Review Article

M6A调控因子在肝细胞癌中的作用:促进或抑制

卷 22, 期 1, 2022

发表于: 30 December, 2021

页: [40 - 50] 页: 11

弟呕挨: 10.2174/1566523221666211126105940

价格: $65

摘要

肝细胞癌(HCC)是全球第六大诊断的预后不良的癌症。虽然肝细胞癌的病理因素已被很好地阐明,但其潜在的分子机制尚不清楚。N6-甲基腺苷(M6A)是发生在N6位点的腺苷甲基化,这是真核mRNA最常见的修饰。近年来的研究表明,M6A可以调控基因表达,从而调控细胞的自我更新、分化和凋亡过程。M6A中的甲基由甲基转移酶(“著者”)安装,由去甲基酶(“橡皮擦”)去除,并被M6A结合蛋白(“读卡器”)识别。本文就上述调控因子在HCC进展和预后中的作用进行探讨,并总结M6A修饰与肝细胞癌的临床联系,以期为临床治疗提供更有价值的信息。

关键词: 肝细胞癌,n6 -甲基腺苷,RNA甲基化,甲基转移酶,去甲基酶,m6a结合蛋白。

图形摘要

[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: Evidence from independent datasets. Cancer Manag Res 2019; 11: 3921-31.
[http://dx.doi.org/10.2147/CMAR.S191565] [PMID: 31118805]
[3]
Liu J, Lian X, Liu F, et al. Identification of Novel Key Targets and candidate drugs in oral squamous cell carcinoma. Curr Bioinform 2020; 15(4): 328-37.
[http://dx.doi.org/10.2174/1574893614666191127101836]
[4]
Zhang CH, Li M, Lin YP, Gao Q. Systemic therapy for hepatocellular carcinoma: Advances and hopes. Curr Gene Ther 2020; 20(2): 84-99.
[http://dx.doi.org/10.2174/1566523220666200628014530] [PMID: 32600231]
[5]
Yu L, Wang M, Yang Y, et al. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLOS Comput Biol 2021; 17(2): e1008696.
[http://dx.doi.org/10.1371/journal.pcbi.1008696] [PMID: 33561121]
[6]
Yu L, Xu F, Gao L. Predict new therapeutic drugs for hepatocellular carcinoma based on gene mutation and expression. Front Bioeng Biotechnol 2020; 8: 8.
[http://dx.doi.org/10.3389/fbioe.2020.00008] [PMID: 32047745]
[7]
Zhang ZM, Wang JS, Zulfiqar H, Lv H, Dao FY, Lin H. Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method. Front Cell Dev Biol 2020; 8: 582864.
[http://dx.doi.org/10.3389/fcell.2020.582864] [PMID: 33178697]
[8]
Zhang ZM, Tan JX, Wang F, Dao FY, Zhang ZY, Lin H. Early diagnosis of hepatocellular carcinoma using machine learning method. Front Bioeng Biotechnol 2020; 8: 254.
[http://dx.doi.org/10.3389/fbioe.2020.00254] [PMID: 32292778]
[9]
Beemon K, Keith J. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 1977; 113(1): 165-79.
[http://dx.doi.org/10.1016/0022-2836(77)90047-X] [PMID: 196091]
[10]
Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J Virol 1976; 20(1): 45-53.
[http://dx.doi.org/10.1128/jvi.20.1.45-53.1976] [PMID: 1086370]
[11]
Elhefnawi M, Salah Z, Soliman B. The Promise of miRNA Replacement therapy for hepatocellular carcinoma. Curr Gene Ther 2019; 19(5): 290-304.
[http://dx.doi.org/10.2174/1566523219666191023101433] [PMID: 31657677]
[12]
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149(7): 1635-46.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[13]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485(7397): 201-6.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[14]
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997; 3(11): 1233-47.
[PMID: 9409616]
[15]
Wei CM, Moss B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 1977; 16(8): 1672-6.
[http://dx.doi.org/10.1021/bi00627a023] [PMID: 856255]
[16]
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in gene expression regulation. Cell 2017; 169(7): 1187-200.
[http://dx.doi.org/10.1016/j.cell.2017.05.045] [PMID: 28622506]
[17]
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol Cell 2016; 63(2): 306-17.
[http://dx.doi.org/10.1016/j.molcel.2016.05.041] [PMID: 27373337]
[18]
Wang X, Feng J, Xue Y, et al. Corrigendum: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 2017; 542(7640): 260.
[http://dx.doi.org/10.1038/nature21073] [PMID: 28099411]
[19]
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24(2): 177-89.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[20]
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537(7620): 369-73.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[21]
Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell 2018; 69(6): 1028-1038.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.02.015] [PMID: 29547716]
[22]
Růžička K, Zhang M, Campilho A, et al. Identification of factors required for m6 A mRNA methylation in arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol 2017; 215(1): 157-72.
[http://dx.doi.org/10.1111/nph.14586] [PMID: 28503769]
[23]
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 2018; 4: 10.
[http://dx.doi.org/10.1038/s41421-018-0019-0] [PMID: 29507755]
[24]
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m6A Methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 2017; 169(5): 824-835.e14.
[http://dx.doi.org/10.1016/j.cell.2017.05.003] [PMID: 28525753]
[25]
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7(12): 885-7.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[26]
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49(1): 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[27]
Jia G, Yang CG, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008; 582(23-24): 3313-9.
[http://dx.doi.org/10.1016/j.febslet.2008.08.019] [PMID: 18775698]
[28]
Toh JDW, Sun L, Lau LZM, et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N6-methyladenosine demethylase FTO. Chem Sci (Camb) 2015; 6(1): 112-22.
[http://dx.doi.org/10.1039/C4SC02554G] [PMID: 28553460]
[29]
Aik W, Scotti JS, Choi H, et al. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 2014; 42(7): 4741-54.
[http://dx.doi.org/10.1093/nar/gku085] [PMID: 24489119]
[30]
Chen W, Zhang L, Zheng G, et al. Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett 2014; 588(6): 892-8.
[http://dx.doi.org/10.1016/j.febslet.2014.02.021] [PMID: 24561204]
[31]
Fu Y, Jia G, Pang X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 2013; 4: 1798.
[http://dx.doi.org/10.1038/ncomms2822] [PMID: 23653210]
[32]
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer 2019; 18(1): 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[33]
Casella G, Tsitsipatis D, Abdelmohsen K, Gorospe M. mRNA methylation in cell senescence. Wiley Interdiscip Rev RNA 2019; 10(6): e1547.
[http://dx.doi.org/10.1002/wrna.1547] [PMID: 31144457]
[34]
Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 2014; 10(11): 927-9.
[http://dx.doi.org/10.1038/nchembio.1654] [PMID: 25242552]
[35]
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation Efficiency. Cell 2015; 161(6): 1388-99.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]
[36]
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117-20.
[http://dx.doi.org/10.1038/nature12730] [PMID: 24284625]
[37]
Li A, Chen YS, Ping XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 2017; 27(3): 444-7.
[http://dx.doi.org/10.1038/cr.2017.10] [PMID: 28106076]
[38]
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27(3): 315-28.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[39]
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 2018; 14(5): e1007412.
[http://dx.doi.org/10.1371/journal.pgen.1007412] [PMID: 29799838]
[40]
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017; 27(9): 1115-27.
[http://dx.doi.org/10.1038/cr.2017.99] [PMID: 28809393]
[41]
Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 2019; 18(1): 112.
[http://dx.doi.org/10.1186/s12943-019-1038-7] [PMID: 31230592]
[42]
Müller S, Glaß M, Singh AK, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 2019; 47(1): 375-90.
[http://dx.doi.org/10.1093/nar/gky1012] [PMID: 30371874]
[43]
Wang S, Chim B, Su Y, et al. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Genes Dev 2019; 33(15-16): 1048-68.
[http://dx.doi.org/10.1101/gad.325100.119] [PMID: 31221665]
[44]
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 2015; 162(6): 1299-308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[45]
Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 2020; 13(1): 5.
[http://dx.doi.org/10.1186/s13045-019-0839-x] [PMID: 31915027]
[46]
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018; 67(6): 2254-70.
[http://dx.doi.org/10.1002/hep.29683] [PMID: 29171881]
[47]
Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun 2019; 10(1): 2065.
[http://dx.doi.org/10.1038/s41467-019-09865-9] [PMID: 31061416]
[48]
Xu H, Wang H, Zhao W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics 2020; 10(13): 5671-86.
[http://dx.doi.org/10.7150/thno.42539] [PMID: 32483411]
[49]
Cui M, Sun J, Hou J, et al. The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma. Tumour Biol 2016; 37(10): 13521-31.
[http://dx.doi.org/10.1007/s13277-016-5215-7] [PMID: 27465557]
[50]
Hernández-Caballero ME, Sierra-Ramírez JA. Single nucleotide polymorphisms of the FTO gene and cancer risk: An overview. Mol Biol Rep 2015; 42(3): 699-704.
[http://dx.doi.org/10.1007/s11033-014-3817-y] [PMID: 25387436]
[51]
Huang X, Zhao J, Yang M, Li M, Zheng J. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur J Cancer Care (Engl) 2017; 26(5)
[http://dx.doi.org/10.1111/ecc.12464] [PMID: 26931363]
[52]
Kaklamani V, Yi N, Sadim M, et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet 2011; 12: 52.
[http://dx.doi.org/10.1186/1471-2350-12-52] [PMID: 21489227]
[53]
Kalo E, Güvenç C, Marasigan V, Lambrechts D, van den Oord J, Garmyn M. A variant in FTO gene shows association with histological ulceration in cutaneous melanoma. J Cutan Pathol 2020; 47(1): 98-101.
[http://dx.doi.org/10.1111/cup.13575] [PMID: 31469442]
[54]
Zhou W, Yang F, Xu Z, et al. Comprehensive analysis of copy number variations in kidney cancer by single-cell exome sequencing. Front Genet 2020; 10: 1379.
[http://dx.doi.org/10.3389/fgene.2019.01379] [PMID: 32038722]
[55]
Liu G, Hu Y, Jin S, Jiang Q. Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proc Natl Acad Sci USA 2017; 114(6): E906-7.
[http://dx.doi.org/10.1073/pnas.1618520114] [PMID: 28137889]
[56]
Li J, Zhu L, Shi Y, Liu J, Lin L, Chen X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res 2019; 11(9): 6084-92.
[PMID: 31632576]
[57]
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 2018; 21(4): 859-68.
[http://dx.doi.org/10.3233/CBM-170791] [PMID: 29439311]
[58]
Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer 2019; 18(1): 186.
[http://dx.doi.org/10.1186/s12943-019-1106-z] [PMID: 31856849]
[59]
Wang Y, Shi J, Chai K, Ying X, Zhou BP. The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets 2013; 13(9): 963-72.
[http://dx.doi.org/10.2174/15680096113136660102] [PMID: 24168186]
[60]
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. OncoTargets Ther 2019; 12: 3421-8.
[http://dx.doi.org/10.2147/OTT.S180954] [PMID: 31118692]
[61]
Wang M, Yang Y, Yang J, Yang J, Han S. circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1. Life Sci 2020; 257: 118082.
[http://dx.doi.org/10.1016/j.lfs.2020.118082] [PMID: 32653519]
[62]
Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 2020; 39(23): 4507-18.
[http://dx.doi.org/10.1038/s41388-020-1303-7] [PMID: 32366907]
[63]
Bian S, Ni W, Zhu M, et al. Identification and validation of the N6-Methyladenosine RNA methylation regulator YTHDF1 as a novel prognostic marker and potential target for hepatocellular carcinoma. Front Mol Biosci 2020; 7: 604766.
[http://dx.doi.org/10.3389/fmolb.2020.604766] [PMID: 33363211]
[64]
Wang H, Liang L, Dong Q, et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 2018; 8(10): 2814-29.
[http://dx.doi.org/10.7150/thno.23012] [PMID: 29774077]
[65]
Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: Functions in growth and differentiation. Gene 2001; 273(2): 141-61.
[http://dx.doi.org/10.1016/S0378-1119(01)00593-5] [PMID: 11595161]
[66]
Sera T, Hiasa Y, Mashiba T, et al. Wilms’ tumour 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur J Cancer 2008; 44(4): 600-8.
[http://dx.doi.org/10.1016/j.ejca.2008.01.008] [PMID: 18255279]
[67]
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 2019; 18(1): 127.
[http://dx.doi.org/10.1186/s12943-019-1053-8] [PMID: 31438961]
[68]
Kessler SM, Laggai S, Barghash A, et al. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 2015; 6: e1894.
[http://dx.doi.org/10.1038/cddis.2015.241] [PMID: 26426686]
[69]
Simon Y, Kessler SM, Bohle RM, Haybaeck J, Kiemer AK. The insulin-like growth factor 2 (IGF2) mRNA-binding protein p62/IGF2BP2-2 as a promoter of NAFLD and HCC? Gut 2014; 63(5): 861-3.
[http://dx.doi.org/10.1136/gutjnl-2013-305736] [PMID: 24173291]
[70]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, El Tayebi HM, Abdelaziz AI. miR-1275: A single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett 2015; 589(17): 2257-65.
[http://dx.doi.org/10.1016/j.febslet.2015.06.038] [PMID: 26160756]
[71]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, Abdelaziz AI. Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors 2016; 34(1-2): 42-50.
[http://dx.doi.org/10.3109/08977194.2016.1169532] [PMID: 27126374]
[72]
Zhang Y, Liu T, Wang J, et al. Cellinker: A platform of ligand-receptor interactions for intercellular communication analysis. Bioinformatics 2021; btab036.
[http://dx.doi.org/10.1093/bioinformatics/btab036] [PMID: 33471060]
[73]
Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of METTL3 as an adverse prognostic biomarker in hepatocellular carcinoma. Dig Dis Sci 2021; 66(4): 1110-26.
[http://dx.doi.org/10.1007/s10620-020-06260-z] [PMID: 32333311]
[74]
Zhou J, Wang J, Hong B, et al. Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma - a retrospective study using TCGA database. Aging (Albany NY) 2019; 11(6): 1633-47.
[http://dx.doi.org/10.18632/aging.101856] [PMID: 30877265]
[75]
Xie Q, Wu TP, Gimple RC, et al. N6-methyladenine DNA modification in glioblastoma. Cell 2018; 175(5): 1228-1243.e20.
[http://dx.doi.org/10.1016/j.cell.2018.10.006] [PMID: 30392959]
[76]
Zhang S, Zhao BS, Zhou A, et al. m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591-606.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.02.013] [PMID: 28344040]
[77]
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113(14): E2047-56.
[http://dx.doi.org/10.1073/pnas.1602883113] [PMID: 27001847]
[78]
Aguilo F, Zhang F, Sancho A, et al. Coordination of m(6)A mRNA Methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015; 17(6): 689-704.
[http://dx.doi.org/10.1016/j.stem.2015.09.005] [PMID: 26526723]
[79]
Chen Y, Zhao Y, Chen J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol Cancer 2020; 19(1): 123.
[http://dx.doi.org/10.1186/s12943-020-01239-w] [PMID: 32772918]
[80]
Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 2019; 442: 252-61.
[http://dx.doi.org/10.1016/j.canlet.2018.11.006] [PMID: 30423408]
[81]
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6 -methyladenosine-dependent primary MicroRNA processing. Hepatology 2017; 65(2): 529-43.
[http://dx.doi.org/10.1002/hep.28885] [PMID: 27774652]
[82]
Zhao Y, You S, Yu YQ, et al. Decreased nuclear expression of FTO in human primary hepatocellular carcinoma is associated with poor prognosis. Int J Clin Exp Pathol 2019; 12(9): 3376-83.
[PMID: 31934180]
[83]
Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 2019; 18(1): 163.
[http://dx.doi.org/10.1186/s12943-019-1082-3] [PMID: 31735169]
[84]
Li Z, Li F, Peng Y, Fang J, Zhou J. Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med 2020; 9(5): 1877-89.
[http://dx.doi.org/10.1002/cam4.2833] [PMID: 31943856]
[85]
Fang Q, Chen H. The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma. Mol Med 2020; 26(1): 60.
[http://dx.doi.org/10.1186/s10020-020-00185-z] [PMID: 32552682]
[86]
Wu X, Zhang X, Tao L, Dai X, Chen P. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma. BioMed Res Int 2020; 2020: 2053902.
[http://dx.doi.org/10.1155/2020/2053902] [PMID: 32733931]
[87]
Qi LW, Jia JH, Jiang CH, Hu JM. Contributions and Prognostic Values of N6-Methyladenosine RNA Methylation Regulators in Hepatocellular Carcinoma. Front Genet 2021; 11: 614566.
[http://dx.doi.org/10.3389/fgene.2020.614566] [PMID: 33519919]
[88]
Qu N, Qin S, Zhang X, et al. Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer 2020; 20(1): 165.
[http://dx.doi.org/10.1186/s12885-020-6638-5] [PMID: 32111180]
[89]
Zhang L, Qiao Y, Huang J, et al. Expression pattern and prognostic value of key regulators for m6A RNA modification in hepatocellular carcinoma. Front Med (Lausanne) 2020; 7: 556.
[http://dx.doi.org/10.3389/fmed.2020.00556] [PMID: 33072775]
[90]
Liu W, Zhong C, Lv D, Tang M, Xie F. N6-methyladenosine RNA methylation regulators have clinical prognostic values in hepatocellular carcinoma. Front Genet 2020; 11: 863.
[http://dx.doi.org/10.3389/fgene.2020.00863] [PMID: 32903675]
[91]
Zhu GQ, Yu L, Zhou YJ, et al. Genetic alterations and transcriptional expression of m6A RNA methylation regulators drive a malignant phenotype and have clinical prognostic impact in hepatocellular carcinoma. Front Oncol 2020; 10: 900.
[http://dx.doi.org/10.3389/fonc.2020.00900] [PMID: 32850303]
[92]
Li W, Chen QF, Huang T, Shen L, Huang ZL, Wu P. Profiles of m6A RNA methylation regulators for the prognosis of hepatocellular carcinoma. Oncol Lett 2020; 19(4): 3296-306.
[http://dx.doi.org/10.3892/ol.2020.11435] [PMID: 32256825]
[93]
Shang Y, Gao L, Zou Q, et al. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021; 434: 80-9.
[http://dx.doi.org/10.1016/j.neucom.2020.12.068]
[94]
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[95]
Zeng W, Wang F, Ma Y, et al. Dysfunctional Mechanism of Liver Cancer Mediated by Transcription Factor and Non-coding RNA. Curr Bioinform 2019; 14(2): 100-7.
[http://dx.doi.org/10.2174/1574893614666181119121916]
[96]
He L, Li J, Wang X, et al. The dual role of N6-methyladenosine modification of RNAs is involved in human cancers. J Cell Mol Med 2018; 22(10): 4630-9.
[http://dx.doi.org/10.1111/jcmm.13804] [PMID: 30039919]
[97]
Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: A double-edged sword. Mol Cancer 2018; 17(1): 101.
[http://dx.doi.org/10.1186/s12943-018-0847-4] [PMID: 30031372]
[98]
Tang W, Wan S, Yang Z, Teschendorff AE, Zou Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics 2018; 34(3): 398-406.
[http://dx.doi.org/10.1093/bioinformatics/btx622] [PMID: 29028927]
[99]
Yu L, Shi Y, Zou Q, Wang S, Zheng L, Gao L. Exploring drug treatment patterns based on the action of drug and multilayer network model. Int J Mol Sci 2020; 21(14): E5014.
[http://dx.doi.org/10.3390/ijms21145014] [PMID: 32708644]
[100]
Du Y, Hou G, Zhang H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 2018; 46(10): 5195-208.
[http://dx.doi.org/10.1093/nar/gky156] [PMID: 29506078]
[101]
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69(7): 1193-205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639] [PMID: 31582403]
[102]
Du M, Zhang Y, Mao Y, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem Biophys Res Commun 2017; 482(4): 582-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.077] [PMID: 27856248]
[103]
Ning L, Cui T, Zheng B, et al. MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic Acids Res 2021; 49(D1): D160-4.
[http://dx.doi.org/10.1093/nar/gkaa707] [PMID: 32833025]
[104]
Huang Y, Wang J, Zhao Y, et al. cncRNAdb: A manually curated resource of experimentally supported RNAs with both protein-coding and noncoding function. Nucleic Acids Res 2021; 49(D1): D65-70.
[http://dx.doi.org/10.1093/nar/gkaa791] [PMID: 33010163]
[105]
Jiang Q, Wang J, Wu X, et al. LncRNA2Target: A database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015; 43(Database issue): D193-6.
[http://dx.doi.org/10.1093/nar/gku1173] [PMID: 25399422]
[106]
Jiang Q, Ma R, Wang J, et al. LncRNA2Function: A comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. BMC Genomics 2015; 16(Suppl. 3): S2.
[http://dx.doi.org/10.1186/1471-2164-16-S3-S2] [PMID: 25707511]
[107]
Zhang BH, Yan LN, Yang JY. Pending role of METTL14 in liver cancer. Hepatobiliary Surg Nutr 2019; 8(6): 669-70.
[http://dx.doi.org/10.21037/hbsn.2019.10.16] [PMID: 31930004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy