cai, K.; Li, C.; Guo, Q.; Chen, Q.; He, X.; Liu, L.; Zhang, Y.; Lu, Y.; Chen, X.; Sun, T.; Huang, Y.; Cheng, J.; Jiang, C. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett., 2018, 18(3), 1908-1915.
[http://dx.doi.org/10.1021/acs.nanolett.7b05263] [PMID: 29473753]
[155]
Zhang, D.; Lin, Z.; Zheng, Y.; Song, J.; Li, J.; Zeng, Y.; Liu, X. Ultrasound-driven biomimetic nanosystem suppresses tumor growth and metastasis through sonodynamic therapy, CO therapy, and indoleamine 2,3-dioxygenase inhibition. ACS Nano, 2020, 14(7), 8985-8999.
[http://dx.doi.org/10.1021/acsnano.0c03833] [PMID: 32662971]
[156]
Wang, C.; Wang, Y.; Zhang, L.; Miron, R.J.; Liang, J.; Shi, M.; Mo, W.; Zheng, S.; Zhao, Y.; Zhang, Y. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater., 2018, 30(46), e1804023.
[http://dx.doi.org/10.1002/adma.201804023] [PMID: 30285289]
[157]
Mo, J.; Xie, Q.; Wei, W.; Zhao, J. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nat. Commun., 2018, 9(1), 2480.
[http://dx.doi.org/10.1038/s41467-018-04873-7] [PMID: 29946125]
[158]
Zhang, Q.; Wei, W.; Wang, P.; Zuo, L.; Li, F.; Xu, J.; Xi, X.; Gao, X.; Ma, G.; Xie, H.Y. Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-cell-based anticancer therapy. ACS Nano, 2017, 11(11), 10724-10732.
[http://dx.doi.org/10.1021/acsnano.7b04955] [PMID: 28921946]
[159]
He, X.; Cao, H.; Wang, H.; Tan, T.; Yu, H.; Zhang, P.; Yin, Q.; Zhang, Z.; Li, Y. Inflammatory monocytes loading protease-sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti-metastasis therapy. Nano Lett., 2017, 17(9), 5546-5554.
[http://dx.doi.org/10.1021/acs.nanolett.7b02330] [PMID: 28758755]
[160]
Xuan, M.; Shao, J.; Dai, L.; Li, J.; He, Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(15), 9610-9618.
[http://dx.doi.org/10.1021/acsami.6b00853] [PMID: 27039688]
[161]
Hu, C.; Lei, T.; Wang, Y.; Cao, J.; Yang, X.; Qin, L.; Liu, R.; Zhou, Y.; Tong, F.; Umeshappa, C.S.; Gao, H. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120159] [PMID: 32554131]
[162]
Terrén, I.; Orrantia, A.; Vitallé, J.; Zenarruzabeitia, O.; Borrego, F. NK cell metabolism and tumor microenvironment. Front. Immunol., 2019, 10, 2278.
[http://dx.doi.org/10.3389/fimmu.2019.02278] [PMID: 31616440]
[163]
Vitale, M.; Cantoni, C.; Pietra, G.; Mingari, M.C.; Moretta, L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur. J. Immunol., 2014, 44(6), 1582-1592.
[http://dx.doi.org/10.1002/eji.201344272] [PMID: 24777896]
[164]
Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov., 2020, 19(3), 200-218.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[165]
Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol., 2018, 18(11), 671-688.
[http://dx.doi.org/10.1038/s41577-018-0061-z] [PMID: 30209347]
[166]
Grudzien, M.; Rapak, A. Effect of natural compounds on NK cell activation. J. Immunol. Res., 2018, 2018, 4868417.
[http://dx.doi.org/10.1155/2018/4868417] [PMID: 30671486]
[167]
Zheng, Y.; Li, Y.; Lian, J.; Yang, H.; Li, F.; Zhao, S.; Qi, Y.; Zhang, Y.; Huang, L. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. J. Transl. Med., 2019, 17(1), 165.
[http://dx.doi.org/10.1186/s12967-019-1917-0] [PMID: 31109341]
[168]
Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol., 2021, 18(2), 85-100.
[http://dx.doi.org/10.1038/s41571-020-0426-7] [PMID: 32934330]
[169]
Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol., 2020, 10, 3038.
[http://dx.doi.org/10.3389/fimmu.2019.03038] [PMID: 32038612]
[170]
Deng, G.; Sun, Z.; Li, S.; Peng, X.; Li, W.; Zhou, L.; Ma, Y.; Gong, P.; Cai, L. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano, 2018, 12(12), 12096-12108.
[http://dx.doi.org/10.1021/acsnano.8b05292] [PMID: 30444351]
[171]
Wu, M.; Mei, T.; Lin, C.; Wang, Y.; Chen, J.; Le, W.; Sun, M.; Xu, J.; Dai, H.; Zhang, Y.; Xue, C.; Liu, Z.; Chen, B. Melanoma cell membrane biomimetic versatile cus nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy. ACS Appl. Mater. Interfaces, 2020, 12(14), 16031-16039.
[http://dx.doi.org/10.1021/acsami.9b23177] [PMID: 32186357]
[172]
Liu, X.; Sun, Y.; Xu, S.; Gao, X.; Kong, F.; Xu, K.; Tang, B. Homotypic cell membrane-cloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma. Theranostics, 2019, 9(20), 5828-5838.
[http://dx.doi.org/10.7150/thno.34837] [PMID: 31534522]
[173]
Li, M.; Li, S.; Zhou, H.; Tang, X.; Wu, Y.; Jiang, W.; Tian, Z.; Zhou, X.; Yang, X.; Wang, Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun., 2020, 11(1), 1126.
[http://dx.doi.org/10.1038/s41467-020-14963-0] [PMID: 32111847]
[174]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]
[175]
Li, S.Y.; Cheng, H.; Qiu, W.X.; Zhang, L.; Wan, S.S.; Zeng, J.Y.; Zhang, X.Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials, 2017, 142, 149-161.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.026] [PMID: 28735175]
[176]
Fang, R.H.; Hu, C.M.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O’Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett., 2014, 14(4), 2181-2188.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[177]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater., 2016, 28(43), 9581-9588.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[178]
Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; Yu, W.Y.; Qiu, W.X.; Hu, J.J.; Feng, J.; Zhang, X.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett., 2016, 16(9), 5895-5901.
[http://dx.doi.org/10.1021/acs.nanolett.6b02786] [PMID: 27513184]
[179]
Zhao, Q.; Sun, X.; Wu, B.; Shang, Y.; Huang, X.; Dong, H.; Liu, H.; Chen, W.; Gui, R.; Li, J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J. Nanobiotechnology, 2021, 19(1), 8.
[http://dx.doi.org/10.1186/s12951-020-00738-8] [PMID: 33407527]
[180]
He, H.; Guo, C.; Wang, J.; Korzun, W.J.; Wang, X.Y.; Ghosh, S.; Yang, H. Leutusome: A biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett., 2018, 18(10), 6164-6174.
[http://dx.doi.org/10.1021/acs.nanolett.8b01892] [PMID: 30207473]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy