Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Nanomaterials for Photocatalytic Degradation of Toxic Organic Compounds

Author(s): Saika Ahmed, Gulshan Ara and Md. Abu Bin Hasan Susan*

Volume 24, Issue 1, 2023

Published on: 29 April, 2022

Page: [118 - 144] Pages: 27

DOI: 10.2174/1389201023666211231100843

Price: $65

Abstract

In recent years, nanomaterials as photocatalysts have gained much popularity for the removal of organic pollutants from tainted water using photodegradation, since the available chemical, physical, and biological methods are often time consuming, involve high cost and dumping complications, sometimes posing serious threat to both human health and environmental elements. The use of nanomaterials is less expensive and does not, in general, form aggregated macromolecules. In addition, nanotechnology for waste-water treatment demolishes or alters the risky chemical wastes to harmless end products like H2O and CO2. Nanomaterials synthesized from natural resources or prepared using green synthetic routes are receiving a surge of interest as our consciousness of the ecological environment and safety rises. ‘Green’ materials of this kind might also show unique strength features and exceptional biodegradability, along with their other notable advantageous properties like a minimum threat to the environment, efficient recyclability and low cost compared to synthetic nanomaterials. Such green nanomaterials can also serve as nanocatalysts to treat toxic organic pollutants in a safer way, including photodegradation to less or non-toxic products. This article reviews the latest developments on the synthesis of some promising green nanomaterials aiming towards their efficient uses as photocatalysts for the degradation of organic pollutants. Strategies to find new green materials as photocatalysts through the modification of technologies and the development of novel methodologies for the safer treatment of organic pollutants will also be discussed.

Keywords: Green nanomaterials, nanocatalysts, photocatalysis, organic pollutants, wastewater, degradation.

Graphical Abstract

[1]
Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage., 2012, 113, 170-183.
[http://dx.doi.org/10.1016/j.jenvman.2012.08.028] [PMID: 23023039]
[2]
Connell, D.W.; Wu, R.S.S.; Richardson, B.J.; Lam, P.K.S. Chemistry of organic pollutants, including agrochemicals. In: Encyclopedia of Life Support Systems (EOLSS). Environmental and Ecological Chemistry; Encyclopedia Life Support Systems; 2006, III.
[3]
Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet | National Biomonitoring Program | CDC Available from: https://www.cdc.gov/biomonitoring/PAHs_FactSheet.html accessed May 22, 2021
[4]
Harrad, S. Persistent Organic Pollutants: Environmental Behaviour and Pathways of Human Exposure; Kluwer Academic Publishers, , 2001.
[http://dx.doi.org/10.1007/978-1-4615-1571-5]
[5]
Persistent Organic Pollutants: A Global Issue, A Global Response | International Cooperation | US EPA Available from: https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response accessed May 23, 2021
[6]
EEA32 Persistent organic pollutant (POP) emissions - European Environment Agency Available from:https://www.eea.europa.eu/data-and-maps/indicators/eea32-persistent-organic-pollutant-pop-emissions/eea32-persistent-organic-pollutant-pop accessed May 31, 2021
[7]
Fereidoun, H.; Nourddin, M.S.; Rreza, N.A.; Mohsen, A.; Ahmad, R.; Pouria, H. The effect of long-term exposure to particulate pollution on the lung function of teheranian and zanjanian students. Pakistan J. Physiol., 2007, 3(2), 1-5.
[8]
Daifullah, A.A.M.; Girgis, B.S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A Physicochem. Eng. Asp., 2003, 214(1–3), 181-193.
[http://dx.doi.org/10.1016/S0927-7757(02)00392-8]
[9]
Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut., 2008, 151(2), 362-367.
[http://dx.doi.org/10.1016/j.envpol.2007.06.012] [PMID: 17646040]
[10]
Kodavanti, P.R.S.; Royland, J.E.; Sambasiva Rao, K.R.S. Toxicology of persistent organic pollutants.In: Reference Module in Biomedical Sciences; Elsevier, 2014.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.00211-7]
[11]
Belver, C.; Bellod, R.; Fuerte, A.; Fernández-García, M. Nitrogen-containing TiO2 photocatalysts. Part 1. Synthesis and solid characteriza-tion. Appl. Catal. B, 2006, 65(3–4), 301-308.
[http://dx.doi.org/10.1016/j.apcatb.2006.02.007]
[12]
Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J., 2009, 51, 10-18.
[http://dx.doi.org/10.1016/j.cej.2009.02.026]
[13]
Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res., 2013, 52(10), 3581-3599.
[http://dx.doi.org/10.1021/ie303468t]
[14]
Clarke, C.E.; Kielar, F.; Talbot, H.M.; Johnson, K.L. Oxidative decolorization of acid azo dyes by a Mn oxide containing waste. Environ. Sci. Technol., 2010, 44(3), 1116-1122.
[http://dx.doi.org/10.1021/es902305e] [PMID: 20070073]
[15]
Pourmasoud, S.; Sobhani-Nasab, A.; Behpour, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. Investigation of optical properties and the photo-catalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct., 2018, 1157, 607-615.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.077]
[16]
Indira, K.; Pugazhendhi, A.; Rajasekar, M.; Rajendran, N.; Chinnathambi, A.; Alharbi, S.A.; Thanh, N.C.; Brindhadevi, K. Synthesis of titanium/niobium oxide nanocomposite on top open bamboo like titanium dioxide nanotube for the catalytic degradation of organic pollu-tants. J. Environ. Chem. Eng., 2021, 9(4), 105400.
[http://dx.doi.org/10.1016/j.jece.2021.105400]
[17]
Rosy, P.J.; Jas, M.J.S.; Santhanalakshmi, K.; Murugan, M.; Manivannan, P. Expert development of hetero structured TiS2–TiO2 nanocom-posites and evaluation of electron acceptors effect on the photo catalytic degradation of organic pollutants under UV-Light. J. Mater. Sci. Mater. Electron., 2021, 32(4), 4053-4066.
[http://dx.doi.org/10.1007/s10854-020-05147-z]
[18]
Feng, Z.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B.; Chen, H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Sci. Total Environ., 2021, 765, 142673.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142673] [PMID: 33071122]
[19]
Baig, U.; Gondal, M.A.; Dastageer, M.A.; Ansari, M.A.; Sajid, M.; Falath, W.S. Synthesis of cadmium sulfide-tungsten trioxide nanocom-posites for photo-catalytic degradation of organic pollutants and growth retardation of waterborne bacteria and biofilms. Colloids Surf. A Physicochem. Eng. Asp., 2020, 606, 125423.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125423]
[20]
Lei, H.; Wu, M.; Mo, F.; Ji, S.; Dong, X.; Wu, Z.; Gao, J.; Yang, Y.; Jia, Y. Tribo-catalytic degradation of organic pollutants through bis-muth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy, 2020, 78, 105290.
[http://dx.doi.org/10.1016/j.nanoen.2020.105290]
[21]
Mushtaq, F.; Chen, X.; Torlakcik, H.; Nelson, B.J.; Pané, S. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Res., 2020, 13(8), 2183-2191.
[http://dx.doi.org/10.1007/s12274-020-2829-2]
[22]
Li, Z.; Ma, S.; Xu, S.; Fu, H.; Li, Y.; Zhao, P.; Meng, Q. Heterogeneous catalytic degradation of organic pollutants by peroxymonosulfate activated with nitrogen doped graphene oxide loaded CuFe2O4. Colloids Surf. A Physicochem. Eng. Asp., 2019, 577, 202-212.
[http://dx.doi.org/10.1016/j.colsurfa.2019.05.067]
[23]
Wang, C.C.; Li, J.R.; Lv, X.L.; Zhang, Y.Q.; Guo, G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci., 2014, 7, 2831-2867.
[http://dx.doi.org/10.1039/C4EE01299B]
[24]
Latif, A.; Kai, S.; Si, Y. Catalytic degradation of organic pollutants in Fe(III)/peroxymonosulfate (PMS) system: performance, influencing factors, and pathway. Environ. Sci. Pollut. Res. Int., 2019, 26(36), 36410-36422.
[http://dx.doi.org/10.1007/s11356-019-06657-y] [PMID: 31728944]
[25]
Liu, X.; Huang, Y.; Zhao, P.; Meng, X.; Astruc, D. Precise Cu localization-dependent catalytic degradation of organic pollutants in water. ChemCatChem, 2020, 12(1), 175-180.
[http://dx.doi.org/10.1002/cctc.201901440]
[26]
Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[http://dx.doi.org/10.3390/catal3010189]
[27]
Rahimi-Nasrabadi, M.; Behpour, M.; Sobhani-Nasab, A.; Jeddy, M.R. Nanocrystalline Ce-doped copper ferrite: Synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron., 2016, 27(11), 11691-11697.
[http://dx.doi.org/10.1007/s10854-016-5305-8]
[28]
Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Pourmasoud, S. Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem., 2018, 43, 120-135.
[http://dx.doi.org/10.1016/j.ultsonch.2017.11.040] [PMID: 29555267]
[29]
De, D.; Mandal, S.M.; Gauri, S.S.; Bhattacharya, R.; Ram, S.; Roy, S.K. Antibacterial effect of lanthanum calcium manganate (La0.67Ca0.33MnO3) nanoparticles against Pseudomonas aeruginosa ATCC 27853. J. Biomed. Nanotechnol., 2010, 6(2), 138-144.
[http://dx.doi.org/10.1166/jbn.2010.1113] [PMID: 20738067]
[30]
Dixon, M.B.; Falconet, C.; Ho, L.; Chow, C.W.K.; O’Neill, B.K.; Newcombe, G. Removal of cyanobacterial metabolites by nanofiltration from two treated waters. J. Hazard. Mater., 2011, 188(1-3), 288-295.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.111] [PMID: 21339048]
[31]
Khatami, M.; Alijani, H.Q.; Fakheri, B.; Mobasseri, M.M.; Heydarpour, M.; Farahani, Z.K.; Khan, A.U. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using stevia plant and evaluation of its antioxidant properties. J. Clean. Prod., 2019, 208, 1171-1177.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.182]
[32]
Bekru, A.G.; Zelekew, O.A.; Andoshe, D.M.; Sabir, F.K.; Eswaramoorthy, R. Microwave-assisted synthesis of CuO nanoparticles using cordia africana lam. leaf extract for 4-nitrophenol reduction. J. Nanotechnol., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5581621]
[33]
Chen, J.; Wei, D.; Liu, L.; Nai, J.; Liu, Y.; Xiong, Y.; Peng, J.; Mahmud, S.; Liu, H. Green synthesis of konjac glucomannan templated palladium nanoparticles for catalytic reduction of azo compounds and hexavalent chromium. Mater. Chem. Phys., 2021, 267, 124651.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124651]
[34]
Abdullah, H.I.; Al-Amiery, A.A.; Al-Baghdadi, S.B. The using of nanomaterials as catalysts for photodegradations. J. Phys. Conf. Ser., 2021, 1853(1), 012052.
[http://dx.doi.org/10.1088/1742-6596/1853/1/012052]
[35]
Dayan, S. Performance improvement of Co3O4@nHAP hybrid nanomaterial in the UV light-supported degradation of organic pollutants and photovoltaics as counter electrode. J. Mol. Struct., 2021, 1238, 130390.
[http://dx.doi.org/10.1016/j.molstruc.2021.130390]
[36]
Wang, L.; Geng, X.; Zhang, L.; Wang, H. Charge behavior in photocatalytic hydrogen production by photo electrochemical test based on nanomaterial of CoS2 modified g-C3N4. Nano, 2021, 2150051.
[http://dx.doi.org/10.1142/S179329202150051X]
[37]
Karimi, S.; Bibak, F.; Meshkani, F.; Rastegarpanah, A.; Deng, J.; Liu, Y.; Dai, H. Promotional roles of second metals in catalyzing methane decomposition over the ni-based catalysts for hydrogen production: A critical review. Int. J. Hydrogen Energy, 2021, 46(39), 20435-20480.
[http://dx.doi.org/10.1016/j.ijhydene.2021.03.160]
[38]
Li, F.; Qin, S.; Jia, S.; Wang, G. Pyrolytic synthesis of organosilane-functionalized carbon nanoparticles for enhanced photocatalytic deg-radation of methylene blue under visible light irradiation. Luminescence, 2021, 36(3), 711-720.
[http://dx.doi.org/10.1002/bio.3994] [PMID: 33300229]
[39]
Fu, X.P.; Peres, L.; Esvan, J.; Amiens, C.; Philippot, K.; Yan, N. An air-stable, reusable Ni@Ni(OH)2 nanocatalyst for CO2/bicarbonate hydrogenation to formate. Nanoscale, 2021, 13(19), 8931-8939.
[http://dx.doi.org/10.1039/D1NR01054A] [PMID: 33956009]
[40]
Qu, M.; Qin, G.; Fan, J.; Du, A.; Sun, Q. Boron-rich boron nitride nanomaterials as efficient metal-free catalysts for converting CO2 into valuable fuel. Appl. Surf. Sci., 2021, 555, 149652.
[http://dx.doi.org/10.1016/j.apsusc.2021.149652]
[41]
Lu, Y.; Ozcan, S. Green nanomaterials: On track for a sustainable future. Nano Today, 2015, 10(4), 417-420.
[http://dx.doi.org/10.1016/j.nantod.2015.04.010]
[42]
Virkutyte, J.; Varma, R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface func-tionalization. Chem. Sci. (Camb.), 2011, 2, 837-846.
[http://dx.doi.org/10.1039/C0SC00338G]
[43]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press, 2000.
[44]
Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem., 2014, 16, 2027-2041.
[http://dx.doi.org/10.1039/c3gc42640h]
[45]
Varma, R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng., 2012, 1(2), 123-128.
[http://dx.doi.org/10.1016/j.coche.2011.12.002]
[46]
Doble, M.; Kruthiventi, A.K. Green Chemistry and Engineering, 1st ed; Academic Press, 2007.
[http://dx.doi.org/10.1016/B978-0-12-372532-5.X5000-7]
[47]
Muhammad, A.; Jatoi, A.S.; Mazari, S.A.; Abro, R.; Mubarak, N.M.; Ahmed, S.; Shah, A.; Memon, A.Q.; Akhter, F.; Wahocho, S.A. Re-cent advances and developments in advanced green porous nanomaterial for sustainable energy storage application. J. Porous Mater., 2021, 28, 1945-1960.
[http://dx.doi.org/10.1007/s10934-021-01138-5]
[48]
Green nanomaterials: Processing, properties, and applications Springer Nature Singapore Pte Ltd, 2020.
[http://dx.doi.org/10.1007/978-981-15-3560-4]
[49]
Lubick, N. Promising green nanomaterials. Environ. Sci. Technol., 2009, 43(5), 1247-1249.
[http://dx.doi.org/10.1021/es900021v] [PMID: 19350886]
[50]
Williamson, T.C.; Anastas, P.T. Eds.; Green chemistry: Frontiers in benign chemical syntheses and processes; Oxford University Press, 1998.
[http://dx.doi.org/10.1021/ja995756g]
[51]
Bartolucci, C.; Antonacci, A.; Arduini, F.; Moscone, D.; Fraceto, L.; Campos, E.; Attaallah, R.; Amine, A.; Zanardi, C.; Cubillana-Aguilera, L.M.; Santander, J.M.P.; Scognamiglio, V. Green nanomaterials fostering agrifood sustainability. TrAC Trend. Anal. Chem., 2020, 125, 115840.
[http://dx.doi.org/10.1016/j.trac.2020.115840]
[52]
Ponnamma, D.; Parangusan, H.; Deshmukh, K.; Kar, P.; Muzaffar, A.; Pasha, S.K.K.; Ahamed, M.B.; Al-Maadeed, M.A.A. Green synthe-sized materials for sensor, actuator, energy storage and energy generation: A review. Polym.-. Plast. Technol. Mater., 2020, 59(1), 1-62.
[http://dx.doi.org/10.1080/25740881.2019.1614327]
[53]
Panchal, H.; Patel, H.; Patel, J.; Shah, M. A systematic review on nanotechnology in enhanced oil recovery. Pept. Res., 2021, 6(3), 204-212.
[http://dx.doi.org/10.1016/j.ptlrs.2021.03.003]
[54]
Baglioni, P.; Chelazzi, D. How science can contribute to the remedial conservation of cultural heritage. Chemistry, 2021, 27(42), 10798-10806.
[http://dx.doi.org/10.1002/chem.202100675] [PMID: 34014576]
[55]
Yayayürük, A.E.; Yayayürük, O. Recent advances in environmental analysis towards green nanomaterials. Curr. Anal. Chem., 2021, 17(4), 449-460.
[http://dx.doi.org/10.2174/1573411016999200719154826]
[56]
Rawtani, D.; Rao, P.K.; Hussain, C.M. Recent advances in analytical, bioanalytical and miscellaneous applications of green nanomaterial. TrAC Trend. Anal. Chem., 2020, 133, 116109.
[http://dx.doi.org/10.1016/j.trac.2020.116109]
[57]
Bahal, M.; Kaur, N.; Sharotri, N.; Sud, D. Investigations on amphoteric chitosan/TiO2 bionanocomposites for application in visible light induced photocatalytic degradation. Adv. Polym. Technol., 2019.
[http://dx.doi.org/10.1155/2019/2345631]
[58]
Sreedharan, V.; Bhaskara Rao, K.V. Biodegradation of Textile Azo Dyes.Nanoscience and Biotechnology for Environmental Applications. Environmental Chemistry for a Sustainable World; Gothandam, K.; Ranjan, S.; Dasgupta, N; Lichtfouse, E., Ed.; Springer, 2019, pp. 115-139.
[http://dx.doi.org/10.1007/978-3-319-97922-9_5]
[59]
Khan, S.A.; Khan, S.B.; Farooq, A.; Asiri, A.M. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int. J. Biol. Macromol., 2019, 130, 288-299.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.114] [PMID: 30797005]
[60]
Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A. Enhanced photocatalytic activity of ZnO/CuO nano-composite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C, 2013, 33(1), 91-98.
[http://dx.doi.org/10.1016/j.msec.2012.08.011] [PMID: 25428048]
[61]
Rabeea, M.A.; Owaid, M.N.; Aziz, A.A.; Jameel, M.S.; Dheyab, M.A. Mycosynthesis of gold nanoparticles using the extract of flammulina velutipes, physalacriaceae, and their efficacy for decolorization of methylene blue. J. Environ. Chem. Eng., 2020, 8(3), 103841.
[http://dx.doi.org/10.1016/j.jece.2020.103841]
[62]
Sirajudheen, P.; Meenakshi, S. Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int. J. Biol. Macromol., 2019, 133, 253-261.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.073] [PMID: 30986464]
[63]
Kasiri, M.B. Application of Chitosan Derivatives as Promising Adsorbents for Treatment of Textile Wastewater.The Impact and Prospects of Green Chemistry for Textile Technology; Elsevier, 2019, pp. 417-469.
[http://dx.doi.org/10.1016/B978-0-08-102491-1.00014-9]
[64]
Ali, N. Awais; Kamal, T.; Ul-Islam, M.; Khan, A.; Shah, S.J.; Zada, A. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol., 2018, 111, 832-838.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.092] [PMID: 29355628]
[65]
Sultana, S.; Ahmad, N.; Faisal, S.M.; Owais, M.; Sabir, S. Synthesis, characterisation and potential applications of polyaniline/chitosan-ag-nano-biocomposite. IET Nanobiotechnol., 2017, 11(7), 835-842.
[http://dx.doi.org/10.1049/iet-nbt.2016.0215]
[66]
Li, G.; Li, Y.; Wang, Z.; Liu, H. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of Azo-Dyes. Mater. Chem. Phys., 2017, 187, 133-140.
[http://dx.doi.org/10.1016/j.matchemphys.2016.11.057]
[67]
Adnan, M.A.M.; Phoon, B.L.; Julkapli, N.M. Mitigation of pollutants by chitosan/metallic oxide photocatalyst: A review. J. Clean. Prod., 2020, 261, 121190.
[http://dx.doi.org/10.1016/j.jclepro.2020.121190]
[68]
Daniel, M-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications to-ward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[69]
Jang, H.D.; Kim, S.K.; Kim, S.J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res., 2001, 3(2–3), 141-147.
[http://dx.doi.org/10.1023/A:1017948330363]
[70]
Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L.P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol., 2008, 3(7), 397-401.
[http://dx.doi.org/10.1038/nnano.2008.149] [PMID: 18654562]
[71]
Barcikowski, S.; Devesa, F.; Moldenhauer, K. Impact and Structure of Literature on Nanoparticle Generation by Laser Ablation in Liquids. J. Nanopart. Res., 2009, 11(8), 1883-1893.
[http://dx.doi.org/10.1007/s11051-009-9765-0]
[72]
Bell, J.; Chen, Z.; Olofinjana, A. Synthesis of amorphous carbon nitride using reactive ion beam sputtering deposition with grazing bom-bardment. Diamond Related Materials, 2001, 10(12), 2184-2189.
[http://dx.doi.org/10.1016/S0925-9635(01)00505-2]
[73]
Nissinen, T.; Ikonen, T.; Lama, M.; Riikonen, J.; Lehto, V.P. Improved production efficiency of mesoporous silicon nanoparticles by pulsed electrochemical etching. Powder Technol., 2016, 288, 360-365.
[http://dx.doi.org/10.1016/j.powtec.2015.11.015]
[74]
Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 10(6), 3739-3758.
[http://dx.doi.org/10.1166/jnn.2010.2939] [PMID: 20355365]
[75]
Yi, G.; Wu, Z.; Sayer, M. Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: electrical, optical, and electro-optic properties. J. Appl. Phys., 1988, 64(5), 2717-2724.
[http://dx.doi.org/10.1063/1.341613]
[76]
Li, Y.L.; Kinloch, I.A.; Windle, A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304(5668), 276-278.
[http://dx.doi.org/10.1126/science.1094982] [PMID: 15016960]
[77]
Mädler, L.; Kammler, H.K.; Mueller, R.; Pratsinis, S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci., 2002, 33(2), 369-389.
[http://dx.doi.org/10.1016/S0021-8502(01)00159-8]
[78]
Lacour, F.; Guillois, O.; Portier, X.; Perez, H.; Herlin, N.; Reynaud, C. Laser pyrolysis synthesis and characterization of luminescent sili-con nanocrystals. Physica E, 2007, 38(1–2), 11-15.
[http://dx.doi.org/10.1016/j.physe.2006.12.051]
[79]
Darbandi, M.; Thomann, R.; Nann, T. Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater., 2005, 17(23), 5720-5725.
[http://dx.doi.org/10.1021/cm051467h]
[80]
Balasooriya, E.R.; Jayasinghe, C.D.; Jayawardena, U.A.; Ruwanthika, R.W.D.; De Silva, R.M.; Udagama, P.V. Honey mediated green syn-thesis of nanoparticles: New era of safe nanotechnology. J. Nanomater., 2017.
[http://dx.doi.org/10.1155/2017/5919836]
[81]
Rana, S.; Kalaichelvan, P.T. Ecotoxicity of nanoparticles. ISRN Toxicol., 2013, 2013, 574648.
[http://dx.doi.org/10.1155/2013/574648] [PMID: 23724300]
[82]
Reddy, S.M.; Datta, K.K.R.; Sreelakshmi, C.; Eswaramoorthy, M.; Reddy, B.V.S. Honey mediated green synthesis of pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanosci. Nanotechnol. Lett., 2012, 4(4), 420-425.
[http://dx.doi.org/10.1166/nnl.2012.1331]
[83]
Venu, R.; Ramulu, T.S.; Anandakumar, S.; Rani, V.S.; Kim, C.G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A Physicochem. Eng. Asp., 2011, 384(1–3), 733-738.
[http://dx.doi.org/10.1016/j.colsurfa.2011.05.045]
[84]
Sreelakshmi, C.; Datta, K.K.R.; Yadav, J.S.; Reddy, B.V. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol., 2011, 11(8), 6995-7000.
[http://dx.doi.org/10.1166/jnn.2011.4240] [PMID: 22103111]
[85]
Obot, I.; Umoren, S.A.; Johnson, A.S. Sunlight-mediated synthesis of silver nanoparticles using honey and its promising anticorrosion potentials for mild steel in acidic environments., 2013.
[86]
Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron., 2014, 60, 292-298.
[http://dx.doi.org/10.1016/j.bios.2014.04.046] [PMID: 24832204]
[87]
Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-synthesis of silver nanoparticles from mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq., 2016, 221, 1063-1070.
[http://dx.doi.org/10.1016/j.molliq.2016.06.064]
[88]
Rasheed, T.; Bilal, M.; Li, C.; Nabeel, F.; Khalid, M.; Iqbal, H.M.N. Catalytic potential of bio-synthesized silver nanoparticles using Con-volvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B, 2018, 181, 44-52.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.024] [PMID: 29499463]
[89]
Rupa, E.J.; Kaliraj, L.; Abid, S.; Yang, D.C.; Jung, S.K. Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials (Basel), 2019, 9(12), 1692.
[http://dx.doi.org/10.3390/nano9121692] [PMID: 31779265]
[90]
Joseph, S.; Mathew, B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq., 2015, 204, 184-191.
[http://dx.doi.org/10.1016/j.molliq.2015.01.027]
[91]
Jyoti, K.; Singh, A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J. Genet. Eng. Biotechnol., 2016, 14(2), 311-317.
[http://dx.doi.org/10.1016/j.jgeb.2016.09.005] [PMID: 30647629]
[92]
Edison, T.N.J.I.; Atchudan, R.; Sethuraman, M.G.; Lee, Y.R. Reductive-degradation of carcinogenic azo dyes using Anacardium occi-dentale testa derived silver nanoparticles. J. Photochem. Photobiol. B, 2016, 162, 604-610.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.040] [PMID: 27479841]
[93]
Singh, J.; Kumar, V.; Singh Jolly, S.; Kim, K.H.; Rawat, M.; Kukkar, D.; Tsang, Y.F. Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J. Ind. Eng. Chem., 2019, 80, 247-257.
[http://dx.doi.org/10.1016/j.jiec.2019.08.002]
[94]
Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Xie, T.; Wang, D.; Guo, C.; Zhao, J.; Zhu, H. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem., 2010, 12(3), 414-441.
[http://dx.doi.org/10.1039/b921696k]
[95]
Sumi, M.B.; Devadiga, A.; Shetty, K.V.; Saidutta, M.B. Solar photocatalytically active, engineered silver nanoparticle synthesis using aque-ous extract of mesocarp of cocos nucifera (red spicata dwarf). J. Exp. Nanosci., 2017, 12(1), 14-32.
[http://dx.doi.org/10.1080/17458080.2016.1251622]
[96]
Zhu, S.; Wang, D. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater., 2017, 1700841.
[http://dx.doi.org/10.1002/aenm.201700841]
[97]
Bansal, P.; Sud, D. Photodegradation of commercial dye, CI reactive blue 160 using ZnO nanopowder: Degradation pathway and identifi-cation of intermediates by GC/MS. Separ. Purif. Tech., 2012, 85, 112-119.
[http://dx.doi.org/10.1016/j.seppur.2011.09.055]
[98]
David, L.; Moldovan, B. Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials (Basel), 2020, 10(2), 202.
[http://dx.doi.org/10.3390/nano10020202] [PMID: 31991548]
[99]
Savage, N.; Diallo, M.S. Nanomaterials and water purification: Opportunities and challenges. In: Journal of Nanoparticle Research; Springer, 2005, 7, p. 331.342.
[http://dx.doi.org/10.1007/s11051-005-7523-5]
[100]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[101]
Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 2009, 4(1), 66-80.
[http://dx.doi.org/10.1016/j.nantod.2008.10.014]
[102]
Johnson, B.F.G. Nanoparticles in catalysis. Top. Catal., 2003, 24(1–4), 147-159.
[http://dx.doi.org/10.1023/B:TOCA.0000003086.83434.b6]
[103]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[104]
He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z. Photocatalytic degradation of rhodamine B by Bi(2)WO(6) with electron accepting agent under microwave irradiation: mechanism and pathway. J. Hazard. Mater., 2009, 162(2-3), 1477-1486.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.047] [PMID: 18674856]
[105]
Dong, W.; Zhu, C. Optical properties of surface-modified Bi2O3 nanoparticles. J. Phys. Chem. Solids, 2003, 64(2), 265-271.
[http://dx.doi.org/10.1016/S0022-3697(02)00291-3]
[106]
Kiri, P.; Hyett, G.; Binions, R. Solid state thermochromic materials. Adv. Mater. Lett., 2010, 1(2), 86-105.
[http://dx.doi.org/10.5185/amlett.2010.8147]
[107]
Zaki, M.I.; Mekhemer, G.A.H.; Fouad, N.E.; Jagadale, T.C.; Ogale, S.B. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO2 nanoparticles. Mater. Res. Bull., 2010, 45(10), 1470-1475.
[http://dx.doi.org/10.1016/j.materresbull.2010.06.026]
[108]
Barnard, A.S.; Zapol, P. Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B, 2004, 108(48), 18435-18440.
[http://dx.doi.org/10.1021/jp0472459]
[109]
Zhu, J.; Zhang, J.; Chen, F.; Iino, K.; Anpo, M. High activity TiO2 photocatalysts prepared by a modified sol-gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL. Top. Catal., 2005, 35(3–4), 261-268.
[http://dx.doi.org/10.1007/s11244-005-3833-1]
[110]
Navío, J.A.; Colón, G.; Macías, M.; Real, C.; Litter, M.I. Iron-doped titania semiconductor powders prepared by a sol-gel method. Part I: Synthesis and characterization. Appl. Catal. A Gen., 1999, 177(1), 111-120.
[http://dx.doi.org/10.1016/S0926-860X(98)00255-5]
[111]
Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles-A review. J. Nanomater., 2015, 1-29.
[http://dx.doi.org/10.1155/2015/790173]
[112]
Panić, V.; Dekanski, A.; Milonjić, S.; Atanasoski, R.; Nikolić, B. Influence of the aging time of RuO2 and TiO2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol-gel procedure. Electrochim. Acta, 2000, 46(2–3), 415-421.
[http://dx.doi.org/10.1016/S0013-4686(00)00600-9]
[113]
Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A Gen., 2006, 304(1–2), 55-61.
[http://dx.doi.org/10.1016/j.apcata.2006.02.020]
[114]
Chauhan, M.; Kaur, N.; Bansal, P.; Kumar, R.; Srinivasan, S.; Chaudhary, G.R. Proficient photocatalytic and sonocatalytic degradation of organic pollutants using CuO nanoparticles. J. Nanomater., 2020, 2020
[http://dx.doi.org/10.1155/2020/6123178]
[115]
Gupta, N.K.; Ghaffari, Y.; Kim, S.; Bae, J.; Kim, K.S.; Saifuddin, M. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep., 2020, 10(1), 4942.
[http://dx.doi.org/10.1038/s41598-020-61930-2] [PMID: 32188893]
[116]
Sharma, R.; Bansal, S.; Singhal, S. Tailoring the photo-fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Advances, 2015, 5(8), 6006-6018.
[http://dx.doi.org/10.1039/C4RA13692F]
[117]
Shak, K.P.Y.; Pang, Y.L.; Mah, S.K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J. Nanotechnol., 2018, 9(1), 2479-2498.
[http://dx.doi.org/10.3762/bjnano.9.232] [PMID: 30345212]
[118]
Suopajärvi, T.; Koivuranta, E.; Liimatainen, H.; Niinimäki, J. Flocculation of municipal wastewaters with anionic nanocelluloses: influence of nanocellulose characteristics on floc morphology and strength. J. Environ. Chem. Eng., 2014, 2(4), 2005-2012.
[http://dx.doi.org/10.1016/j.jece.2014.08.023]
[119]
Gao, M.; Li, N.; Lu, W.; Chen, W. Role of cellulose fibers in enhancing photosensitized oxidation of basic green 1 with massive dyeing auxiliaries. Appl. Catal. B, 2014, 147, 805-812.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.015]
[120]
Zeng, J.; Liu, S.; Cai, J.; Zhang, L. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J. Phys. Chem. C, 2010, 114(17), 7806-7811.
[http://dx.doi.org/10.1021/jp1005617]
[121]
Nsib, M.F.; Hajji, F.; Mayoufi, A.; Moussa, N.; Rayes, A.; Houas, A. In situ synthesis and characterization of TiO2/HPM cellulose hybrid material for the photocatalytic degradation of 4-NP under visible light. C. R. Chim., 2014, 17(7), 839-848.
[http://dx.doi.org/10.1016/j.crci.2014.01.010]
[122]
Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Ismail, A.F.; Abd Mutalib, M.; Jamil, S.M. Incorporation of N-doped TiO2 nanorods in regen-erated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr. Polym., 2015, 133, 429-437.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.057] [PMID: 26344299]
[123]
Yang, J.; Yu, J.; Fan, J.; Sun, D.; Tang, W.; Yang, X. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater., 2011, 189(1-2), 377-383.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.048] [PMID: 21419573]
[124]
Dehghani, M.; Nadeem, H.; Raghuwanshi, V.S.; Mahdavi, H.; Banaszak Holl, M.M.; Batchelor, W. ZnO/cellulose nanofiber composites for sustainable sunlight-driven dye degradation. ACS Appl. Nano Mater., 2020, 3(10), 10284-10295.
[http://dx.doi.org/10.1021/acsanm.0c02199]
[125]
Chen, P.; Liu, X.; Jin, R.; Nie, W.; Zhou, Y. Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disul-fide composite hydrogels. Carbohydr. Polym., 2017, 167, 36-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.094] [PMID: 28433173]
[126]
Li, S.; Hao, X.; Dai, X.; Tao, T. Rapid photocatalytic degradation of pollutant from water under UV and sunlight via cellulose nanofiber aerogel wrapped by TiO2. J. Nanomater., 2018, 2018
[http://dx.doi.org/10.1155/2018/8752015]
[127]
Ke, D.; Liu, S.; Dai, K.; Zhou, J.; Zhang, L.; Peng, T. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J. Phys. Chem. C, 2009, 113(36), 16021-16026.
[http://dx.doi.org/10.1021/jp903378q]
[128]
Zhou, Z.; Peng, X.; Zhong, L.; Wu, L.; Cao, X.; Sun, R.C. Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohydr. Polym., 2016, 136, 322-328.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.009] [PMID: 26572362]
[129]
Pastrana-Martínez, L.M.; Morales-Torres, S.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res., 2015, 77, 179-190.
[http://dx.doi.org/10.1016/j.watres.2015.03.014] [PMID: 25875927]
[130]
Gan, L.; Zhong, Q.; Geng, A.; Wang, L.; Song, C.; Han, S.; Cui, J.; Xu, L. Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation. Sci. Total Environ., 2019, 694, 133705.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133705] [PMID: 31386955]
[131]
Ji, Y.; Wen, Y.; Wang, Z.; Zhang, S.; Guo, M. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunc-tional applications in Cu(II) and organic pollutants removal. J. Clean. Prod., 2020, 255, 120276.
[http://dx.doi.org/10.1016/j.jclepro.2020.120276]
[132]
Taranto, J.; Frochot, D.; Pichat, P. Photocatalytic air purification: comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 close-loop reactor. Separ. Purif. Tech., 2009, 67(2), 187-193.
[http://dx.doi.org/10.1016/j.seppur.2009.03.017]
[133]
Cheng, F.; Lorch, M.; Sajedin, S.M.; Kelly, S.M.; Kornherr, A. Whiter, brighter, and more stable cellulose paper coated with TiO2/SiO2 core/shell nanoparticles using a layer-by-layer approach. ChemSusChem, 2013, 6(8), 1392-1399.
[http://dx.doi.org/10.1002/cssc.201300305] [PMID: 23868805]
[134]
Nwaji, N.; Akinoglu, E.M.; Giersig, M. Gold nanoparticle‐decorated Bi2S3 nanorods and nanoflowers for photocatalytic wastewater treat-ment. Catalysts, 2021, 11(3), 1-12.
[http://dx.doi.org/10.3390/catal11030355]
[135]
Khan, I.; Zada, N.; Khan, I.; Sadiq, M.; Saeed, K. Enhancement of photocatalytic potential and recoverability of Fe3O4 nanoparticles by decorating over monoclinic zirconia. J. Environ. Health Sci. Eng., 2020, 18(2), 1473-1489.
[http://dx.doi.org/10.1007/s40201-020-00563-z] [PMID: 33312656]
[136]
Yang, Y.; Ali, N.; Khan, A.; Khan, S.; Khan, S.; Khan, H.; Xiaoqi, S.; Ahmad, W.; Uddin, S.; Ali, N.; Bilal, M. Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int. J. Biol. Macromol., 2021, 167, 169-181.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.167] [PMID: 33249161]
[137]
Subburu, M.; Gade, R.; Guguloth, V.; Chetti, P.; Ravulapelly, K.R.; Pola, S. Effective photodegradation of organic pollutantsin the presence of mono and bi-metallic complexes under visible-light irradiation. J. Photochem. Photobiol. Chem., 2021, 406, 112996.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112996]
[138]
Zhang, T.; Liu, J.; Zhou, F.; Zhou, S.; Wu, J.; Chen, D.; Xu, Q.; Lu, J. Polymer-coated Fe2O3 nanoparticles for photocatalytic degradation of organic materials and antibiotics in water. ACS Appl. Nano Mater., 2020, 3(9), 9200-9208.
[http://dx.doi.org/10.1021/acsanm.0c01829]
[139]
Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev., 2015, 44(1), 250-290.
[http://dx.doi.org/10.1039/C4CS00232F] [PMID: 25301517]
[140]
Rufford, T.E.; Zhu, J.; Hulicova-Jurcakova, D. Eds.; Green Carbon materials: Advances and applications, 1st ed; Jenny Stanford Publishing, 2014.
[141]
Zhang, Y.; Liu, Y.; Gao, W.; Chen, P.; Cui, H.; Fan, Y.; Shi, X.; Zhao, Y.; Cui, G.; Tang, B. MoS2 nanosheets assembled on three-way nitrogen-doped carbon tubes for photocatalytic water splitting. Front Chem., 2019, 7, 325.
[http://dx.doi.org/10.3389/fchem.2019.00325] [PMID: 31165056]
[142]
Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon, 2015, 91, 122-143.
[http://dx.doi.org/10.1016/j.carbon.2015.04.043]
[143]
Yu, H.; Xiao, P.; Tian, J.; Wang, F.; Yu, J. Phenylamine-functionalized rGO/TiO2 photocatalysts: Spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Appl. Mater. Interfaces, 2016, 8(43), 29470-29477.
[http://dx.doi.org/10.1021/acsami.6b09903] [PMID: 27734674]
[144]
Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today, 2019, 335, 65-77.
[http://dx.doi.org/10.1016/j.cattod.2018.09.013]
[145]
Shan, S.J.; Zhao, Y.; Tang, H.; Cui, F.Y. A mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conference Series: Earth and Environmental Science, 2017.
[http://dx.doi.org/10.1088/1755-1315/68/1/012003]
[146]
Kumar, A.; Thakur, P.R.; Sharma, G.; Naushad, M.; Rana, A.; Mola, G.T.; Stadler, F.J. Carbon nitride, metal nitrides, phosphides, chalco-genides, perovskites and carbides nanophotocatalysts for environmental applications. Environ. Chem. Lett., 2019, 17, 655-682.
[http://dx.doi.org/10.1007/s10311-018-0814-8]
[147]
Yan, Q-L.; Gozin, M.; Zhao, F-Q.; Cohen, A.; Pang, S-P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 2016, 8(9), 4799-4851.
[http://dx.doi.org/10.1039/C5NR07855E] [PMID: 26880518]
[148]
Ye, A.; Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol., 2012, 2(5), 969-978.
[http://dx.doi.org/10.1039/c2cy20027a]
[149]
Liu, H.; Ren, M.; Zhang, Z.; Qu, J.; Ma, Y.; Lu, N. A novel electrocatalytic approach for effective degradation of Rh-B in water using car-bon nanotubes and agarose. Environ. Sci. Pollut. Res. Int., 2018, 25(13), 12361-12372.
[http://dx.doi.org/10.1007/s11356-018-1516-2] [PMID: 29455356]
[150]
Sun, Y.P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res., 2002, 35(12), 1096-1104.
[http://dx.doi.org/10.1021/ar010160v] [PMID: 12484798]
[151]
Weng, B.; Liu, S.; Tang, Z.R.; Xu, Y.J. One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Advances, 2014, 25, 12685-12700.
[http://dx.doi.org/10.1039/c3ra47910b]
[152]
Hull, R.V.; Li, L.; Xing, Y.; Chusuei, C.C. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater., 2006, 18(7), 1780-1788.
[http://dx.doi.org/10.1021/cm0518978]
[153]
Jiang, K.; Eitan, A.; Schadler, L.S.; Ajayan, P.M.; Siegel, R.W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Se-lective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett., 2003, 3(3), 275-277.
[http://dx.doi.org/10.1021/nl025914t]
[154]
Yang, G.W.; Gao, G.Y.; Wang, C.; Xu, C.L.; Li, H.L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon N. Y., 2008, 46(5), 747-752.
[http://dx.doi.org/10.1016/j.carbon.2008.01.026]
[155]
Jung, J.H.; Hwang, G.B.; Lee, J.E.; Bae, G.N. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their ap-plication to antimicrobial air filtration. Langmuir, 2011, 27(16), 10256-10264.
[http://dx.doi.org/10.1021/la201851r] [PMID: 21751779]
[156]
Abou Asi, M.; Zhu, L.; He, C.; Sharma, V.K.; Shu, D.; Li, S.; Yang, J.; Xiong, Y. Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites. Catal. Today, 2013, 216, 268-275.
[http://dx.doi.org/10.1016/j.cattod.2013.05.021]
[157]
Lu, C.Y.; Tseng, H.H.; Wey, M.Y.; Chuang, K.H.; Kuo, J.H. Evaluating the potential of CNT-supported Co catalyst used for gas pollution removal in the incineration flue gas. J. Environ. Manage., 2009, 90(5), 1884-1892.
[http://dx.doi.org/10.1016/j.jenvman.2008.12.017] [PMID: 19203827]
[158]
Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995, 95(3), 735-758.
[http://dx.doi.org/10.1021/cr00035a013]
[159]
Yu, H.; Quan, X.; Chen, S.; Zhao, H. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J. Phys. Chem. C, 2007, 111(35), 12987-12991.
[http://dx.doi.org/10.1021/jp0728454]
[160]
Jin, Y.; Li, G.; Zhang, Y.; Zhang, Y.; Zhang, L. Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. J. Phys. Condens. Matter, 2001, 13, 44.
[http://dx.doi.org/10.1088/0953-8984/13/44/105]
[161]
Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater., 2009, 21(21), 2233-2239.
[http://dx.doi.org/10.1002/adma.200802738]
[162]
Zhang, Y.; Utke, I.; Michler, J.; Ilari, G.; Rossell, M.D.; Erni, R. Growth and characterization of CNT-TiO2 heterostructures. Beilstein J. Nanotechnol., 2014, 5(1), 946-955.
[http://dx.doi.org/10.3762/bjnano.5.108] [PMID: 25161830]
[163]
Wang, W.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a mod-ified sol-gel method. J. Mol. Catal. Chem., 2005, 235(1–2), 194-199.
[http://dx.doi.org/10.1016/j.molcata.2005.02.027]
[164]
Yu, Y.; Yu, J.C.; Chan, C.Y.; Che, Y.K.; Zhao, J.C.; Ding, L.; Ge, W.K.; Wong, P.K. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of Azo Dye. Appl. Catal. B, 2005, 61(1–2), 1-11.
[http://dx.doi.org/10.1016/j.apcatb.2005.03.008]
[165]
Pyrgiotakis, G.; Lee, S.H.; Sigmund, W. Advanced photocatalysis with anatase nano-coated multi-walled carbon nanotubes. Materials Re-search Society Symposium Proceedings, 2005, pp. 83-88.
[http://dx.doi.org/10.1557/PROC-876-R5.7]
[166]
Silva, C.G.; Faria, J.L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 Matrix. Appl. Catal. B, 2010, 101(1–2), 81-89.
[http://dx.doi.org/10.1016/j.apcatb.2010.09.010]
[167]
Da Silva, C.G.; Luís Faria, J. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A, 2003, 1(3), 133-143.
[http://dx.doi.org/10.1016/S1010-6030(02)00374-X]
[168]
Martínez, C.; Canle, L.M.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl. Catal. B, 2011, 102(3–4), 563-571.
[http://dx.doi.org/10.1016/j.apcatb.2010.12.039]
[169]
Chen, L.C.; Ho, Y.C.; Guo, W.S.; Huang, C.M.; Pan, T.C. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim. Acta, 2009, 54(15), 3884-3891.
[http://dx.doi.org/10.1016/j.electacta.2009.02.001]
[170]
Jo, W.K.; Kim, K.H. Feasibility of carbonaceous nanomaterial-assisted photocatalysts calcined at different temperatures for indoor air applications. Int. J. Photoenergy, 2012, 2012
[http://dx.doi.org/10.1155/2012/939237]
[171]
Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Béguin, F.; Bonnamy, S. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon, 2004, 42, 1147-1151.
[http://dx.doi.org/10.1016/j.carbon.2003.12.041]
[172]
Wang, Q.; Yang, D.; Chen, D.; Wang, Y.; Jiang, Z. Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photo-catalytic activity through a nanocoating-hydrothermal process. J. Nanopart. Res., 2007, 9(6), 1087-1096.
[http://dx.doi.org/10.1007/s11051-006-9199-x]
[173]
Zhu, Z.; Zhou, Y.; Yu, H.; Nomura, T.; Fugetsu, B. Photodegradation of humic substances on MWCNT/nanotubular-TiO2 composites. Chem. Lett., 2006, 35(8), 890-891.
[http://dx.doi.org/10.1246/cl.2006.890]
[174]
Kuo, C-S.; Tseng, Y-H.; Lin, H-Y.; Huang, C-H.; Shen, C-Y.; Li, Y-Y.; Ismat Shah, S.; Huang, C-P. Synthesis of a CNT-grafted TiO(2) nanocatalyst and its activity triggered by a DC voltage. Nanotechnology, 2007, 18(46), 465607.
[http://dx.doi.org/10.1088/0957-4484/18/46/465607] [PMID: 21730487]
[175]
Hu, G.; Meng, X.; Feng, X.; Ding, Y.; Zhang, S.; Yang, M. Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, charac-terization and photocatalytic properties. J. Mater. Sci., 2007, 42(17), 7162-7170.
[http://dx.doi.org/10.1007/s10853-007-1609-7]
[176]
Xia, X.H.; Jia, Z.J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocata-lytic activity in the reduction of CO2 with H2O. Carbon N. Y., 2007, 45(4), 717-721.
[http://dx.doi.org/10.1016/j.carbon.2006.11.028]
[177]
Castro, M.R.S.; Sam, E.D.; Veith, M.; Oliveira, P.W. Structure, wettability and photocatalytic activity of CO(2) laser sintered TiO(2)/multi-walled carbon nanotube coatings. Nanotechnology, 2008, 19(10), 105704.
[http://dx.doi.org/10.1088/0957-4484/19/10/105704] [PMID: 21817712]
[178]
Liu, B.; Zeng, H.C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater., 2008, 20(8), 2711-2718.
[http://dx.doi.org/10.1021/cm800040k]
[179]
Yen, C.Y.; Lin, Y.F.; Hung, C.H.; Tseng, Y.H.; Ma, C.C.M.; Chang, M.C.; Shao, H. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO(2) nanocomposites. Nanotechnology, 2008, 19(4), 045604.
[http://dx.doi.org/10.1088/0957-4484/19/04/045604] [PMID: 21817510]
[180]
Byrappa, K.; Dayananda, A.S.; Sajan, C.P.; Basavalingu, B.; Shayan, M.B.; Soga, K.; Yoshimura, M. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J. Mater. Sci., 2008, 43, 2348-2355.
[http://dx.doi.org/10.1007/s10853-007-1989-8]
[181]
Kedem, S.; Schmidt, J.; Paz, Y.; Cohen, Y. Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir, 2005, 21(12), 5600-5604.
[http://dx.doi.org/10.1021/la0502443] [PMID: 15924496]
[182]
Sung-Hwan, L.; Sigmund, W.M. Young’s modulus studies of electrospun TiO2-carbon nanotubes. JOM, 2007, 59(1), 30-33.
[183]
Gao, B.; Peng, C.; Chen, G.Z.; Li, P.G. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl. Catal. B, 2008, 85(1–2), 17-23.
[http://dx.doi.org/10.1016/j.apcatb.2008.06.027]
[184]
Gao, B.; Chen, G.Z.; Li, P.G. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B, 2009, 89(3–4), 503-509.
[http://dx.doi.org/10.1016/j.apcatb.2009.01.009]
[185]
Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Li, P.G. Carbon nanotube/titanium dioxide (CNT/TiO2) core-shell nanocompo-sites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B, 2011, 110, 50-57.
[http://dx.doi.org/10.1016/j.apcatb.2011.08.023]
[186]
Oh, W.C.; Chen, M.L. Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium(IV) n-butoxide. Bull. Korean Chem. Soc., 2008, 29(1), 159-164.
[http://dx.doi.org/10.5012/bkcs.2008.29.1.159]
[187]
Wu, C.H. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater., 2007, 144(1-2), 93-100.
[http://dx.doi.org/10.1016/j.jhazmat.2006.09.083] [PMID: 17081687]
[188]
Pastrana-Martínez, L.M.; Morales-Torres, S.; Papageorgiou, S.K.; Katsaros, F.K.; Romanos, G.E.; Figueiredo, J.L.; Faria, J.L.; Falaras, P.; Silva, A.M.T. Photocatalytic behaviour of nanocarbon-TiO2 composites and immobilization into hollow fibres. Appl. Catal. B, 2013, 142–143, 101-111.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.074]
[189]
Ma, L.; Chen, A.; Lu, J.; Zhang, Z.; He, H.; Li, C. In situ synthesis of CNTs/Fe-Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology, 2014, 14, 24-32.
[http://dx.doi.org/10.1016/j.partic.2013.04.002]
[190]
Shaari, N.; Tan, S.H.; Mohamed, A.R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation. J. Rare Earths, 2012, 30(7), 651-658.
[http://dx.doi.org/10.1016/S1002-0721(12)60107-0]
[191]
Martínez, C.; Canle, L.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B, 2011, 107(1–2), 110-118.
[http://dx.doi.org/10.1016/j.apcatb.2011.07.003]
[192]
Sharma, S.K.; Gupta, R.; Sharma, G.; Vemula, K.; Koirala, A.R.; Kaushik, N.K.; Choi, E.H.; Kim, D.Y.; Purohit, L.P.; Singh, B.P. Photo-catalytic performance of yttrium-doped CNT-ZnO nanoflowers synthesized from hydrothermal method. Mater. Today Chem., 2021, 20, 100452.
[http://dx.doi.org/10.1016/j.mtchem.2021.100452]
[193]
Elias, M.; Uddin, M.N.; Saha, J.K.; Hossain, M.A.; Sarker, D.R.; Akter, S.; Siddiquey, I.A.; Uddin, J. A highly efficient and stable photo-catalyst; N-doped ZnO/CNT composite thin film synthesized via simple Sol-Gel drop coating method. Molecules, 2021, 26(5), 1470.
[http://dx.doi.org/10.3390/molecules26051470] [PMID: 33800455]
[194]
Popa, A.; Pana, O.; Stefan, M.; Toloman, D.; Stan, M.; Leostean, C.; Suciu, R.C.; Vlad, G.; Ulinici, S.; Baisan, G.; Macavei, S.; Barbu-Tudoran, L. Interplay between ferromagnetism and photocatalytic activity generated by Fe3+ ions in iron doped ZnO nanoparticles grown on MWCNTs. Physica E, 2021, 129, 114581.
[http://dx.doi.org/10.1016/j.physe.2020.114581]
[195]
Yan, Y.; Chang, T.; Wei, P.; Kang, S.Z.; Mu, J. Photocatalytic activity of nanocomposites of ZnO and multi-walled carbon nanotubes for dye degradation. J. Dispers. Sci. Technol., 2009, 30(2), 198-203.
[http://dx.doi.org/10.1080/01932690802498310]
[196]
Cong, Q.; Zhang, Q.; Yuan, X.; Luo, C.; Qu, J. Synthesis of nanomaterials from physalis alkekengi l. and their removal of bisphenol A in water. J. Environ. Eng., 2014, 140(2), 04013006.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000797]
[197]
Saleh, T.A.; Gondal, M.A.; Drmosh, Q.A.; Yamani, Z.H. AL-yamani, A. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J., 2011, 166(1), 407-412.
[http://dx.doi.org/10.1016/j.cej.2010.10.070]
[198]
Zong, X.; Sun, C.; Yu, H.; Chen, Z.G.; Xing, Z.; Ye, D.; Lu, G.Q.; Li, X.; Wang, L. Activation of photocatalytic water oxidation on N-Doped ZnO bundle-like nanoparticles under visible light. J. Phys. Chem. C, 2013, 117(10), 4937-4942.
[http://dx.doi.org/10.1021/jp311729b]
[199]
Qin, H.; Li, W.; Xia, Y.; He, T. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl. Mater. Interfaces, 2011, 3(8), 3152-3156.
[http://dx.doi.org/10.1021/am200655h] [PMID: 21770403]
[200]
Yibeltal, A.W.; Beyene, B.B.; Admassie, S.; Taddesse, A.M. MWCNTs/Ag-ZnO nanocomposite for efficient photocatalytic degradation of congo red. Bull. Chem. Soc. Ethiop., 2020, 34(1), 55-66.
[http://dx.doi.org/10.4314/bcse.v34i1.5]
[201]
Perreault, F.; Fonseca de Faria, A.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev., 2015, 44(16), 5861-5896.
[http://dx.doi.org/10.1039/C5CS00021A] [PMID: 25812036]
[202]
Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energ. Environ. Sci, 2012, 8848-8868.
[http://dx.doi.org/10.1039/c2ee22238h]
[203]
Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small, 2016, 12(48), 6640-6696.
[http://dx.doi.org/10.1002/smll.201600382] [PMID: 27805773]
[204]
Khan, M.E.; Khan, M.M.; Cho, M.H. Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale, 2018, 10(20), 9427-9440.
[http://dx.doi.org/10.1039/C8NR03500H] [PMID: 29762624]
[205]
Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces, 2015, 7(46), 25693-25701.
[http://dx.doi.org/10.1021/acsami.5b09503] [PMID: 26545166]
[206]
Wang, X.; Wang, H.; Yu, K.; Hu, X. Immobilization of 2D/2D structured g-C3N4 nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance. Mater. Res. Bull., 2018, 97, 306-313.
[http://dx.doi.org/10.1016/j.materresbull.2017.09.024]
[207]
Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1), 380-386.
[http://dx.doi.org/10.1021/nn901221k] [PMID: 20041631]
[208]
Gong, S.; Jiang, Z.; Zhu, S.; Fan, J.; Xu, Q.; Min, Y. The synthesis of graphene-TiO2/g-C3N4 super-thin heterojunctions with enhanced visible-light photocatalytic activities. J. Nanopart. Res., 2018, 20(11), 1-13.
[http://dx.doi.org/10.1007/s11051-018-4399-8]
[209]
Sadatmansouri, E.; Abolhosseini Shahrnoy, A.; Mahjoub, A.R. Competitive photocatalytic activity of ionic crystal decorated magnetic graphene oxide/cobalt monoxide nanocomposite: comparison to its MWCNTs analogue. Diamond Related Materials, 2021, 111, 108209.
[http://dx.doi.org/10.1016/j.diamond.2020.108209]
[210]
Liu, J.; Wang, L.; Tang, J.; Ma, J. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite na-nomaterial. Chemosphere, 2016, 149, 328-335.
[http://dx.doi.org/10.1016/j.chemosphere.2016.01.074] [PMID: 26874061]
[211]
Su, R.; Ge, S.; Li, H.; Su, Y.; Li, Q.; Zhou, W.; Gao, B.; Yue, Q. Synchronous synthesis of Cu2O/Cu/rGO@carbon nanomaterials photo-catalysts via the sodium alginate hydrogel template method for visible light photocatalytic degradation. Sci. Total Environ., 2019, 693, 133657.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133657] [PMID: 31635004]
[212]
Ivan, R.; Pérez del Pino, A.; Yousef, I.; Logofatu, C.; György, E. Laser synthesis of TiO2–carbon nanomaterial layers with enhanced pho-todegradation efficiency towards antibiotics and dyes. J. Photochem. Photobiol. Chem., 2020, 399, 112616.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112616]
[213]
Xu, B.; Maimaiti, H.; Wang, S.; Awati, A.; Wang, Y.; Zhang, J.; Chen, T. Preparation of coal-based graphene oxide/SiO2 nanosheet and loading ZnO nanorod for photocatalytic fenton-like reaction. Appl. Surf. Sci., 2019, 498(May)
[http://dx.doi.org/10.1016/j.apsusc.2019.143835]
[214]
Tian, H.; Liu, M.; Zheng, W. Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with en-hanced photocatalytic activity. Appl. Catal. B, 2018, 225, 468-476.
[http://dx.doi.org/10.1016/j.apcatb.2017.12.019]
[215]
Jo, W.K.; Tonda, S. Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants. J. Hazard. Mater., 2019, 368, 778-787.
[http://dx.doi.org/10.1016/j.jhazmat.2019.01.114] [PMID: 30739031]
[216]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[217]
Pirsaheb, M.; Asadi, A.; Sillanpää, M.; Farhadian, N. Application of carbon quantum dots to increase the activity of conventional photo-catalysts: a systematic review. J. Mol. Liq., 2018, 271, 857-871.
[http://dx.doi.org/10.1016/j.molliq.2018.09.064]
[218]
Hu, S.; Tian, R.; Wu, L.; Zhao, Q.; Yang, J.; Liu, J.; Cao, S. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity. Chem. Asian J., 2013, 8(5), 1035-1041.
[http://dx.doi.org/10.1002/asia.201300076] [PMID: 23441085]
[219]
Yang, P.; Zhao, J.; Zhang, L.; Li, L.; Zhu, Z. Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activi-ty of carbon nanodots. Chemistry, 2015, 21(23), 8561-8568.
[http://dx.doi.org/10.1002/chem.201405088] [PMID: 25925432]
[220]
Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Zhang, Q.; Li, H.; Li, M. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with en-hanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl. Catal. B, 2015, 168–169, 51-61.
[http://dx.doi.org/10.1016/j.apcatb.2014.11.057]
[221]
Di, J.; Xia, J.; Ji, M.; Wang, B.; Li, X.; Zhang, Q.; Chen, Z.; Li, H. Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets: In situ strong coupling and improved molecular oxygen activation ability under visible light irradiation. ACS Sustain. Chem.& Eng., 2016, 4(1), 136-146.
[http://dx.doi.org/10.1021/acssuschemeng.5b00862]
[222]
Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T. Smart utilization of carbon dots in semiconductor photoca-talysis. Adv. Mater., 2016, 28(43), 9454-9477.
[http://dx.doi.org/10.1002/adma.201602581] [PMID: 27623955]
[223]
Cao, L.; Wang, X.; Meziani, M.J.; Lu, F.; Wang, H.; Luo, P.G.; Lin, Y.; Harruff, B.A.; Veca, L.M.; Murray, D.; Xie, S.Y.; Sun, Y.P. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc., 2007, 129(37), 11318-11319.
[http://dx.doi.org/10.1021/ja073527l] [PMID: 17722926]
[224]
Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 2012, 4(18), 5572-5575.
[http://dx.doi.org/10.1039/c2nr31319g] [PMID: 22786671]
[225]
Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devic-es. Chem. Commun. (Camb.), 2012, 48(31), 3686-3699.
[http://dx.doi.org/10.1039/c2cc00110a] [PMID: 22410424]
[226]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[227]
Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem., 2012, 22(46), 24230-24253.
[http://dx.doi.org/10.1039/c2jm34690g]
[228]
Wang, X.; Cao, L.; Lu, F.; Meziani, M.J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B.A.; Kermarrec, F.; Sun, Y.P. Photoinduced electron transfers with carbon dots. Chem. Commun. (Camb.), 2009, 25(25), 3774-3776.
[http://dx.doi.org/10.1039/b906252a] [PMID: 19557278]
[229]
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4430-4434.
[http://dx.doi.org/10.1002/anie.200906154] [PMID: 20461744]
[230]
Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. ZnO/Carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem., 2012, 36(4), 1031-1035.
[http://dx.doi.org/10.1039/c2nj20959d]
[231]
Li, H.; Liu, R.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S.; Lee, S.T.; Kang, Z. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem., 2012, 22(34), 17470-17475.
[http://dx.doi.org/10.1039/c2jm32827e]
[232]
Yu, B.Y.; Kwak, S.Y. Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocata-lysts. J. Mater. Chem., 2012, 22(17), 8345-8353.
[http://dx.doi.org/10.1039/c2jm16931b]
[233]
Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem., 2012, 22(21), 10501-10506.
[http://dx.doi.org/10.1039/c2jm30703k]
[234]
Ishak, N.A.I.M.; Kamarudin, S.K.; Timmiati, S.N. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mater. Res. Express, 2019, 6(11), 112004.
[http://dx.doi.org/10.1088/2053-1591/ab4458]
[235]
Shahba, H.; Sabet, M. Two-step and green synthesis of highly fluorescent carbon quantum dots and carbon nanofibers from pine fruit. J. Fluoresc., 2020, 30(4), 927-938.
[http://dx.doi.org/10.1007/s10895-020-02562-7] [PMID: 32500261]
[236]
Hakim, Y.Z.; Yulizar, Y.; Nurcahyo, A.; Surya, M. Green synthesis of carbon nanotubes from coconut shell waste for the adsorption of Pb(II) ions. Acta Chim. Asi., 2018, 1(1), 6-10.
[http://dx.doi.org/10.29303/aca.v1i1.2]
[237]
Sui, Z.; Meng, Q.; Zhang, X.; Mab, R.; Caob, B. Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem., 2012, 22, 8767-8771.
[http://dx.doi.org/10.1039/c2jm00055e]
[238]
Nguyen, V.H.; Shim, J-J. Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J. Spectrosc., 2015.
[http://dx.doi.org/10.1155/2015/297804]
[239]
Macawile, M.C.; Quitain, A.T.; Kida, T.; Tan, R.; Auresenia, J. Green synthesis of sulfonated organosilane functionalized multiwalled car-bon nanotubes and its catalytic activity for one-pot conversion of high free fatty acid seed oil to biodiesel. J. Clean. Prod., 2020, 275(1), 123146.
[http://dx.doi.org/10.1016/j.jclepro.2020.123146]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy