Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Protecting Superfood Olive Crop from Pests and Pathogens Using Image Processing Techniques: A Review

Author(s): Smita Sisodiya, Aditya Sinha, Mousumi Debnath*, Rajveer Shekhawat and Surinder Singh Shekhawat

Volume 18, Issue 4, 2022

Published on: 02 March, 2022

Page: [375 - 386] Pages: 12

DOI: 10.2174/1573401318666211227103001

Price: $65

Abstract

Background: Olive (Oleo europaea L.) cultivars are widely cultivated all over the world. However, they are often attacked by pests and pathogens. This deteriorates the quality of the crop, leading to less yield of olive oil. The different infections that cause comparable disease symptoms on olive leaves can be classified using image processing techniques.

Objective: The olive has established itself as a superfood and a possible source of medicine, owing to the rapid increase in the availability of data in the field of nutrigenomics. The goal of this review is to underline the importance of applying image processing techniques to detect and classify diseases early.

Method: PubMed, ScienceDirect, and Google Scholar were used to conduct a systematic literature search using the keywords olive oil, pest and pathogen of olives, and metabolic profiling.

Results: Infections caused by infectious diseases frequently result in significant losses and lowquality olive oil yields. Early detection of disease infestations can safeguard the olive plant and its yield.

Conclusion: This strategy can help protect the crop from disease spread, and early detection and classification of the disease can aid in prompt prophylaxis of diseased olive plants before the disease worsens. Protecting olive plants from pests and pathogens can help keep the yield and quality of olive oil consistent

Keywords: Nutraceutical, olive oil, olive diseases, disease classification, superfood, pathogen.

Graphical Abstract

[1]
Besnard G, Terral JF, Cornille A. On the origins and domestication of the olive: A review and perspec-tives. Ann Bot (Lond) 2018; 121(3): 385-403.
[http://dx.doi.org/10.1093/aob/mcx145] [PMID: 29293871]
[2]
Besnard G, Khadari B, Navascués M, et al. The complex history of the olive tree: From late quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proce R Soc B Biol Sci 2013; 280(1756) 202833.
[3]
Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharma-cology of Olea europaea (olive). Evid Based Complement Alternat Med 2015; 2015: 541591.
[4]
Besnard G, Rubio de Casas R. Single vs multiple independent olive domestications: the jury is (still) out. New Phytol 2016; 209(2): 466-70.
[http://dx.doi.org/10.1111/nph.13518] [PMID: 26555218]
[5]
Guodong R, Xiaoxia L, Weiwei Z, Wenjun W, Jianguo Z. Metabolomics reveals variation and correla-tion among different tissues of olive (Olea europaea L.). Biol Open 2017; 6(9): 1317-23.
[PMID: 28760735]
[6]
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediter-ranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018; 378(25): e34.
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[7]
La Torre G, Saulle R, Di Murro F, et al. Mediterranean diet adherence and synergy with acute myocar-dial infarction and its determinants: A multicenter case-control study in Italy. PLoS One 2018; 13(3): e0193360.
[http://dx.doi.org/10.1371/journal.pone.0193360] [PMID: 29543823]
[8]
Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high car-diovascular risk: An in-depth review of the PREDIMED. Nutr Diabetes 2018; 8(1): 13.
[http://dx.doi.org/10.1038/s41387-018-0025-1] [PMID: 29549354]
[9]
Piroddi M, Albini A, Fabiani R, et al. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017; 43(1): 17-41.
[http://dx.doi.org/10.1002/biof.1318] [PMID: 27580701]
[10]
Ambra R, Natella F, Lucchetti S, Forte V, Pastore G. αTocopherol, β-carotene, lutein, squalene and secoiridoids in seven monocultivar Italian extra-virgin olive oils. Int J Food Sci Nutr 2017; 68(5): 538-45.
[http://dx.doi.org/10.1080/09637486.2016.1265099] [PMID: 27931126]
[11]
Covas MI, Konstantinidou V, Fitó M. Olive oil and cardiovascular health. J Cardiovasc Pharmacol 2009; 54(6): 477-82.
[http://dx.doi.org/10.1097/FJC.0b013e3181c5e7fd] [PMID: 19858733]
[12]
Lucas L, Russell A, Keast R. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Curr Pharm Des 2011; 17(8): 754-68.
[http://dx.doi.org/10.2174/138161211795428911] [PMID: 21443487]
[13]
Rahmani AH, Albutti AS, Aly SM. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity. Int J Clin Exp Med 2014; 7(4): 799-808.
[PMID: 24955148]
[14]
Verma N, Shaheen R, Yadav SK, Singh AK. Olive (Olea europea L.) introduction in India: Issues and prospects. Int J Plant Res 2012; 25(2): 44-9.
[15]
Assy N, Nassar F, Nasser G, Grosovski M. Olive oil consumption and non-alcoholic fatty liver dis-ease. World J Gastroenterol 2009; 15(15): 1809-15.
[http://dx.doi.org/10.3748/wjg.15.1809] [PMID: 19370776]
[16]
Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 2000; 36(10): 1235-47.
[http://dx.doi.org/10.1016/S0959-8049(00)00103-9] [PMID: 10882862]
[17]
Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, Oliveira FMDJ, et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS One 2016; 11(4): e0153607.
[http://dx.doi.org/10.1371/journal.pone.0153607] [PMID: 27078880]
[18]
Nogoy KMC, Kim HJ, Lee Y, et al. High dietary oleic acid in olive oil-supplemented diet enhanced omega-3 fatty acid in blood plasma of rats. Food Sci Nutr 2020; 8(7): 3617-25.
[http://dx.doi.org/10.1002/fsn3.1644] [PMID: 32724624]
[19]
Jandacek RJ. Linoleic acid: A nutritional quandary. Health Care 2017; 5(2): 25.
[http://dx.doi.org/10.3390/healthcare5020025]
[20]
Raederstorff D. Antioxidant activity of olive polyphenols in humans: A review. Int J Vitam Nutr Res 2009; 79(3): 152-65.
[http://dx.doi.org/10.1024/0300-9831.79.3.152] [PMID: 20209466]
[21]
Diez-Bello R, Jardin I, Lopez JJ, et al. (-)-Oleocanthal inhibits proliferation and migration by modulat-ing Ca2+ entry through TRPC6 in breast cancer cells. Biochim Biophys Acta Mol Cell Res 2019; 1866(3): 474-85.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.010] [PMID: 30321616]
[22]
Cusimano A, Balasus D, Azzolina A, et al. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int J Oncol 2017; 51(2): 533-44.
[http://dx.doi.org/10.3892/ijo.2017.4049] [PMID: 28656311]
[23]
Waterman E, Lockwood B. Active components and clinical applications of olive oil. Altern Med Rev 2007; 12(4): 331-42.
[PMID: 18069902]
[24]
Hamdi HK, Castellon R. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskele-ton disruptor. Biochem Biophys Res Commun 2005; 334(3): 769-78.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.161] [PMID: 16024000]
[25]
Bazoti FN, Bergquist J, Markides KE, Tsarbopoulos A. Noncovalent interaction between amyloid-β-peptide (1-40) and oleuropein studied by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006; 17(4): 568-75.
[http://dx.doi.org/10.1016/j.jasms.2005.11.016] [PMID: 16503156]
[26]
Cárdeno A, Sánchez-Hidalgo M, Rosillo MA, de la Lastra CA. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutr Cancer 2013; 65(1): 147-56.
[27]
Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 1999; 51(8): 971-4.
[http://dx.doi.org/10.1211/0022357991773258] [PMID: 10504039]
[28]
Elamin MH, Daghestani MH, Omer SA, et al. Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem Toxicol 2013; 53: 310-6.
[http://dx.doi.org/10.1016/j.fct.2012.12.009] [PMID: 23261678]
[29]
Hassan ZK, Elamin MH, Omer SA, et al. Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pac J Cancer Prev 2014; 14(11): 6739-42.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6739] [PMID: 24377598]
[30]
Sirianni R, Chimento A, De Luca A, et al. Oleuropein and hydroxytyrosol inhibit MCF-7 breast can-cer cell proliferation interfering with ERK1/2 activation. Mol Nutr Food Res 2010; 54(6): 833-40.
[http://dx.doi.org/10.1002/mnfr.200900111] [PMID: 20013881]
[31]
Santiago-Mora R, Casado-Díaz A, De Castro MD, Quesada-Gómez JM. Oleuropein enhances osteo-blastogenesis and inhibits adipogenesis: The effect on differentiation in stem cells derived from bone marrow. Osteoporos Int 2011; 22(2): 675-84.
[http://dx.doi.org/10.1007/s00198-010-1270-x] [PMID: 20495905]
[32]
Jemai H, El Feki A, Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem 2009; 57(19): 8798-804.
[http://dx.doi.org/10.1021/jf901280r] [PMID: 19725535]
[33]
Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhib-its proteasome stimulatory properties in vitro and confers life span extension of human embryonic fi-broblasts. Rejuvenation Res 2007; 10(2): 157-72.
[http://dx.doi.org/10.1089/rej.2006.0513] [PMID: 17518699]
[34]
Carnevale R, Silvestri R, Loffredo L, et al. Oleuropein, a component of extra virgin olive oil, lowers postprandial glycaemia in healthy subjects. Br J Clin Pharmacol 2018; 84(7): 1566-74.
[http://dx.doi.org/10.1111/bcp.13589] [PMID: 29577365]
[35]
Fki I, Sayadi S, Mahmoudi A, Daoued I, Marrekchi R, Ghorbel H. Comparative study on beneficial effects of hydroxytyrosol-and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metab-olism disturbance and liver injury in rats. BioMed Res Int 2020; 2020: 1315202.
[http://dx.doi.org/10.1155/2020/1315202] [PMID: 31998777]
[36]
Ruzzolini J, Peppicelli S, Bianchini F, et al. Cancer glycolytic dependence as a new target of olive leaf extract. Cancers (Basel) 2020; 12(2): 317.
[http://dx.doi.org/10.3390/cancers12020317] [PMID: 32013090]
[37]
Ghomari O, Merzouki M, Benlemlih M. Optimization of bioconversion of oleuropein, of olive leaf extract, to hydroxytyrosol by Nakazawaea molendini-olei using HPLC-UV and a method of experi-mental design. J Microbiol Methods 2020; 176: 106010.
[http://dx.doi.org/10.1016/j.mimet.2020.106010] [PMID: 32712052]
[38]
Richard N, Arnold S, Hoeller U, Kilpert C, Wertz K, Schwager J. Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med 2011; 77(17): 1890-7.
[http://dx.doi.org/10.1055/s-0031-1280022] [PMID: 21830187]
[39]
Furneri PM, Piperno A, Sajia A, Bisignano G. Antimycoplasmal activity of hydroxytyrosol. Antimicrob Agents Chemother 2004; 48(12): 4892-4.
[http://dx.doi.org/10.1128/AAC.48.12.4892-4894.2004] [PMID: 15561875]
[40]
Li S, Han Z, Ma Y, et al. Hydroxytyrosol inhibits cholangiocarcinoma tumor growth: An in vivo and in vitro study. Oncol Rep 2014; 31(1): 145-52.
[http://dx.doi.org/10.3892/or.2013.2853] [PMID: 24247752]
[41]
Imran M, Nadeem M, Gilani SA, Khan S, Sajid MW, Amir RM. Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: Recent updates. J Food Sci 2018; 83(7): 1781-91.
[http://dx.doi.org/10.1111/1750-3841.14198] [PMID: 29928786]
[42]
Brunetti G, Di Rosa G, Scuto M, et al. Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int J Mol Sci 2020; 21(7): 2588.
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[43]
Voltes A, Bermúdez A, Rodríguez-Gutiérrez G, et al. Anti-inflammatory local effect of hydroxytyro-sol combined with pectin-alginate and olive oil on trinitrobenzene sulfonic acid-induced colitis in wistar rats. J Invest Surg 2020; 33(1): 8-14.
[http://dx.doi.org/10.1080/08941939.2018.1469697] [PMID: 29764253]
[44]
Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, se-coiridoids, lignansand squalene. Food Chem Toxicol 2000; 38(8): 647-59.
[http://dx.doi.org/10.1016/S0278-6915(00)00061-2] [PMID: 10908812]
[45]
Narayan Bhilwade H, Tatewaki N, Konishi T, et al. The adjuvant effect of squalene, an active ingre-dient of functional foods, on doxorubicin-treated allograft mice. Nutr Cancer 2019; 71(7): 1153-64.
[http://dx.doi.org/10.1080/01635581.2019.1597900] [PMID: 31179755]
[46]
Pacifici F, Farias CLA, Rea S, et al. Tyrosol may prevent obesity by inhibiting adipogenesis in 3T3-L1 preadipocytes. Oxid Med Cell Longev 2020; 2020: 4794780.
[http://dx.doi.org/10.1155/2020/4794780] [PMID: 33376578]
[47]
Plotnikov MB, Plotnikova TM. Tyrosol as a neuroprotector: Strong effects of a” weak” antioxidant. Curr Neuropharmacol 2021; 19(4): 434-48.
[http://dx.doi.org/10.2174/1570159X18666200507082311] [PMID: 32379590]
[48]
Uylaser V, Yildiz G. The historical development and nutritional importance of olive and olive oil con-stituted an important part of the Mediterranean diet. Crit Rev Food Sci Nutr 2014; 54(8): 1092-101.
[http://dx.doi.org/10.1080/10408398.2011.626874] [PMID: 24499124]
[49]
Vossen P. Olive oil: History, production, and characteristics of the world’s classic oils. HortScience 2007; 42(5): 1093-100.
[http://dx.doi.org/10.21273/HORTSCI.42.5.1093]
[50]
Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm 2010; 78(2): 133-54.
[http://dx.doi.org/10.3797/scipharm.0912-18] [PMID: 21179340]
[51]
Besnard G, Dupuy J, Larter M, Cuneo P, Cooke D, Chikhi L. History of the invasive African olive tree in Australia and Hawaii: Evidence for sequential bottlenecks and hybridization with the Mediter-ranean olive. Evol Appl 2014; 7(2): 195-211.
[http://dx.doi.org/10.1111/eva.12110] [PMID: 24567742]
[52]
Trujillo I, Ojeda MA, Urdiroz NM, et al. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes 2014; 10(1): 141-55.
[http://dx.doi.org/10.1007/s11295-013-0671-3]
[53]
Haouane H, El Bakkali A, Moukhli A, et al. Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: Towards the optimised management and use of Mediterranean olive genetic resources. Genetica 2011; 139(9): 1083-94.
[http://dx.doi.org/10.1007/s10709-011-9608-7] [PMID: 21960415]
[54]
Mili S, Bouhaddane M. Forecasting global developments and challenges in olive oil supply and de-mand: A Delphi Survey from Spain. Agriculture 2021; 11(3): 191.
[http://dx.doi.org/10.3390/agriculture11030191]
[55]
Fernández AG, Adams MR, Fernández-Díez MJ. Table Olives: Production and Processing. Berlin, Germany: Springer Science & Business Media 1997.
[56]
Barranco D, Cimato A, Fiorino P, et al. World catalogue of olive varieties. Madrid: International Ol-ive Oil Council 2000; p. 360.
[58]
Haniotakis GE. Olive pest control: Present status and prospects. IOBC WPRS Bull 2005; 28(9): 1.
[59]
Haber G, Mifsud D. Pests and diseases associated with olive trees in the Maltese Islands (Central Mediterranean). The Central Mediterranean Naturalist 2007; 4(3): 143-61.
[60]
Bertolini E, Kistenpfennig C, Menegazzi P, Keller A, Koukidou M, Helfrich-Förster C. The character-ization of the circadian clock in the olive fly Bactrocera oleae (Diptera: Tephritidae) reveals a Dro-sophila-like organization. Sci Rep 2018; 8(1): 1-2.
[PMID: 29311619]
[61]
Ali N, Chapuis E, Tavoillot J, Mateille T. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: A review. C R Biol 2014; 337(7-8): 423-42.
[http://dx.doi.org/10.1016/j.crvi.2014.05.006] [PMID: 25103828]
[62]
Nico AI, Jiménez-Díaz RM, Castillo P. Host suitability of the olive cultivars arbequina and picual for plant-parasitic nematodes. J Nematol 2003; 35(1): 29-34.
[PMID: 19265971]
[63]
Palomares-Rius JE, Castillo P, Montes-Borrego M, Navas-Cortés JA, Landa BB. Soil properties and olive cultivar determine the structure and diversity of plant-parasitic nematode communities infesting olive orchards soils in southern Spain. PLoS One 2015; 10(1): e0116890.
[http://dx.doi.org/10.1371/journal.pone.0116890] [PMID: 25625375]
[64]
Moral J, Muñoz-Díez C, González N, Trapero A, Michailides TJ. Characterization and pathogenicity of Botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology 2010; 100(12): 1340-51.
[http://dx.doi.org/10.1094/PHYTO-12-09-0343] [PMID: 20731532]
[65]
Moral J, Agustí-Brisach C, Pérez-Rodríguez M, et al. Identification of fungal species associated with branch dieback of olive and resistance of table cultivars to Neofusicoccum mediterraneum and Botry-osphaeria dothidea. Plant Dis 2017; 101(2): 306-16.
[http://dx.doi.org/10.1094/PDIS-06-16-0806-RE] [PMID: 30681917]
[66]
Sabella E, Luvisi A, Aprile A, et al. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. J Plant Physiol 2018; 220: 60-8.
[http://dx.doi.org/10.1016/j.jplph.2017.10.007] [PMID: 29149645]
[67]
Fierro A, Liccardo A, Porcelli F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci Rep 2019; 9(1): 8723.
[http://dx.doi.org/10.1038/s41598-019-44997-4] [PMID: 31217527]
[68]
Mina D, Pereira JA, Lino-Neto T, Baptista P. Screening the olive tree phyllosphere: Search and find potential antagonists against Pseudomonas savastanoi pv. savastanoi. Front Microbiol 2020; 11: 2051.
[http://dx.doi.org/10.3389/fmicb.2020.02051] [PMID: 32983037]
[69]
Kolainis S, Koletti A, Lykogianni M, et al. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS One 2020; 15(5): e0233916.
[http://dx.doi.org/10.1371/journal.pone.0233916] [PMID: 32470037]
[70]
Quesada JM, Penyalver R. Pérez-Panadés J, Salcedo CI, Carbonell EA, López MM. Dissemination of Pseudomonas savastanoi pv. savastanoi populations and subsequent appearance of olive knot disease. Plant Pathol 2010; 59(2): 262-9.
[http://dx.doi.org/10.1111/j.1365-3059.2009.02200.x]
[71]
López-Escudero FJ, Mercado-Blanco J. Verticillium wilt of olive: A case study to implement an inte-grated strategy to control a soil-borne pathogen. Plant Soil 2011; 344(1): 1-50.
[http://dx.doi.org/10.1007/s11104-010-0629-2]
[72]
González-Lamothe R, Segura R, Trapero A, Baldoni L, Botella MA, Valpuesta V. Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiol Lett 2002; 210(1): 149-55.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11174.x] [PMID: 12023092]
[73]
Iannotta N, Monardo D, Perri L. Effects of different treatments against Spilocaea oleagina (Cast.) hugh IV International Symposium on Olive Growing 586. 2000 Sep 25; 741-4.
[74]
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to over-come host defences. R Soc Open Sci 2015; 2(7): 150170.
[http://dx.doi.org/10.1098/rsos.150170] [PMID: 26587275]
[75]
Bock CH, Poole GH, Parker PE, Gottwald TR. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 2010; 29(2): 59-107.
[http://dx.doi.org/10.1080/07352681003617285]
[76]
Barbedo JG. Plant disease identification from individual lesions and spots using deep learning. Biosyst Eng 2019; 180: 96-107.
[http://dx.doi.org/10.1016/j.biosystemseng.2019.02.002]
[77]
Sinha A, Singh Shekhawat R. A novel image classification technique for spot and blight diseases in plant leaves. Imaging Sci J 2021; 1-5.
[78]
Bai X, Li X, Fu Z, Lv X, Zhang L. A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images. Comput Electron Agric 2017; 136: 157-65.
[http://dx.doi.org/10.1016/j.compag.2017.03.004]
[79]
Hassanien AE, Gaber T, Mokhtar U, Hefny H. An improved moth flame optimization algorithm based on rough sets for tomato diseases detection. Comput Electron Agric 2017; 136: 86-96.
[http://dx.doi.org/10.1016/j.compag.2017.02.026]
[80]
Johannes A, Picon A, Alvarez-Gila A, et al. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput Electron Agric 2017; 138: 200-9.
[http://dx.doi.org/10.1016/j.compag.2017.04.013]
[81]
Zhang S, Wu X, You Z, Zhang L. Leaf image-based cucumber disease recognition using sparse repre-sentation classification. Comput Electron Agric 2017; 134: 135-41.
[http://dx.doi.org/10.1016/j.compag.2017.01.014]
[82]
Momin MA, Yamamoto K, Miyamoto M, Kondo N, Grift T. Machine vision-based soybean quality evaluation. Comput Electron Agric 2017; 140: 452-60.
[http://dx.doi.org/10.1016/j.compag.2017.06.023]
[83]
Barbedo JG, Koenigkan LV, Santos TT. Identifying multiple plant diseases using digital image pro-cessing. Biosyst Eng 2016; 147: 104-16.
[http://dx.doi.org/10.1016/j.biosystemseng.2016.03.012]
[84]
Divilov K, Wiesner-Hanks T, Barba P, Cadle-Davidson L, Reisch BI. Computer vision for high-throughput quantitative phenotyping: A case study of grapevine downy mildew sporulation and leaf trichomes. Phytopathology 2017; 107(12): 1549-55.
[http://dx.doi.org/10.1094/PHYTO-04-17-0137-R] [PMID: 28745103]
[85]
Pires RD, Gonçalves DN, Oruê JP, et al. Local descriptors for soybean disease recognition. Comput Electron Agric 2016; 125: 48-55.
[http://dx.doi.org/10.1016/j.compag.2016.04.032]
[86]
Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. Deep neural networks-based recog-nition of plant diseases by leaf image classification. Comput Intell Neurosci 2016; 2016: 3289801.
[http://dx.doi.org/10.1155/2016/3289801]
[87]
Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci 2016; 7: 1419.
[http://dx.doi.org/10.3389/fpls.2016.01419] [PMID: 27713752]
[88]
Jos J, Venkatesh KA. Pseudo color region features for plant disease detection. 2020 IEEE Interna-tional Conference for Innovation in Technology (INOCON). 2020 November 6-8; Bangluru, India. 1-5.
[89]
Francis J, Anoop BK. Identification of leaf diseases in pepper plants using soft computing techniques. 2016 Conference on Emerging Devices and Smart Systems (ICEDSS) 2016 Mar 4. Namakkal, India 168-73
[http://dx.doi.org/10.1109/ICEDSS.2016.7587787]
[90]
Saleem MH, Potgieter J, Mahmood Arif K. Plant disease detection and classification by deep learn-ing. Plants 2019; 8(11): 468.
[http://dx.doi.org/10.3390/plants8110468] [PMID: 31683734]
[91]
Geetha G, Samundeswari S, Saranya G, Meenakshi K, Nithya M. Plant leaf disease classification and detection system using machine learning. JPCS 2020; 1712(1): 012012.
[92]
Kiritsakis K, Kiritsakis A. Manousaki-Karacosta E, Genigeorgis F. Table olives and olive oil: Produc-tion, processing, composition, and nutritional qualities. In: Sinha NK, Ed.Handbook of Vegetables and Vegetable Processing. Hoboken, NJ: Wiley Online Library 2011; pp. 663-82.
[93]
Luchetti F. Importance and future of olive oil in the world market-An introduction to olive oil Eur J Lipid Sci Technol 2002; 104(9‐ 10): 559-63.
[http://dx.doi.org/10.1002/1438-9312(200210)104:9/10559::AIDEJLT5593.0.CO;2-Q]
[94]
Arcas N, Arroyo López FN, Caballero J. Options Méditerranéennes. Série A International Seminar on Present and Future of the Mediterranean Olive Sector. Zaragoza, Spain. 26-28 November 2012; 2013(106): 1-97

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy