Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Panoramic Review of Benzimidazole Derivatives and their Potential Biological Activity

Author(s): Hiram Hernández-López, Christian Jairo Tejada-Rodríguez and Socorro Leyva-Ramos*

Volume 22, Issue 9, 2022

Published on: 31 January, 2022

Page: [1268 - 1280] Pages: 13

DOI: 10.2174/1389557522666220104150051

Price: $65

Abstract

The therapeutic potential of the benzimidazole nucleus has been recognized since 1944, and it is an important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its broad biological activity stems from physicochemical properties such as hydrogen bond donor-acceptor capability, π→π stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions when they are biologically evaluated, which can lead to obtaining potent drug candidate with a significant range of biological activities.

Keywords: Benzimidazole, heterocycle, biological activity, medicinal chemistry, structure-activity relationship.

Graphical Abstract

[1]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patel, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem., 2020, 20(7), 532-565.
[http://dx.doi.org/10.2174/1389557519666191122125453] [PMID: 31755386]
[2]
Anand, K.; Wakode, S. Development of drugs based on benzimidazole heterocycle: Recent advancement and insights. Int. J. Chem. Stud., 2017, 5(2), 350-362.
[3]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[4]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[5]
Barot, K.P.; Nikolova, S.; Ivanov, I.; Ghate, M.D. Novel research strategies of benzimidazole derivatives: A review. Mini Rev. Med. Chem., 2013, 13(10), 1421-1447.
[http://dx.doi.org/10.2174/13895575113139990072] [PMID: 23544603]
[6]
Brink, N.G.; Folkers, K. Vitamin B12, VI. 5,6-dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc., 1949, 71(8), 2951-2951.
[http://dx.doi.org/10.1021/ja01176a532]
[7]
Woolley, D.W. Some biological effects produced by benzimidazole and their reversal by purines. J. Biol. Chem., 1944, 152(2), 225-232.
[http://dx.doi.org/10.1016/S0021-9258(18)72045-0]
[8]
Gozelle, M.; Süloğlu, A.K.; Selmanoğlu, G.; Ramazanoğlu, N.; Açik, L.; Gümüş, F. Studies on the synthesis, characterization, cytotoxic activities and plasmid DNA binding of platinum(II) complexes having 2-substituted benzimidazole ligands. Polyhedron, 2019, 161, 298-308.
[http://dx.doi.org/10.1016/j.poly.2019.01.028]
[9]
Topkaya, S.N.; Cetin, A.E. Determination of electrochemical interaction between 2-(1H-benzimidazol-2-yl) phenol and DNA Sequences. Electroanalysis (I.J.D.E.S.B.D.), 2019, 31(8), 1554-1561.
[10]
Beltran-Hortelano, I.; Alcolea, V.; Font, M.; Pérez-Silanes, S. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur. J. Med. Chem., 2020, 206(1-14), 112692.
[http://dx.doi.org/10.1016/j.ejmech.2020.112692]
[11]
Chávez-Maya, F.; García-Espinosa, G.; López-Arellano, M.E.; Padilla-Noriega, L. Mutations in the VP2 gene of rotavirus associated with benzimidazole sensitivity. Virus Res., 2021, 291, 198189.
[http://dx.doi.org/10.1016/j.virusres.2020.198189]
[12]
Hadole, C.D.; Rajput, J.D.; Bendre, R.S. Concise on some biologically important 2-substituted benzimidazole derivatives. Org. Chem. Curr. Res, 2018, 7(3), 1-9.
[13]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(3), 269-283.
[http://dx.doi.org/10.1007/s00044-010-9533-9]
[14]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[15]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure-activity relationship. Arch. Pharm. Chem. Life Sci., 2017, 350(6), e201700040.
[16]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2015, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[17]
Tarı, Ö.; Gümüş, F.; Açık, L.; Aydın, B. Synthesis, characterization and DNA binding studies of platinum(II) complexes with benzimidazole derivative ligands. Bioorg. Chem., 2017, 74, 272-283.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.015] [PMID: 28881255]
[18]
Muhammad, B.T.; Ullah, A.; Muhammad, M.T.; Arshad, T. DNA physical interaction mediated b-lymphoma treatment offered by tetra benzimidazole-substituted zinc(II) phthalocyanine derivative. J. Mol. Recognit., 2018, 31(11), e2733.
[19]
Anastassova, N.O.; Yancheva, D.Y.; Mavrova, A.T.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Hristova-Avakumova, N.G.; Hadjimitova, V.A. Design, synthesis, antioxidant properties and mechanism of action of new N,N¢-disubstituted benzimidazole-2-thione hydrazone derivatives. J. Mol. Struct., 2018, 1165, 162-176.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.119]
[20]
Anastassova, N.O.; Mavrova, A.T.; Yancheva, D.Y.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Stoyanov, S.S.; Shivachev, B.L.; Nikolova, R.P. Hepatotoxicity and antioxidant activity of some new N,N¢-disubstituted benzimidazole-2-thiones, radical scavenging mechanism and structure-activity relationship. Arab. J. Chem., 2018, 11(3), 353-369.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.003]
[21]
Son, D-S.; Lee, E-S.; Adunyah, S.E. The antitumor potentials of benzimidazole anthelmintics as repurposing drugs. Immune Netw., 2020, 20(4), e29.
[http://dx.doi.org/10.4110/in.2020.20.e29]
[22]
Di Giola, M.L.; Cassano, R.; Costanzo, P.; Herrera Cano, N.; Maiuolo, L.; Nardi, M.; Nicoletta, F.P.; Oliverio, M.; Procopio, A. Green synthesis of privileged benzimidazole scaffolds using active eutectic solvent. Molecules, 2019, 24(16), 2885.
[http://dx.doi.org/10.3390/molecules24162885]
[23]
Jardim-Messeder, D.; Cabreira-Cagliari, C.; Rauber, R.; Turchetto-Zolet, A.C.; Margis, R.; Margis-Pinheiro, M. Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion, 2017, 34, 56-66.
[http://dx.doi.org/10.1016/j.mito.2017.01.002] [PMID: 28088649]
[24]
Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641.
[http://dx.doi.org/10.1080/13543776.2019.1648433] [PMID: 31353978]
[25]
Lacey, E.; Gill, J.H. Biochemistry of benzimidazole resistance. Acta Trop., 1994, 56(2-3), 245-262.
[http://dx.doi.org/10.1016/0001-706X(94)90066-3] [PMID: 8203306]
[26]
Zhou, Y.; Xu, J.; Zhu, Y.; Duan, Y.; Zhou, M. Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: Interfering with polymerization of monomeric tubulin but not polymerized microtube. Phytopathology, 2016, 106(8), 807-813.
[http://dx.doi.org/10.1094/PHYTO-08-15-0186-R] [PMID: 26976730]
[27]
Barlan, K.; Gelfand, V.I. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol., 2017, 9(5), a025817.
[http://dx.doi.org/10.1101/cshperspect.a025817]
[28]
Fennell, B.; Naughton, J.; Barlow, J.; Brennan, G.; Fairweather, I.; Hoey, E.; McFerran, N.; Trudgett, A.; Bell, A. Microtubules as antiparasitic drug targets. Expert Opin. Drug Discov., 2008, 3(5), 501-518.
[http://dx.doi.org/10.1517/17460441.3.5.501] [PMID: 23484923]
[29]
Mavrova, A.Ts.; Anichina, K.K.; Vuchev, D.I.; Tsenov, J.A.; Denkova, P.S.; Kondeva, M.S.; Micheva, M.K. Antihelminthic activity of some newly synthesized 5(6)-(un)substituted-1H-benzimidazol-2-ylthioacetylpiperazine derivatives. Eur. J. Med. Chem., 2006, 41(12), 1412-1420.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.005] [PMID: 16996654]
[30]
Sondhi, S.M.; Rajvanshi, S.; Johar, M.; Bharti, N.; Azam, A.; Singh, A.K. Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido[1,6-a]benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur. J. Med. Chem., 2002, 37(10), 835-843.
[http://dx.doi.org/10.1016/S0223-5234(02)01403-4] [PMID: 12446042]
[31]
Andrzejewska, M.; Yepez-Mulia, L.; Tapia, A.; Cedillo-Rivera, R.; Laudy, A.E.; Starościak, B.J.; Kazimierczuk, Z. Synthesis, and antiprotozoal and antibacterial activities of S-substituted 4,6-dibromo- and 4,6-dichloro-2-mercaptobenzimidazoles. Eur. J. Pharm. Sci., 2004, 21(2-3), 323-329.
[http://dx.doi.org/10.1016/j.ejps.2003.10.024] [PMID: 14757505]
[32]
Farahat, A.A.; Bennett-Vaughn, C.; Mineva, E.M.; Kumar, A.; Wenzler, T.; Brun, R.; Liu, Y.; Wilson, W.D.; Boykin, D.W. Synthesis, DNA binding and antitrypanosomal activity of benzimidazole analogues of DAPI. Bioorg. Med. Chem. Lett., 2016, 26(24), 5907-5910.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.006] [PMID: 27843114]
[33]
Hernández-Núñez, E.; Tlahuext, H.; Moo-Puc, R.; Moreno, D.; González-Díaz, M.O.; Navarrete-Vázquez, G. Design, synthesis and biological evaluation of 2-(2-amino-5(6)-nitro-1Hbenzimidazol- 1-yl)-N-arylacetamides as antiprotozoal agents. Molecules, 2017, 22(4), 579.
[34]
Baartzes, N.; Stringer, T.; Seldon, R.; Warner, D.F.; Taylor, D.; Wittlin, S.; Chibale, K.; Smith, G.S. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur. J. Med. Chem., 2019, 180, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.069] [PMID: 31301563]
[35]
Yaseen, G.; Sudhakar, J.G. Design, synthesis and antimicrobial activity of 2-mercaptobenzimidazole derivatives. Int. J. Pharma Bio Sci., 2010, 1(4), 281-286.
[36]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L-L.; Zhou, C-H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[37]
Babu, C.N.; Triveni, S.; Jyothi, M.V.; Yamuna, B.; Yamini, A. Design, synthesis and antimicrobial evaluation of novel 2-thiobenzimidazole derivatives: In silico and in vitro approach. Asian J. Chem., 2020, 32(11), 2753-2762.
[http://dx.doi.org/10.14233/ajchem.2020.22821]
[38]
Göker, H.; Özden, S.; Yildiz, S.; Boykin, D.W. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem., 2005, 40(10), 1062-1069.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.002] [PMID: 15992965]
[39]
Göker, H.; Alp, M.; Ateş‐Alagöz, Z.; Yildiz, S. Synthesis and potent antifungal activity against Candida species of some novel 1H‐benzimidazoles. J. Heterocycl. Chem., 2009, 46(5), 936-948.
[http://dx.doi.org/10.1002/jhet.179]
[40]
Khabnadideh, S.; Rezaei, Z.; Pakshir, K.; Zomorodian, K.; Ghafari, N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci., 2012, 7(2), 65-72.
[PMID: 23181082]
[41]
Klimesová, V.; Kocí, J.; Waisser, K.; Kaustová, J. New benzimidazole derivatives as antimycobacterial agents. Farmaco, 2002, 57(4), 259-265.
[http://dx.doi.org/10.1016/S0014-827X(02)01218-1] [PMID: 11989805]
[42]
Özkay, Y.; Tunali, Y.; Karaca, H.; Işikdağ, I. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur. J. Med. Chem., 2010, 45(8), 3293-3298.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.012] [PMID: 20451306]
[43]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[44]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Gao, W.W.; Kang, J.; Cai, G.X.; Zhou, C.H. Discovery of benzimidazole-quinolone hybrids as new cleaving agents toward drug-resistant Pseudomonas aeruginosa DNA. ChemMedChem, 2018, 13(10), 1004-1017.
[http://dx.doi.org/10.1002/cmdc.201700739] [PMID: 29512892]
[45]
Zahra, J.A.; Al-Qawasmeh, R.A.; El-Abadelah, M.M.; Abadleh, M.M.; Zani, F.; Incerti, M.M. Heterocycles [h]-fused to 4- oxoquinoline-3-carboxylic acid. Part XI: Synthesis and antibacterial activity of 4-fluoro-6-oxoimidazo[4,5-h]quinoline-7-carboxylic acids. Zeitschrift fur Naturforsch. - Sect B. J. Chem. Sci., 2016, 71(1), 37-44.
[46]
Reddy, G.V.; Kanth, S.R.; Maitraie, D.; Narsaiah, B.; Rao, P.S.; Kishore, K.H.; Murthy, U.S.N.; Ravi, B.; Kumar, B.A.; Parthasarathy, T. Design, synthesis, structure-activity relationship and antibacterial activity series of novel imidazo fused quinolone carboxamides. Eur. J. Med. Chem., 2009, 44(4), 1570-1578.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.024] [PMID: 18775585]
[47]
Holiyachi, M.; Shastri, S.L.; Chougala, B.M.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Nagarajaiah, H.; Sunagar, V.A. Design, synthesis and structure-activity relationship study of coumarin benzimidazole hybrid as potent antibacterial and anticancer agents. ChemistrySelect, 2016, 1(15), 4638-4644.
[http://dx.doi.org/10.1002/slct.201600665]
[48]
Shruthi, N.; Poojary, B.; Kumar, V.; Hussain, M.M.; Rai, V.M.; Pai, V.R.; Bhat, M.; Revannasiddappa, B.C. Novel benzimidazole-oxadiazole hybrid molecules as promising antimicrobial agents. RSC Advances, 2016, 6(10), 8303-8316.
[http://dx.doi.org/10.1039/C5RA23282A]
[49]
Ouahrouch, A.; Ighachane, H.; Taourirte, M.; Engels, J.W.; Sedra, M.H.; Lazrek, H.B. Benzimidazole-1,2,3-triazole hybrid molecules: Synthesis and evaluation for antibacterial/antifungal activity. Arch. Pharm. (Weinheim), 2014, 347(10), 748-755.
[http://dx.doi.org/10.1002/ardp.201400142] [PMID: 25088180]
[50]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Gupta, P.S.S.; Yadav, M.; Singh, V.K.; Singh, A.; Rana, M.K.; Gupta, S.K.; Schols, D.; Singh, R.K. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem., 2020, 89, 107400.
[51]
Biron, K.K.; Harvey, R.J.; Chamberlain, S.C.; Good, S.S.; Smith, A.A., III; Davis, M.G.; Talarico, C.L.; Miller, W.H.; Ferris, R.; Dornsife, R.E.; Stanat, S.C.; Drach, J.C.; Townsend, L.B.; Koszalka, G.W. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole L-riboside with a unique mode of action. Antimicrob. Agents Chemother., 2002, 46(8), 2365-2372.
[http://dx.doi.org/10.1128/AAC.46.8.2365-2372.2002] [PMID: 12121906]
[52]
Townsend, L.B.; Devivar, R.V.; Turk, S.R.; Nassiri, M.R.; Drach, J.C. Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(beta-D-ribofuranosyl)benzimidazoles. J. Med. Chem., 1995, 38(20), 4098-4105.
[http://dx.doi.org/10.1021/jm00020a025] [PMID: 7562945]
[53]
Budow, S.; Kozlowska, M.; Gorska, A.; Kazimierczuk, Z.; Eickmeier, H.; La Colla, P.; Gosselin, G.; Seela, F. Substituted benzimidazoles: Antiviral activity and synthesis of nucleosides. ARKIVOC, 2009, 3, 225-250.
[54]
Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and biological evaluation of novel (thio)semicarbazone-based benzimidazoles as antiviral against human respiratory viruses. Molecules, 2020, 25(7), 1487.
[55]
Pandey, V.K.; Shukla, A. Synthesis and biological activity of isoquinolinyl benzimidazoles. Indian J. Chem., 1999, 38(12), 1381-1383.
[56]
Hue, B.T.B.; Nguyen, P.H.; De, T.Q.; Van Hieu, M.; Jo, E.; Van Tuan, N.; Thoa, T.T.; Anh, L.D.; Son, N.H.; La Duc Thanh, D.; Dupont-Rouzeyrol, M.; Grailhe, R.; Windisch, M.P. Benzimidazole derivatives as novel Zika virus inhibitors. ChemMedChem, 2020, 15(15), 1453-1463.
[http://dx.doi.org/10.1002/cmdc.202000124] [PMID: 32281263]
[57]
Kanwal, A.; Saddique, F.A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Mohsin, N-A. Benzimidazole ring system as a privileged template for anticancer agents. Pharm. Chem. J., 2018, 51(12), 1068-1077.
[http://dx.doi.org/10.1007/s11094-018-1742-4]
[58]
Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: A review. B.M.C. Chem., 2019, 13(1), 66.
[http://dx.doi.org/10.1186/s13065-019-0579-6]
[59]
Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolo-thiadizines as a source of new anticancer agents. Arab. J. Chem., 2019, 12(8), 3202-3224.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.019]
[60]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[61]
Acar Çevik, U.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Kaya Çavuşoğlu, B.; Karaduman, A.B.; Atlıd, Ö.; Atlı Eklioğlu, Ö.; Kaplancıklı, Z.A. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1657-1673.
[http://dx.doi.org/10.1080/14756366.2020.1806831] [PMID: 32811204]
[62]
Stýskala, J.; Stýskalová, L.; Slouka, J.; Hajdúch, M. Synthesis of 2-aryl-4-(benzimidazol-2-yl)-1,2-dihydro[1,2,4]triazino-[4,5-a]benzimidazol-1-one derivatives with preferential cytotoxicity against carcinoma cell lines. Eur. J. Med. Chem., 2008, 43(3), 449-455.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.008] [PMID: 18272255]
[63]
Skibo, E.B.; Schulz, W.G. Pyrrolo[1,2-a]benzimidazole-based aziridinyl quinones. A new class of DNA cleaving agent exhibiting G and A base specificity. J. Med. Chem., 1993, 36(21), 3050-3055.
[http://dx.doi.org/10.1021/jm00073a002] [PMID: 8230090]
[64]
Moriarty, E.; Carr, M.; Bonham, S.; Carty, M.P.; Aldabbagh, F. Synthesis and toxicity towards normal and cancer cell lines of benzimidazolequinones containing fused aromatic rings and 2-aromatic ring substituents. Eur. J. Med. Chem., 2010, 45(9), 3762-3769.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.025] [PMID: 20605274]
[65]
Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093] [PMID: 27744184]
[66]
Imran, M.; Nayeem, N.; El-Feky, S.A. Benzimidazole derivatives: An important scaffold for the development of newer angiotensin receptor antagonists. J. North Basic Appl. Sci., 2017, 2(2), 135-147.
[67]
Vyas, V.K.; Ghate, M. Substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist: A review. Mini Rev. Med. Chem., 2010, 10(14), 1366-1384.
[http://dx.doi.org/10.2174/138955710793564151] [PMID: 20937029]
[68]
Sharma, S.; Sharma, M.C.; Kohli, D.V. Design, synthesis and pharmacological investigation of some benzimidazole derivatives 4′-(5,6-substituted-2-trifluoromethyl-benzimidazole-1-ylmethyl)- biphenyl-2-carboxylic acid as potent antihypertensive agents. J. Optoelect. Biomed. Mater., 2010, 2(4), 203-211.
[69]
Zhang, Y.; Xu, J.; Li, Y.; Yao, H.; Wu, X. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate. Chem. Biol. Drug Des., 2015, 85(5), 541-548.
[http://dx.doi.org/10.1111/cbdd.12442] [PMID: 25283264]
[70]
Tiligada, E.; Ennis, M. Histamine pharmacology: From Sir Henry Dale to the 21st century. Br. J. Pharmacol., 2020, 177(3), 469-489.
[http://dx.doi.org/10.1111/bph.14524] [PMID: 30341770]
[71]
Wang, X.J.; Xi, M.Y.; Fu, J.H.; Zhang, F.R.; Cheng, G.F.; Yin, D.L.; You, Q.D. Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents. Chin. Chem. Lett., 2012, 23(6), 707-710.
[http://dx.doi.org/10.1016/j.cclet.2012.04.020]
[72]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[73]
Bukhari, S.N.A.; Lauro, G.; Jantan, I.; Fei Chee, C.; Amjad, M.W.; Bifulco, G.; Sher, H.; Abdullah, I.; Rahman, N.A. Anti-inflammatory trends of new benzimidazole derivatives. Future Med. Chem., 2016, 8(16), 1953-1967.
[http://dx.doi.org/10.4155/fmc-2016-0062] [PMID: 27654499]
[74]
Moneer, A.A.; Mohammed, K.O.; El-Nassan, H.B. Synthesis of novel substituted thiourea and benzimidazole derivatives containing a pyrazolone ring as anti-inflammatory agents. Chem. Biol. Drug Des., 2016, 87(5), 784-793.
[http://dx.doi.org/10.1111/cbdd.12712] [PMID: 26684979]
[75]
Sethi, P.; Bansal, Y.; Bansal, G. Synthesis and PASS-assisted evaluation of coumarin-benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res., 2017, 27(1), 61-71.
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[76]
Welage, L.S.; Berardi, R.R. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J. Am. Pharm. Assoc., 2000, 40(1), 52-62.
[http://dx.doi.org/10.1016/S1086-5802(16)31036-1] [PMID: 10665250]
[77]
Alarcón, T.; Domingo, D.; Sánchez, I.; Sanz, J.C.; Martínez, M.J.; López-Brea, M. In vitro activity of ebrotidine, ranitidine, omeprazole, lansoprazole, and bismuth citrate against clinical isolates of Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis., 1998, 17(4), 275-277.
[PMID: 9707312]
[78]
Radhamanalan, R.; Alagumuthu, M.; Nagaraju, N. Synthesis and drug efficacy validations of racemic-substituted benzimidazoles as antiulcer/antigastric secretion agents. Future Med. Chem., 2018, 10(15), 1805-1820.
[http://dx.doi.org/10.4155/fmc-2017-0214] [PMID: 30019937]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy