Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Benign Synthesis of Metal-organic Framework (MIL-101-Cr) and Evaluation of Carbon- dioxide Adsorption Behaviour Employing Adsorption Isotherm Models

Author(s): Ayushi Singh and Sibnath Kayal*

Volume 19, Issue 5, 2022

Published on: 08 April, 2022

Page: [673 - 684] Pages: 12

DOI: 10.2174/1570179419666211231113648

Price: $65

Abstract

Background: In today’s world, rising temperature due to global warming is caused by higher concentration of carbon dioxide (CO2) emissions in the atmosphere. Metal-Organic Framework (MOF) materials have the potential to be used in carbon dioxide capture and utilization technology.

Objective: The purpose of this work is to prepare metal-organic framework materials by a benign synthesis method using water as the solvent, followed by the characterization and property evaluation for CO2 adsorption study.

Methods: MIL-101-Cr metal-organic framework and its derivatives with alkali ion dopants were prepared by benign hydrothermal synthesis route, which were characterized by powder X-ray diffraction method. The adsorption isotherms of CO2 for MIL-101-Cr and its derivatives were studied to comprehend the influence of alkali dopants on CO2 sorption behaviour. The equilibrium uptakes of CO2 were further evaluated by fitting the isotherms with Langmuir, Toth and Dubinin - Astakohv adsorption models to determine the adsorption parameters.

Results: The crystalline structural integrity of MIL-101-Cr is not affected by doping with alkali ions. The isosteric heat of CO2 adsorption is diminished with an increase in alkali dopant size, while the induced surface structural heterogeneity increases with increasing alkali dopant size.

Conclusion: The equilibrium and thermodynamic parameters calculated from this study are useful for applications in carbon dioxide capture and utilization technology.

Keywords: Metal-organic framework (MOF), benign synthesis of MOF, carbon dioxide capture, adsorption isotherms, adsorption model equations, surface heterogeneity.

« Previous
Graphical Abstract

[1]
Liu, C.; Wang, Z.U.; Zhou, H.C. Recent advances in carbon dioxide capture with metal-organic frameworks. Green. Gas. Sci. & Tech., 2012, 2, 239-259.
[http://dx.doi.org/10.1002/ghg.1296]
[2]
Wang, X.; Song, C. Carbon capture from flue gas and the atmosphere: A perspective. Front. Energy Res., 2020, 8, 560849.
[http://dx.doi.org/10.3389/fenrg.2020.560849]
[3]
Chen, P.C.; Huang, C.F.; Chen, H.W.; Yang, M.W.; Tsao, C.M. Capture of CO2 from coal-fired power plant with NaOH solution in a contin-uous pilot-scale bubble-column scrubber. Energy Procedia, 2014, 61, 1660-1664.
[http://dx.doi.org/10.1016/j.egypro.2014.12.186]
[4]
Keith, D.W. Why capture CO2 from the atmosphere? Science, 2009, 325(5948), 1654-1655.
[http://dx.doi.org/10.1126/science.1175680] [PMID: 19779189]
[5]
Middleton, R.S.; Eccles, J.K. The complex future of CO2 capture and storage: Variable ielectricity generation and fossil fuel power. Appl. Energy, 2013, 108, 66-73.
[http://dx.doi.org/10.1016/j.apenergy.2013.02.065]
[6]
Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O’Hare, D. Efficient CO2 capture from ambient air with amine-functionalized Mg-Al mixed metal oxides. J. Mater. Chem., 2020, 8, 16421-16428.
[http://dx.doi.org/10.1039/D0TA05079B]
[7]
Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cy-cle environmental impacts. J. Utilization., 2015, 9, 82-102.
[8]
Gabrielli, P.; Gazzani, M.; Mazzotti, M. The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Ind. Eng. Chem. Res., 2020, 59, 7033-7045.
[http://dx.doi.org/10.1021/acs.iecr.9b06579]
[9]
Mac-Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang., 2017, 7, 243-249.
[http://dx.doi.org/10.1038/nclimate3231]
[10]
Muller, L.J.; Kätelhön, A.; Bachmann, M.; Zimmermann, A.; Sternberg, A.; Bardow, A. A guideline for life cycle assessment of carbon cap-ture and utilization. Front. Energy Res., 2020, 8, 15.
[http://dx.doi.org/10.3389/fenrg.2020.00015]
[11]
Ben, M.R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A. iCarbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - a review. Appl. Energy, 2016, 161, 225-255.
[http://dx.doi.org/10.1016/j.apenergy.2015.10.011]
[12]
Abdeljaoued, A.; Querejeta, N.; Duran, I.; Álvarez-Gutiérrez, N.; Pevida, C.; Chahbani, M.H. Preparation and evaluation of a coconut shell-based activated carbon for CO2/CH4 separation. Energies, 2018, 11, 1-14.
[http://dx.doi.org/10.3390/en11071748]
[13]
Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9), 796-854.
[http://dx.doi.org/10.1002/cssc.200900036] [PMID: 19731282]
[14]
Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[15]
Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct capture of CO2 from ambient air. Chem. Rev., 2016, 116(19), 11840-11876.
[http://dx.doi.org/10.1021/acs.chemrev.6b00173] [PMID: 27560307]
[16]
Zhen, Z.; Lu, Y.; Yefei, W.; Cheng, H.; Chunying, D. Recent advance on chemical fixation of carbon dioxide by metal-organic frame-works as heterogeneous catalysts. Curr. Org. Chem., 2018, 22, 1809-1824.
[http://dx.doi.org/10.2174/1385272822666180423144934]
[17]
Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev., 2012, 112(2), 724-781.
[http://dx.doi.org/10.1021/cr2003272] [PMID: 22204561]
[18]
Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Nati. Acad. Sci., 2008, 105, 11623-11627.
[19]
Hong, D.Y.; Hwang, Y.K.; Serre, C.; Ferey, G.; Chang, J.S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater., 2009, 19, 1537-1552.
[http://dx.doi.org/10.1002/adfm.200801130]
[20]
Seo, Y.K.; Yoon, J.W.; Lee, J.S.; Hwang, Y.K.; Jun, C.H.; Chang, J.S.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bourrelly, S.; Llewellyn, P.L.; Horcajada, P.; Serre, C.; Férey, G. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater., 2012, 24(6), 806-810.
[http://dx.doi.org/10.1002/adma.201104084] [PMID: 22162212]
[21]
Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater., 2016, 1, 15018.
[http://dx.doi.org/10.1038/natrevmats.2015.18]
[22]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[23]
Jacob, A.J.; Xu, Z.; Xin, Z.; Jian, Z. Recent advances in ionic metal-organic frameworks: Design, synthesis, and application. Curr. Org. Chem., 2014, 18, 1973-2001.
[http://dx.doi.org/10.2174/1385272819666140514005108]
[24]
Junkuo, G.; Guodong, Q. Design, synthesis and emerging applications of metal-organic frameworks. Curr. Org. Chem., 2018, 22, 1771-1772.
[http://dx.doi.org/10.2174/138527282218181022110036]
[25]
Furukawa, H.; Müller, U.; Yaghi, O.M. “Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 2015, 54(11), 3417-3430.
[http://dx.doi.org/10.1002/anie.201410252] [PMID: 25586609]
[26]
Pera-Titus, M.; Savonnet, M.; Farrusseng, D. Evaluation of energy heterogeneity in metal-organic frameworks: Absence of Henry’s region in MIL-53 and MIL-68 materials? J. Phys. Chem., 2010, 114, 17665-17674.
[27]
Jeong, W.; Lim, D.W.; Kim, S.; Harale, A.; Yoon, M.; Suh, M.P.; Kim, J. Modeling adsorption properties of structurally deformed metal-organic frameworks using structure-property map. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 7923-7928.
[http://dx.doi.org/10.1073/pnas.1706330114] [PMID: 28696307]
[28]
Li, J.R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.K. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chem. Rev., 2011, 255, 1791-1823.
[29]
Li, S.; Chung, Y.G.; Snurr, R.Q. High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water. Langmuir, 2016, 32(40), 10368-10376.
[http://dx.doi.org/10.1021/acs.langmuir.6b02803] [PMID: 27627635]
[30]
Clausse, M.; Merel, J.; Meunier, F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption. Int. J. Greenh. Gas Control, 2011, 5, 1206-1213.
[http://dx.doi.org/10.1016/j.ijggc.2011.05.036]
[31]
Saha, B.B.; Jribi, S.; Koyama, S.; El-Sharkawy, I.I. Carbon dioxide adsorption isotherms on activated carbons. J. Chem. Eng. Data, 2011, 56, 1974-1981.
[http://dx.doi.org/10.1021/je100973t]
[32]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with un-usually large pore volumes and surface area. Science, 2005, 309(5743), 2040-2042.
[http://dx.doi.org/10.1126/science.1116275] [PMID: 16179475]
[33]
Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev., 2008, 37(1), 191-214.
[http://dx.doi.org/10.1039/B618320B] [PMID: 18197340]
[34]
Tan, B.; Luo, Y.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z. Mixed-solvothermal synthesis of MIL-101(Cr) and its water adsorp-tion/desorption performance. Ind. Eng. Chem. Res., 2019, 58, 2983-2990.
[http://dx.doi.org/10.1021/acs.iecr.8b05243]
[35]
Sun, B.; Kayal, S.; Chakraborty, A. study of HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 2014, 76, 419-427.
[http://dx.doi.org/10.1016/j.energy.2014.08.033]
[36]
Kayal, S.; Teo, H.W.B.; Chakraborty, A. Prediction of phase transitions by investigating CO2 adsorption on 1% lithium doped MIL-101 (Cr) MOF with anomalous type isosteric heat of adsorption. Micro. & Meso. Mat., 2016, 236, 21-27.
[http://dx.doi.org/10.1016/j.micromeso.2016.08.020]
[37]
Sircar, S. Comments on practical use of Langmuir gas adsorption isotherm model. Adsorption, 2017, 23, 121-130.
[http://dx.doi.org/10.1007/s10450-016-9839-0]
[38]
Loh, W.S.; Rahman, K.A.; Chakraborty, A.; Saha, B.B.; Choo, Y.S.; Khoo, B.C. Improved iotherm data for adsorption of methane on acti-vated carbons. J. Chem. Eng. Data, 2010, 55, 2840-2847.
[http://dx.doi.org/10.1021/je901011c]
[39]
Rahman, K.A.; Loh, W.S.; Yanagi, H.; Chakraborty, A.; Saha, B.B.; Chun, W.G. Experimental adsorption isotherm of methane onto activat-ed carbon at sub-and supercritical temperatures. J. Chem. Eng. Data, 2010, 55, 4961-4967.
[http://dx.doi.org/10.1021/je1005328]
[40]
Duong, D. Adsorption analysis: Equilibria and kinetics.Imp. Col. Press: London; , 1998, 22, pp. 670-679.
[41]
Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev., 1960, 60, 235-241.
[http://dx.doi.org/10.1021/cr60204a006]
[42]
Kayal, S.; Chakraborty, A. Impact of alkali-metal impregnation on MIL-101 (Cr) metal-organic frameworks for CH4 and CO2 adsorption studies. ChemPhysChem, 2018, 19(22), 3158-3165.
[http://dx.doi.org/10.1002/cphc.201800526] [PMID: 30239092]
[43]
Puziy, A.M. Heterogeneity of synthetic active carbons. Langmuir, 1995, 11, 543-546.
[http://dx.doi.org/10.1021/la00002a030]
[44]
Bachmann, D.; Kuhne, S.; Hierold, C. Determination of the adhesion energy of MEMS structures by applying Weibull-type distribution function. Sens. Actuators A Phys., 2006, 132, 407-414.
[http://dx.doi.org/10.1016/j.sna.2006.04.003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy