Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Application, and Antibacterial Activity of New Direct Dyes based on Chromene Derivatives

Author(s): Fatma A. Mohamed*, Mahmoud B. Sheier, Maysa M. Reda and Hassan M. Ibrahim*

Volume 19, Issue 6, 2022

Published on: 13 May, 2022

Page: [757 - 766] Pages: 10

DOI: 10.2174/1570179419666211230112409

Price: $65

Abstract

Aims: This study aimed at synthesizing, analyzing, and utilizing two new direct dyes based on chromene derivatives as the chromophoric moiety in dyeing wool, silk, and cotton, with good color strength, light fastness, and other desirable features.

Background: New direct dyes with antimicrobial activities for Gram-positive, Gram-negative bacteria, and fungus are being developed. These dyes are used on cotton, silk, and wool materials, which have excellent light fastness, washing, rubbing, and perspiration fastness.

Methods: All dyeing fabrics were tested for antibacterial activity. As a part of the experiment, parent structure 1 was previously synthesized. Then, diazotization and coupling reactions were used to prepare these dyes.

Results and Discussion: P-Aminobenzenesulfonic acid (C1) and 4-Aminoazobenzene-3,4'-disulfonic acid (C2) were diazotized in hydrochloric acid with sodium nitrite and then coupled with compound 1 in a molar ratio of 1:1 at 25 °C until the pH was fixed at 5. Finally, the monoazo and diazo direct dyes (D1 and D2) were prepared.

Conclusion:Wool, silk, and cotton materials benefit from the increased antibacterial activities and dyeing qualities (exhaustion and fixing) of synthetic dyes. Furthermore, they offer excellent fastness qualities (light, rubbing, and perspiration).

Keywords: Cellulosic cotton, wool, silk, natural fabrics, direct dyes, chromene, structure elucidation, dyeing.

« Previous
Graphical Abstract

[1]
Vala, N.D.; Jardosh, H.H.; Patel, M.P. PS-TBD triggered general protocol for the synthesis of 4H-chromene, pyrano[4,3-b]pyran and pyrano[3,2-c]chromene derivatives of 1H-pyrazole and their biological activities. Chin. Chem. Lett., 2016, 27(1), 168-172.
[http://dx.doi.org/10.1016/j.cclet.2015.09.020]
[2]
Bingi, C.; Emmadi, N.R.; Chennapuram, M.; Poornachandra, Y.; Kumar, C.G.; Nanubolu, J.B.; Atmakur, K. One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorg. Med. Chem. Lett., 2015, 25(9), 1915-1919.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.034] [PMID: 25838145]
[3]
Killander, D.; Sterner, O. Synthesis of the bioactive benzochromenes pulchrol and pulchral, metabolites of bourreria pulchra. Eur. J. Org. Chem., 2014, 2014(8), 1594-1596.
[http://dx.doi.org/10.1002/ejoc.201301792]
[4]
Sangani, C.B.; Shah, N.M.; Patel, M.P.; Patel, R.G.J.J.S.S. Microwave assisted synthesis of novel 4H-chromene derivatives bearing phe-noxypyrazole and their antimicrobial activity assess. J. Serb. Chem. Soc., 2012, 77(9), 1165-1174.
[http://dx.doi.org/10.2298/JSC120102030S]
[5]
Kathrotiya, H.G.; Patel, M.P. Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med. Chem. Res., 2012, 21(11), 3406-3416.
[http://dx.doi.org/10.1007/s00044-011-9861-4]
[6]
Thomas, N.; Zachariah, S.M.J.I.J.P.S.R.R. In Silico drug design and analysis of 4-Phenyl-4H-chromene derivatives as anticancer and anti-inflammatory agents. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 50-54.
[7]
El-Agrody, A.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A-A.M. The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J. Saudi Chem. Soc., 2017, 21(1), 82-90.
[http://dx.doi.org/10.1016/j.jscs.2016.03.002]
[8]
Magedov, I.V.; Manpadi, M.; Evdokimov, N.M.; Elias, E.M.; Rozhkova, E.; Ogasawara, M.A.; Bettale, J.D.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Antiproliferative and apoptosis inducing properties of pyrano[3,2-c]pyridones accessible by a one-step multicomponent synthesis. Bioorg. Med. Chem. Lett., 2007, 17(14), 3872-3876.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.004] [PMID: 17512729]
[9]
Singh, O.M.; Devi, N.S.; Thokchom, D.S.; Sharma, G.J. Novel 3-alkanoyl/aroyl/heteroaroyl-2H-chromene-2-thiones: synthesis and evaluation of their antioxidant activities. Eur. J. Med. Chem., 2010, 45(6), 2250-2257.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.070] [PMID: 20170989]
[10]
Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: Synthesis and in vitro assessments. Food Chem., 2010, 120(4), 1011-1018.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.040]
[11]
Mosaad, R.M.; Samir, A.; Ibrahim, H.M. Median lethal dose (LD50) and cytotoxicity of Adriamycin in female albino mice. J. Appl. Pharm. Sci., 2017, 7(3), 77-80.
[12]
Mohamed, F.A.; Ibrahim, H.M.; Reda, M.M. Eco friendly dyeing of wool and cotton fabrics with reactive dyes (bifunctional) and its anti-bacterial activity. Pharma Chem., 2016, 8(16), 159-167.
[13]
Bhat, M.A.; Siddiqui, N.; Khan, S.A.J.A.P.P. Synthesis of novel 3-(4-acetyl-5H/methyl-5-substituted phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-chromen-2-ones as potential anticonvulsant agents. Acta Pol. Pharm., 2008, 65(2), 235-239.
[PMID: 18666431]
[14]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res., 2011, 20(7), 854-864.
[http://dx.doi.org/10.1007/s00044-010-9399-x]
[15]
Jain, N.; Xu, J.; Kanojia, R.M.; Du, F.; Jian-Zhong, G.; Pacia, E.; Lai, M-T.; Musto, A.; Allan, G.; Reuman, M.; Li, X.; Hahn, D.; Cousineau, M.; Peng, S.; Ritchie, D.; Russell, R.; Lundeen, S.; Sui, Z. Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J. Med. Chem., 2009, 52(23), 7544-7569.
[http://dx.doi.org/10.1021/jm900146e] [PMID: 19366247]
[16]
Ibrahim, H.M.; Saad, M.M.; Aly, N.M. Preparation of single layer nonwoven fabric treated with chitosan nanoparticles and its utilization in gas filtration. Int. J. Chemtech Res., 2016, 9(6), 1-16.
[17]
Farag, S.; Asker, M.M.S.; Mahmoud, M.G.; Ibrahim, H.; Amr, A. Comparative study for bacterial cellulose production using Egyptian Achromobacter sp. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(6), 954-969.
[18]
El-Bisi, M.K.; Ibrahim, H.M.; Rabie, A.M.; Elnagar, K.; Taha, G.M.; El-Alfy, E.A. Super hydrophobic cotton fabrics via green techniques. Pharma Chem., 2016, 8(19), 57-69.
[19]
Farag, S.; Ibrahim, H.M.; Asker, M.S.; Amr, A.; El-Shafaee, A. Impregnation of silver nanoparticles into bacterial cellulose: Green synthesis and cytotoxicity. Int. J. Chemtech Res., 2015, 8(12), 651-661.
[20]
Cheng, J-F.; Ishikawa, A.; Ono, Y.; Arrhenius, T.; Nadzan, A. Novel chromene derivatives as TNF-α inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(21), 3647-3650.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.025] [PMID: 14552749]
[21]
Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R.J.R.A.A. PANI-Fe 3 O 4@ ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido [d] pyrimidine derivatives. RSC Advances, 2020, 10(26), 15614-15621.
[http://dx.doi.org/10.1039/D0RA01978J]
[22]
Baral, N.; Mishra, D.R.; Mishra, N.P.; Mohapatra, S.; Raiguru, B.P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P.S.J.J.H.C. Microwave assisted rapid and efficient synthesis of chromene-fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem., 2020, 57(2), 575-589.
[http://dx.doi.org/10.1002/jhet.3773]
[23]
Mohammad, A-T.; Al-Mohammed, M.H.; Srinivasa, H.; Ameen, W.A.J.J.M.L. Coumarin substituted symmetric diaminopyridine molecules: Synthesis, mesomorphic characterizations and DFT studies. J. Mol. Liq., 2020, 314, 113782.
[http://dx.doi.org/10.1016/j.molliq.2020.113782]
[24]
Schmitt, F.; Schobert, R.; Biersack, B.J.M.C.R. New pyranoquinoline derivatives as vascular-disrupting anticancer agents. Med. Chem. Res., 2019, 28(10), 1694-1703.
[http://dx.doi.org/10.1007/s00044-019-02406-5]
[25]
Ahmed, H.E.; El-Nassag, M.A.; Hassan, A.H.; Mohamed, H.M.; Halawa, A.H.; Okasha, R.M.; Ihmaid, S.; Abd El-Gilil, S.M.; Khattab, E.S.; Fouda, A.M.J.J.M.S. Developing lipophilic aromatic halogenated fused systems with specific ring orientations, leading to potent anticancer analogs and targeting the c-Src Kinase enzyme. J. Mol. Struct., 2019, 1186, 212-223.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.012]
[26]
Birch, K.A.; Heath, W.F.; Hermeling, R.N.; Johnston, C.M.; Stramm, L.; Dell, C.; Smith, C.; Williamson, J.R.; Reifel-Miller, A. LY290181, an inhibitor of diabetes-induced vascular dysfunction, blocks protein kinase C-stimulated transcriptional activation through inhibition of transcription factor binding to a phorbol response element. Diabetes, 1996, 45(5), 642-650.
[http://dx.doi.org/10.2337/diab.45.5.642] [PMID: 8621017]
[27]
Kheirollahi, A.; Pordeli, M.; Safavi, M.; Mashkouri, S.; Naimi-Jamal, M.R.; Ardestani, S.K. Cytotoxic and apoptotic effects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(12), 1199-1208.
[http://dx.doi.org/10.1007/s00210-014-1038-5] [PMID: 25261336]
[28]
El-Azm, F.S.A.; El-Shahawi, M.M.; Elgubbi, A.S.; Madkour, H.M.J.J.I.C.S. Synthesis of new benzo [f] chromene-based heterocycles targeting anti-proliferative activity. J. Indian Chem. Soc., 2021, 18(5), 1081-1092.
[29]
El Gaafary, M.; Syrovets, T.; Mohamed, H.M.; Elhenawy, A.A.; El-Agrody, A.M.; Amr, A.E-G.E.; Ghabbour, H.A.; Almehizia, A.A.J.C. Synthesis, cytotoxic activity, crystal structure, DFT studies and molecular docking of 3-Amino-1-(2, 5-dichlorophenyl)-8-methoxy-1H-benzo [f] chromene-2-carbonitrile. Crystals (Basel), 2021, 11(2), 184.
[http://dx.doi.org/10.3390/cryst11020184]
[30]
Zhang, D.; Ma, Y.; Liu, Y.; Liu, Z.P.J.A.P. Synthesis of sulfonylhydrazone- and acylhydrazone-substituted 8-ethoxy-3-nitro-2H-chromenes as potent antiproliferative and apoptosis inducing agents. Arch. Pharm. (Weinheim), 2014, 347(8), 576-588.
[http://dx.doi.org/10.1002/ardp.201400082] [PMID: 24866448]
[31]
Abu El-Azm, F.S.; El-Shahawi, M.M.; Elgubbi, A.S.; Madkour, H.M.J.S.C. Design, synthesis, anti-proliferative activity, and molecular docking studies of novel benzo [f] chromene, chromeno [2, 3-d] pyrimidines and chromenotriazolo [1, 5-c] pyrimidines. Synth. Commun. Reviews, 2020, 50(5), 669-683.
[http://dx.doi.org/10.1080/00397911.2019.1710850]
[32]
Szulawska-Mroczek, A.; Szumilak, M.; Szczesio, M.; Olczak, A.; Nazarski, R.B.; Lewgowd, W.; Czyz, M.; Stanczak, A. Synthesis and biological evaluation of new bischromone derivatives with antiproliferative activity. Arch. Pharm. (Weinheim), 2013, 346(1), 34-43.
[http://dx.doi.org/10.1002/ardp.201200220] [PMID: 23109220]
[33]
Bondarenko, O.B.; Zyk, N.V.J.C.H.C. The main directions and recent trends in the synthesis and use of isoxazoles. Chem. Heterocycl. Compd., 2020, 56(6), 694-707.
[http://dx.doi.org/10.1007/s10593-020-02718-0]
[34]
Akbarzadeh, T.; Rafinejad, A.; Mollaghasem, J.M.; Safavi, M.; Fallah-Tafti, A.; Pordeli, M.; Ardestani, S.K.; Shafiee, A.; Foroumadi, A. 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4H-chromenes: synthesis and in vitro cytotoxic activity. Arch. Pharm. (Weinheim), 2012, 345(5), 386-392.
[http://dx.doi.org/10.1002/ardp.201100345] [PMID: 22266847]
[35]
Saeedi, M.; Rastegari, A.; Hariri, R.; Mirfazli, S.S.; Mahdavi, M.; Edraki, N.; Firuzi, O.; Akbarzadeh, T. biodiversity, Design and synthesis of novel arylisoxazole-chromenone carboxamides: Investigation of biological activities associated with Alzheimer’s disease. Chem. Biodivers., 2020, 17(5), e1900746.
[http://dx.doi.org/10.1002/cbdv.201900746] [PMID: 32154628]
[36]
Awad, S.M.; Mohamed, M.S.; Khodair, M.A.E.; El-Hameed, R.H.A. S-induced cycloisomerization of phenol-tethered alkyne for functional chromene and chromone complexes. Anticancer. Agents Med. Chem., 2021, 21(8), 963-986.
[http://dx.doi.org/10.2174/1871520620666200925103742] [PMID: 32981512]
[37]
Sabry, N.M.; Mohamed, H.M.; Khattab, E.S.A.; Motlaq, S.S.; El-Agrody, A.M. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur. J. Med. Chem., 2011, 46(2), 765-772.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.015] [PMID: 21216502]
[38]
Musa, M.A.; Badisa, V.L.; Latinwo, L.M.; Waryoba, C.; Ugochukwu, N. In vitro cytotoxicity of benzopyranone derivatives with basic side chain against human lung cell lines. Anticancer Res., 2010, 30(11), 4613-4617.
[PMID: 21115914]
[39]
Sharhan, O.; Heidelberg, T.; Hashim, N.M.; Al-Madhagi, W.M.; Ali, H.M.J.I.C.A. Benzimidazolium-acridine-based silver N-heterocyclic carbene complexes as potential anti-bacterial and anti-cancer drug. Inorg. Chim. Acta, 2020, 504, 119462.
[http://dx.doi.org/10.1016/j.ica.2020.119462]
[40]
Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5(14), 1647-1660.
[http://dx.doi.org/10.4155/fmc.13.126] [PMID: 24047270]
[41]
Ng, S-W.; Tse, S-Y.; Yeung, C-F.; Chung, L-H.; Tse, M-K.; Yiu, S-M.; Wong, C-Y.J.O. Ru (II)-and Os (II)-induced cycloisomerization of phenol-tethered alkyne for functional chromene and chromone complexes. Organometallics, 2020, 39(8), 1299-1309.
[http://dx.doi.org/10.1021/acs.organomet.0c00048]
[42]
Karimian, S.; Ranjbar, S.; Dadfar, M.; Khoshneviszadeh, M.; Gholampour, M.; Sakhteman, A.; Khoshneviszadeh, M.J.M.D. 4 H-benzochromene derivatives as novel tyrosinase inhibitors and radical scavengers: synthesis, biological evaluation, and molecular docking analysis. Mol. Divers., 2020, 4, 2339-2349.
[http://dx.doi.org/10.1007/s11030-020-10123-0] [PMID: 32683615]
[43]
Halawa, A.H.; Elaasser, M.M.; El Kerdawy, A.M.; Abd El-Hady, A.M.; Emam, H.A.; El-Agrody, A.M.J.M.C.R. Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4 H-chromene, and 5 H-chromeno [2, 3-d] pyrimidine candidates. Med. Chem. Res., 2017, 26(10), 2624-2638.
[http://dx.doi.org/10.1007/s00044-017-1961-3]
[44]
Fouda, A.M.J.M.C.R. Synthesis of several 4H-chromene derivatives of expected antitumor activity. Med. Chem. Res., 2016, 25(6), 1229-1238.
[http://dx.doi.org/10.1007/s00044-016-1565-3]
[45]
Parthiban, A.; Muthukumaran, J.; Manhas, A.; Srivastava, K.; Krishna, R.; Rao, H.S.P.J.B. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorg. Med. Chem. Lett., 2015, 25(20), 4657-4663.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.030] [PMID: 26338359]
[46]
Fouda, A.M.; Irfan, A.; Al-Sehemi, A.G.; El-Agrody, A.M.J.J.M.S. Synthesis, characterization, Anti-proliferative activity and DFT study of 1H-benzo [f] chromene-2-carbothioamide derivatives. J. Mol. Struct., 2021, 1240, 130542.
[http://dx.doi.org/10.1016/j.molstruc.2021.130542]
[47]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1), e03271.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[48]
Silva, Y.F.d. Radical polymerization of vinyl acetate mediated by new Co(II) complexes coordinated to non-symmetric Schiff bases. repositorio.unesp.br2019. Available from: repositorio.unesp.br
[49]
KAMAzANI, S.F.; Soltani, S.S.J.O.J.C. Highly efficient synthesis of new 2H-chromene dyes using Cu-SBA-15. Orient. J. Chem., 2016, 32, 2543-2548.
[http://dx.doi.org/10.13005/ojc/320525]
[50]
Kurda, D.D. Azo compound and their application. Adv. Appl. Microbiol., 2020.
[51]
Ibrahim, H.M.; Aly, A.A.; Taha, G.M.; El-Alfy, E.A. Production of antibacterial cotton fabrics via green treatment with nontoxic natural biopolymer gelatin. Egypt. J. Chem., 2020, 63, 655-696.
[52]
Ibrahim, H.; Emam, E.A.M.; Tawfik, T.M.; El-Aref, A.T. Preparation of cotton gauze coated with carboxymethyl chitosan and its utilization for water filtration. J. Text., App., Technol. Management, 2019, 11(1)
[53]
Ibrahim, H. El- Zairy, E.M.R.; Emam, E.A.M.; Adel, E. Combined antimicrobial finishing dyeing properties of cotton, polyester fabrics and their blends with acid and disperse dyes. Egypt. J. Chem., 2019, 62(5), 965-976.
[54]
Naheed, S.; Ahmad, H.; Shahzad, K.; Abdullah, M.; Zuber, M.; Hussain, M.J.A.J.C. Study of Exhaustion of Direct Dyes under Optimized Conditions Spectrophotometrically. Asian J. Chem., 2012, 24(1), 33.
[55]
Farag, S.; Ibrahim, H.M.; Amr, A.; Asker, M.S.; El-Shafai, A. Preparation and characterization of ion exchanger based on bacterial cellulose for heavy metal cation removal. Egypt. J. Chem., 2019, 62, 457-466.
[http://dx.doi.org/10.21608/ejchem.2019.12622.1787]
[56]
Eid, B.M.; El-Sayed, G.M.; Ibrahim, H.M.; Habib, N.H. Durable antibacterial functionality of cotton/polyester blended fabrics using antibiotic/MONPs composite. Fibers Polym., 2019, 20(11), 2297-2309.
[http://dx.doi.org/10.1007/s12221-019-9393-y]
[57]
Aysha, T.; El-Sedik, M.; El Megied, S.A.; Ibrahim, H.; Youssef, Y.; Hrdina, R. Synthesis, spectral study and application of solid state fluorescent reactive disperse dyes and their antibacterial activity. Arab. J. Chem., 2019, 12(2), 225-235.
[http://dx.doi.org/10.1016/j.arabjc.2016.08.002]
[58]
Mohamed, F.A.; Ibrahim, H.M.; Aly, A.A.; El-Alfy, E.A. Improvement of dyeability and antibacterial properties of gelatin treated cotton fabrics with synthesized reactive dye. Biosci. Res., 2018, 15(4), 4403-4408.
[59]
Mohamed, F.A.; Abd El-Megied, S.A.; Bashandy, M.S.; Ibrahim, H.M. Synthesis, application and antibacterial activity of new reactive dyes based on thiazole moiety. Pigm. Resin Technol., 2018, 47(3), 246-254.
[http://dx.doi.org/10.1108/PRT-12-2016-0117]
[60]
Parvinzadeh, M.; Najafi, H.J.T.S.D. Textile softeners on cotton dyed with direct dyes: reflectance and fastness assessments. Tenside Surfactants Deterg., 2008, 45(1), 13-16.
[http://dx.doi.org/10.3139/113.100357]
[61]
Tse, S-T.; Kan, C-J.C. Effect of laser treatment on pigment printing on denim fabric: low stress mechanical properties. Cellulose, 2020, 27(17), 10385-10405.
[http://dx.doi.org/10.1007/s10570-020-03461-7]
[62]
Višić, K.; Pušić, T.; Čurlin, M. Carboxymethyl cellulose and carboxymethyl starch as surface modifiers and greying inhibitors in washing of cotton fabrics. Polymers (Basel), 2021, 13(7), 1174.
[http://dx.doi.org/10.3390/polym13071174] [PMID: 33917462]
[63]
Mohamed, F.; Youssef, Y.J.P.; Technology, R. synthesis and application of bifunctional reactive dyes pyrazolo [1, 2‐a] pyrazole 3‐carboxylic acid. Pigm. Resin Technol., 2012, 41, 49-54.
[http://dx.doi.org/10.1108/03699421211192280]
[64]
Mohamed, F.A.; El-Megied, A.; Saadia, A.; Mohareb, R.J.E.J.C. Synthesis and application of novel reactive dyes based on Dimedone moiety. Egypt. J. Chem., 2020, 63(11), 4-6.
[http://dx.doi.org/10.21608/ejchem.2020.24092.2437]
[65]
Mohamed, F.A.; Mousa, A.; Farouk, R.; Youssef, Y.J.R.J.T. Apparel, union dyeing of wool/polyester blend fabric using sulphatoethyl-sulphone dye derivative of CI disperse yellow 23.Res., J.Textile Apparel; , 2015, 19, pp. 26-33.
[66]
Chrysler, L.J.B.; London, U.K. Methods of Test for Color Fastness of Textiles and Leather; Bradford, 1990.
[67]
Dyers, S.o. Colourists, Methods of Test for Colour Fastness of Textiles and Leather; British Standards Institution, 1990.
[68]
Zhang, S.; Ma, W.; Ju, B.; Dang, N.; Zhang, M.; Wu, S.; Yang, J.J.C.t. Continuous dyeing of cationised cotton with reactive dyes. Color. Technol., 2005, 121(4), 183-186.
[http://dx.doi.org/10.1111/j.1478-4408.2005.tb00270.x]
[69]
Ibrahim, N.A.; Kadry, G.A.; Eid, B.M.; Ibrahim, H.M. Enhanced antibacterial properties of polyester and polyacrylonitrile fabrics using Ag-Np dispersion/microwave treatment. AATCC Journal of Research, 2014, 1(2), 13-19.
[http://dx.doi.org/10.14504/ajr.1.2.2]
[70]
Farouk, R.; Youssef, Y.A.; Mousa, A.A.; Ibrahim, H.M. Simultaneous dyeing and antibacterial finishing of nylon 6 fabric using reactive cationic dyes. World Appl. Sci. J., 2013, 26(10), 1280-1287.
[71]
Abdel Sayed, N.I.; El Badry, K.; Abdel Mohsen, H.M. Conductimetric studies of charge transfer complexes of p-Chloranil with some alicyclic amines in polar media. J. Chin. Chem. Soc. (Taipei), 2003, 50(2), 193-199.
[http://dx.doi.org/10.1002/jccs.200300028]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy