Research Article

高浓度地佐辛诱导肺癌免疫逃逸,通过上调PD-L1和激活NF-κB通路促进糖代谢

卷 22, 期 10, 2022

发表于: 13 January, 2022

页: [919 - 928] 页: 10

弟呕挨: 10.2174/1566524022666211222155118

价格: $65

摘要

背景:地佐辛是一种阿片类镇痛药,可影响免疫系统。在这里,我们探索了高浓度地佐辛和程序性死亡配体1 (PD-L1)在肺癌(LC)免疫逃逸和糖代谢中的协同作用。 方法:测定人LC细胞系中PD-L1的水平,并观察不同浓度地佐辛对LC细胞增殖的影响。接下来,通过转染LC细胞改变PD-L1水平,并以8 μg/mL的剂量暴露于地佐辛,探讨其对细胞增殖、干扰素-γ (IFN-γ)的产生、葡萄糖、乳酸和NADPH/NADP+含量以及核因子-κB (NF-κB)通路活化的影响。 结果:LC细胞中PD-L1水平升高,地佐辛(8 μg/mL)可抑制LC细胞的增殖。下调PD-L1可抑制细胞增殖,促进IFN-γ的产生,降低葡萄糖、乳酸和NADPH/NADP+含量,上调PD-L1则相反。地佐辛(8 μg/mL)诱导LC的免疫逃逸和糖代谢,下调PD-L1可逆转地佐辛诱导的作用。地佐辛(8 μg/mL)通过激活NF-κB通路上调PD-L1。 结论:8 μg/mL地佐辛通过上调PD-L1,激活NF-κB通路,促进LC的免疫逸出和糖代谢。

关键词: 肺癌,地佐辛,程序性死亡配体1,核因子-κB通路,增殖,免疫逃逸,葡萄糖消耗。

[1]
Nasim F, Sabath BF, Eapen GA. Lung Cancer. Med Clin North Am 2019; 103(3): 463-73.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[2]
Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 2020; 41(1): 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[3]
Hoy H, Lynch T, Beck M. Surgical treatment of lung cancer. Crit Care Nurs Clin North Am 2019; 31(3): 303-13.
[http://dx.doi.org/10.1016/j.cnc.2019.05.002] [PMID: 31351552]
[4]
Jones GS, Baldwin DR. Recent advances in the management of lung cancer. Clin Med (Lond) 2018; 18(Suppl. 2): s41-6.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s41] [PMID: 29700092]
[5]
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet 2017; 389(10066): 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[6]
Ilie M, Benzaquen J, Hofman V, et al. Immunotherapy in non-small cell lung cancer: Biological principles and future opportunities. Curr Mol Med 2017; 17(8): 527-40.
[http://dx.doi.org/10.2174/1566524018666180222114038] [PMID: 29473504]
[7]
Boland JW, Pockley AG. Influence of opioids on immune function in patients with cancer pain: from bench to bedside. Br J Pharmacol 2018; 175(14): 2726-36.
[http://dx.doi.org/10.1111/bph.13903] [PMID: 28593737]
[8]
Zhou ZG, Liu R, Tan HL, Ji XY, Yi XL, Song JF. The application of dexmedetomidine combined with dezocine in thoracoscopic radical resection of lung cancer and its effect on awakening quality of patients. Eur Rev Med Pharmacol Sci 2019; 23(17): 7694-702.
[PMID: 31539162]
[9]
Wang F, Zhang X, Wang H, Liu Y. Effects of dezocine and sufentanyl for postoperative analgesia on activity of NK, CD4+ and CD8+ cells in patients with breast cancer. Oncol Lett 2019; 17(3): 3392-8.
[http://dx.doi.org/10.3892/ol.2019.9964] [PMID: 30867775]
[10]
Zhong ZW, Zhou WC, Sun XF, Wu QC, Chen WK, Miao CH. Dezocine regulates the malignant potential and aerobic glycolysis of liver cancer targeting Akt1/GSK-3β pathway. Ann Transl Med 2020; 8(7): 480.
[http://dx.doi.org/10.21037/atm.2020.03.28] [PMID: 32395524]
[11]
Wang L, Ma Q, Yao R, Liu J. Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer. Int Immunopharmacol 2020; 79: 106088.
[http://dx.doi.org/10.1016/j.intimp.2019.106088] [PMID: 31896512]
[12]
Peng S, Wang R, Zhang X, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer 2019; 18(1): 165.
[http://dx.doi.org/10.1186/s12943-019-1073-4] [PMID: 31747941]
[13]
Miyazawa T, Marushima H, Saji H, et al. PD-L1 expression in non-small-cell lung cancer including various adenocarcinoma subtypes. Ann Thorac Cardiovasc Surg 2019; 25(1): 1-9.
[http://dx.doi.org/10.5761/atcs.oa.18-00163] [PMID: 30282880]
[14]
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol 2020; 11: 584626.
[http://dx.doi.org/10.3389/fimmu.2020.584626] [PMID: 33324403]
[15]
Yu M, Qi B, Xiaoxiang W, Xu J, Liu X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother 2017; 90: 677-85.
[http://dx.doi.org/10.1016/j.biopha.2017.04.001] [PMID: 28415048]
[16]
El-Nikhely N, Karger A, Sarode P, et al. Metastasis-associated protein 2 represses NF-κB to reduce lung tumor growth and inflammation. Cancer Res 2020; 80(19): 4199-211.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1158] [PMID: 32816854]
[17]
Jin X, Ding D, Yan Y, et al. Phosphorylated RB promotes cancer immunity by inhibiting nf-κb activation and PD-L1 expression. Mol Cell 2019; 73(1): 22-35.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.10.034] [PMID: 30527665]
[18]
Yu Y, Liang Y, Li D, et al. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment. Cell Death Discov 2021; 7(1): 15.
[http://dx.doi.org/10.1038/s41420-021-00401-7] [PMID: 33462221]
[19]
Vincent-Fabert C, Roland L, Zimber-Strobl U, Feuillard J, Faumont N. Pre-clinical blocking of PD-L1 molecule, which expression is down regulated by NF-κB, JAK1/JAK2 and BTK inhibitors, induces regression of activated B-cell lymphoma. Cell Commun Signal 2019; 17(1): 89.
[http://dx.doi.org/10.1186/s12964-019-0391-x] [PMID: 31382969]
[20]
Garland WA, Barbalas MP. Applications to analytic chemistry: an evaluation of stable isotopes in mass spectral drug assays. J Clin Pharmacol 1986; 26(6): 412-8.
[http://dx.doi.org/10.1002/j.1552-4604.1986.tb03550.x] [PMID: 2942579]
[21]
Song Q, Liu G, Liu D, Feng C. Dezocine promotes T lymphocyte activation and inhibits tumor metastasis after surgery in a mouse model. Invest New Drugs 2020; 38(5): 1342-9.
[http://dx.doi.org/10.1007/s10637-020-00921-6] [PMID: 32170576]
[22]
Li P, Huang T, Zou Q, et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol 2019; 202(10): 3065-75.
[http://dx.doi.org/10.4049/jimmunol.1801199] [PMID: 30979816]
[23]
Cao D, Qi Z, Pang Y, et al. Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res 2019; 79(10): 2604-18.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3842] [PMID: 30808674]
[24]
Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med 2019; 51(8): 1-13.
[http://dx.doi.org/10.1038/s12276-019-0295-2] [PMID: 31399559]
[25]
Cai H, Yan L, Liu N, Xu M, Cai H. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway. Biomed Pharmacother 2020; 123: 109790.
[http://dx.doi.org/10.1016/j.biopha.2019.109790] [PMID: 31896065]
[26]
Shang A, Wang W, Gu C, et al. Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res 2019; 38(1): 411.
[http://dx.doi.org/10.1186/s13046-019-1394-6] [PMID: 31533774]
[27]
Ma P, Xing M, Han L, et al. High PD L1 expression drives glycolysis via an Akt/mTOR/HIF 1α axis in acute myeloid leukemia. Oncol Rep 2020; 43(3): 999-1009.
[http://dx.doi.org/10.3892/or.2020.7477] [PMID: 32020232]
[28]
Wang S, Li J, Xie J, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene 2018; 37(30): 4164-80.
[http://dx.doi.org/10.1038/s41388-018-0252-x] [PMID: 29706653]
[29]
Li H, Xia JQ, Zhu FS, et al. LPS promotes the expression of PD-L1 in gastric cancer cells through NF-κB activation. J Cell Biochem 2018; 119(12): 9997-10004.
[http://dx.doi.org/10.1002/jcb.27329] [PMID: 30145830]
[30]
Hu M, Yang J, Qu L, et al. Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-κB pathway in lung adenocarcinoma. Food Funct 2020; 11(1): 456-71.
[http://dx.doi.org/10.1039/C9FO02166C] [PMID: 31830168]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy