Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

抗体-药物偶联物 PCMC1D3-Duocarmycin SA 作为一种新型治疗实体,用于靶向治疗异常表达 MET 受体酪氨酸激酶的癌症

卷 22, 期 4, 2022

发表于: 20 January, 2022

页: [312 - 327] 页: 16

弟呕挨: 10.2174/1568009621666211222154129

价格: $65

摘要

背景:MET受体酪氨酸激酶的异常表达是致癌决定因素和癌症治疗的药物靶点。目前,针对 MET 的基于抗体的生物治疗药物正在进行临床试验。 目的:在这里,我们报告了用于靶向癌症治疗的新型抗 MET 抗体-药物偶联物 PCMC1D3-duocarmycin SA (PCMC1D3-DCM) 的临床前和治疗评估。 方法:通过杂交瘤技术产生的单克隆抗体 PCMC1D3 (IgG1a/κ) 对 MET 细胞外结构域之一具有特异性,基于其对人 MET 的高特异性和 1.60 nM 的结合亲和力进行选择。 PCMC1D3 通过可切割的缬氨酸-瓜氨酸二肽接头与 DCM 偶联,形成药物与抗体比率为 3.6:1 的抗体-药物偶联物。体外 PCMC1D3-DCM 快速诱导 MET 内化,内化效力范围为 6.5 至 17.2 小时,具体取决于单个细胞系。 结果:使用不同类型癌细胞系的研究表明,PCMC1D3-DCM 会破坏细胞周期,降低细胞活力,并在治疗开始后 96 小时内导致大量细胞死亡。计算出的细胞活力降低的 IC50 值为 1.5 至 15.3 nM。小鼠异种移植肿瘤模型的结果表明,以 10 mg/kg 体重的单剂量注射 PCMC1D3-DCM 可有效延迟异种移植肿瘤的生长长达两周,而没有肿瘤再生的迹象。计算的肿瘤抑制浓度(平衡肿瘤生长和抑制所需的最小剂量)约为 2 mg/kg 体重。总之,PCMC1D3-DCM 在异种移植模型中可有效靶向抑制肿瘤生长。 结论:该工作为未来开发用于MET靶向癌症治疗的人源化PCMC1D3-DCM奠定了基础。

关键词: MET受体酪氨酸激酶、小鼠单克隆抗体、抗体-药物偶联物、多卡霉素、药物递送、体外细胞毒性、肿瘤异种移植模型、疗效。

图形摘要

[1]
Comoglio, P.M.; Trusolino, L.; Boccaccio, C. Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat. Rev. Cancer, 2018, 18(6), 341-358.
[http://dx.doi.org/10.1038/s41568-018-0002-y] [PMID: 29674709]
[2]
Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. MSP-RON signalling in cancer: Pathogenesis and therapeutic potential. Nat. Rev. Cancer, 2013, 13(7), 466-481.
[http://dx.doi.org/10.1038/nrc3545] [PMID: 23792360]
[3]
Dean, M.; Park, M.; Le Beau, M.M.; Robins, T.S.; Diaz, M.O.; Rowley, J.D.; Blair, D.G.; Vande Woude, G.F. The human met oncogene is related to the tyrosine kinase oncogenes. Nature, 1985, 318(6044), 385-388.
[http://dx.doi.org/10.1038/318385a0] [PMID: 4069211]
[4]
Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol., 2020, 17(9), 569-587.
[http://dx.doi.org/10.1038/s41571-020-0377-z] [PMID: 32514147]
[5]
Koch, J.P.; Aebersold, D.M.; Zimmer, Y.; Medová, M. MET targeting: Time for a rematch. Oncogene, 2020, 39(14), 2845-2862.
[http://dx.doi.org/10.1038/s41388-020-1193-8] [PMID: 32034310]
[6]
Oliveres, H.; Pineda, E.; Maurel, J. MET inhibitors in cancer: Pitfalls and challenges. Expert Opin. Investig. Drugs, 2020, 29(1), 73-85.
[http://dx.doi.org/10.1080/13543784.2020.1699532] [PMID: 31783719]
[7]
Lv, P.C.; Yang, Y.S.; Wang, Z.C. Recent progress in the development of small molecule c-Met inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1276-1288.
[http://dx.doi.org/10.2174/1568026619666190712205353] [PMID: 31526339]
[8]
Yao, H.P.; Hudson, R.; Wang, M.H. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188425.
[http://dx.doi.org/10.1016/j.bbcan.2020.188425] [PMID: 32961258]
[9]
Yao, H.P.; Tong, X.M.; Wang, M.H. Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov. Today, 2021, 26(1), 106-121.
[http://dx.doi.org/10.1016/j.drudis.2020.11.002] [PMID: 33171292]
[10]
Wang, J.; Goetsch, L.; Tucker, L.; Zhang, Q.; Gonzalez, A.; Vaidya, K.S.; Oleksijew, A.; Boghaert, E.; Song, M.; Sokolova, I.; Pestova, E.; Anderson, M.; Pappano, W.N.; Ansell, P.; Bhathena, A.; Naumovski, L.; Corvaia, N.; Reilly, E.B. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer, 2016, 16, 105.
[http://dx.doi.org/10.1186/s12885-016-2138-z] [PMID: 26879245]
[11]
Gymnopoulos, M.; Betancourt, O.; Blot, V.; Fujita, R.; Galvan, D.; Lieuw, V.; Nguyen, S.; Snedden, J.; Stewart, C.; Villicana, J.; Wojciak, J.; Wong, E.; Pardo, R.; Patel, N.; D’Hooge, F.; Vijayakrishnan, B.; Barry, C.; Hartley, J.A.; Howard, P.W.; Newman, R.; Coronella, J. TR1801-ADC: A highly potent cMet antibody-drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol. Oncol., 2020, 14(1), 54-68.
[http://dx.doi.org/10.1002/1878-0261.12600] [PMID: 31736230]
[12]
Yang, C.Y.; Wang, L.; Sun, X.; Tang, M.; Quan, H.T.; Zhang, L.S.; Lou, L.G.; Gou, S.H. SHR-A1403, a novel c-Met antibody- drug conjugate, exerts encouraging anti-tumor activity in c-Met-overexpressing models. Acta Pharmacol. Sin., 2019, 40(7), 971-979.
[http://dx.doi.org/10.1038/s41401-018-0198-0] [PMID: 30643210]
[13]
Min, B.; Jin, J.; Kim, H.; Her, N.G.; Park, C.; Kim, D.; Yang, J.; Hwang, J.; Kim, E.; Choi, M.; Song, H.Y.; Nam, D.H.; Yoon, Y. cIRCR201-dPBD, a novel pyrrolobenzodiazepine dimer-containing site-specific antibody-drug conjugate targeting c-MET overexpression tumors. ACS Omega, 2020, 5(40), 25798-25809.
[http://dx.doi.org/10.1021/acsomega.0c03102] [PMID: 33073104]
[14]
Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; Reilly, E.B. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin. Cancer Res., 2017, 23(4), 992-1000.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1568] [PMID: 27573171]
[15]
Moores, S.L.; Chiu, M.L.; Bushey, B.S.; Chevalier, K.; Luistro, L.; Dorn, K.; Brezski, R.J.; Haytko, P.; Kelly, T.; Wu, S.J.; Martin, P.L.; Neijssen, J.; Parren, P.W.; Schuurman, J.; Attar, R.M.; Laquerre, S.; Lorenzi, M.V.; Anderson, G.M. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res., 2016, 76(13), 3942-3953.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2833] [PMID: 27216193]
[16]
Choi, H.J.; Kim, Y.J.; Lee, S.; Kim, Y.S. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol. Cancer Ther., 2013, 12(12), 2748-2759.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0628] [PMID: 24132142]
[17]
Casaletto, J.B.; Geddie, M.L.; Abu-Yousif, A.O.; Masson, K.; Fulgham, A.; Boudot, A.; Maiwald, T.; Kearns, J.D.; Kohli, N.; Su, S.; Razlog, M.; Raue, A.; Kalra, A.; Håkansson, M.; Logan, D.T.; Welin, M.; Chattopadhyay, S.; Harms, B.D.; Nielsen, U.B.; Schoeberl, B.; Lugovskoy, A.A.; MacBeath, G. MM-131, a bispecific anti-Met/EpCAM mAb, inhibits HGF-dependent and HGF-independent Met signaling through concurrent binding to EpCAM. Proc. Natl. Acad. Sci. USA, 2019, 116(15), 7533-7542.
[http://dx.doi.org/10.1073/pnas.1819085116] [PMID: 30898885]
[18]
Sellmann, C.; Doerner, A.; Knuehl, C.; Rasche, N.; Sood, V.; Krah, S.; Rhiel, L.; Messemer, A.; Wesolowski, J.; Schuette, M.; Becker, S.; Toleikis, L.; Kolmar, H.; Hock, B. Balancing selectivity and efficacy of bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J. Biol. Chem., 2016, 291(48), 25106-25119.
[http://dx.doi.org/10.1074/jbc.M116.753491] [PMID: 27694443]
[19]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody-drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[20]
Yao, H.P.; Luo, Y.L.; Feng, L.; Cheng, L.F.; Lu, Y.; Li, W.; Wang, M.H. Agonistic monoclonal antibodies potentiate tumorigenic and invasive activities of splicing variant of the RON receptor tyrosine kinase. Cancer Biol. Ther., 2006, 5(9), 1179-1186.
[http://dx.doi.org/10.4161/cbt.5.9.3073] [PMID: 16880737]
[21]
Weng, T.H.; Yao, M.Y.; Xu, X.M.; Hu, C.Y.; Yao, S.H.; Liu, Y.Z.; Wu, Z.G.; Tang, T.M.; Fu, P.F.; Wang, M.H.; Yao, H.P. RON and MET co-overexpression are significant pathological characteristics of poor survival and therapeutic targets of tyrosine kinase inhibitors in triple-negative breast cancer. Cancer Res. Treat., 2020, 52(3), 973-986.
[http://dx.doi.org/10.4143/crt.2019.726] [PMID: 32324988]
[22]
Feng, L.; Yao, H.P.; Wang, W.; Zhou, Y.Q.; Zhou, J.; Zhang, R.; Wang, M.H. Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy. Clin. Cancer Res., 2014, 20(23), 6045-6058.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0898] [PMID: 25294907]
[23]
Yao, H.P.; Feng, L.; Weng, T.H.; Hu, C.Y.; Suthe, S.R.; Mostofa, A.G.M.; Chen, L.H.; Wu, Z.G.; Wang, W.L.; Wang, M.H. Preclinical efficacy of anti-RON antibody-drug conjugate Zt/g4-MMAE for targeted therapy of pancreatic cancer overexpressing RON receptor tyrosine kinase. Mol. Pharm., 2018, 15(8), 3260-3271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00298] [PMID: 29944378]
[24]
Tong, X.M.; Feng, L.; Suthe, S.R.; Weng, T.H.; Hu, C.Y.; Liu, Y.Z.; Wu, Z.G.; Wang, M.H.; Yao, H.P. Therapeutic efficacy of a novel humanized antibody-drug conjugate recognizing plexin-semaphorin-integrin domain in the RON receptor for targeted cancer therapy. J. Immunother. Cancer, 2019, 7(1), 250.
[http://dx.doi.org/10.1186/s40425-019-0732-8] [PMID: 31519211]
[25]
Yao, H.P.; Feng, L.; Suthe, S.R.; Chen, L.H.; Weng, T.H.; Hu, C.Y.; Jun, E.S.; Wu, Z.G.; Wang, W.L.; Kim, S.C.; Tong, X.M.; Wang, M.H. Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. J. Immunother. Cancer, 2019, 7, 1-6.
[http://dx.doi.org/10.1186/s40425-019-0525-0]
[26]
Suthe, S.R.; Yao, H.P.; Weng, T.H.; Hu, C.Y.; Feng, L.; Wu, Z.G.; Wang, M.H. RON receptor tyrosine kinase as a therapeutic target for eradication of triple-negative breast cancer: Efficacy of anti-RON ADC Zt/g4-MMAE. Mol. Cancer Ther., 2018, 17(12), 2654-2664.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0252] [PMID: 30275241]
[27]
Boatright, K.M.; Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol., 2003, 15(6), 725-731.
[http://dx.doi.org/10.1016/j.ceb.2003.10.009] [PMID: 14644197]
[28]
Lai, K.C.; Muvaffak, A.; Li, M.; Themeles, M.; Sikka, S.; Donahue, K.; Hicks, S.W.; Romanelli, A.; Chittenden, T. In vitro and in vivo activity of a novel c-Met-targeting antibody-drug conjugate using a DNA-alkylating, indolinobenzodiazepine payload. AACR 110 Annual Meeting, Washington DC2017, 77(13), p. 45.
[29]
Patil, P.C.; Satam, V.; Lee, M. A short review on the synthetic strategies of duocarmycin analogs that are powerful DNA alkylating agents. Anticancer Agents Med. Chem., 2015, 15(5), 616-630.
[http://dx.doi.org/10.2174/1871520615666141216144116] [PMID: 25511515]
[30]
Jukes, Z.; Morais, G.R.; Loadman, P.M.; Pors, K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov. Today, 2021, 26(2), 577-584.
[http://dx.doi.org/10.1016/j.drudis.2020.11.020] [PMID: 33232841]
[31]
Bhuyan, B.K.; Smith, K.S.; Kelly, R.C.; Adams, E.G.; Abraham, I.; Sampson, K.E. Multidrug resistance is a component of V79 cell resistance to the alkylating agent adozelesin. Cancer Res., 1993, 53(6), 1354-1359.
[PMID: 8443816]
[32]
Ogasawara, H.; Nishio, K.; Kanzawa, F.; Lee, Y.S.; Funayama, Y.; Ohira, T.; Kuraishi, Y.; Isogai, Y.; Saijo, N. Intracellular carboxyl esterase activity is a determinant of cellular sensitivity to the antineoplastic agent KW-2189 in cell lines resistant to cisplatin and CPT-11. Jpn. J. Cancer Res., 1995, 86(1), 124-129.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb02997.x] [PMID: 7737904]
[33]
Dokter, W.; Ubink, R.; van der Lee, M.; van der Vleuten, M.; van Achterberg, T.; Jacobs, D.; Loosveld, E.; van den Dobbelsteen, D.; Egging, D.; Mattaar, E.; Groothuis, P.; Beusker, P.; Coumans, R.; Elgersma, R.; Menge, W.; Joosten, J.; Spijker, H.; Huijbregts, T.; de Groot, V.; Eppink, M.; de Roo, G.; Verheijden, G.; Timmers, M. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: Introduction of a new duocarmycin-based linker- drug platform. Mol. Cancer Ther., 2014, 13(11), 2618-2629.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0040-T] [PMID: 25189543]
[34]
Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; Easton, A.; Yee-Toy, N.C.; Chen, F.Z.; Gorlatov, S.; Barat, B.; Huang, L.; Wolff, C.R.; Hooley, J.; Hotaling, T.E.; Gaynutdinov, T.; Ciccarone, V.; Tamura, J.; Koenig, S.; Moore, P.A.; Bonvini, E.; Loo, D. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther., 2020, 19(11), 2235-2244.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0116] [PMID: 32967924]
[35]
Su, D.; Chen, J.; Cosino, E.; Dela Cruz-Chuh, J.; Davis, H.; Del Rosario, G.; Figueroa, I.; Goon, L.; He, J.; Kamath, A.V.; Kaur, S.; Kozak, K.R.; Lau, J.; Lee, D.; Lee, M.V.; Leipold, D.; Liu, L.; Liu, P.; Lu, G.L.; Nelson, C.; Ng, C.; Pillow, T.H.; Polakis, P.; Polson, A.G.; Rowntree, R.K.; Saad, O.; Safina, B.; Stagg, N.J.; Tercel, M.; Vandlen, R.; Vollmar, B.S.; Wai, J.; Wang, T.; Wei, B.; Xu, K.; Xue, J.; Xu, Z.; Yan, G.; Yao, H.; Yu, S.F.; Zhang, D.; Zhong, F.; Dragovich, P.S. Antibody-drug conjugates derived from cytotoxic seco-CBI-dimer payloads are highly efficacious in xenograft models and form protein adducts In Vivo. Bioconjug. Chem., 2019, 30(5), 1356-1370.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00133] [PMID: 30966735]
[36]
Yao, H.P.; Tong, X.M.; Wang, M.H. Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Ther. Adv. Med. Oncol., 2021, 13, 17588359211006957.
[http://dx.doi.org/10.1177/17588359211006957] [PMID: 33868463]
[37]
Arriola, E.; Cañadas, I.; Arumí-Uría, M.; Dómine, M.; Lopez-Vilariño, J.A.; Arpí, O.; Salido, M.; Menéndez, S.; Grande, E.; Hirsch, F.R.; Serrano, S.; Bellosillo, B.; Rojo, F.; Rovira, A.; Albanell, J. MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br. J. Cancer, 2011, 105(6), 814-823.
[http://dx.doi.org/10.1038/bjc.2011.298] [PMID: 21847116]
[38]
Fong, J.T.; Jacobs, R.J.; Moravec, D.N.; Uppada, S.B.; Botting, G.M.; Nlend, M.; Puri, N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS One, 2013, 8(11), e78398.
[http://dx.doi.org/10.1371/journal.pone.0078398] [PMID: 24223799]
[39]
Yi, S.; Tsao, M.S. Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia, 2000, 2(3), 226-234.
[http://dx.doi.org/10.1038/sj.neo.7900080] [PMID: 10935508]
[40]
Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K.A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F.M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 2009, 69(20), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4889] [PMID: 19808973]
[41]
Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; Yu, Y.; Wang, H.; Xu, S.; Zhou, F.; Su, X.; Yin, X.; Xie, L.; Wang, L.; Qing, W.; Jiao, L.; Su, W.; Wang, Q.M. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol., 2015, 9(1), 323-333.
[http://dx.doi.org/10.1016/j.molonc.2014.08.015] [PMID: 25248999]
[42]
Park, C.H.; Cho, S.Y.; Ha, J.D.; Jung, H.; Kim, H.R.; Lee, C.O.; Jang, I.Y.; Chae, C.H.; Lee, H.K.; Choi, S.U. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer, 2016, 16, 35.
[http://dx.doi.org/10.1186/s12885-016-2058-y] [PMID: 26801760]
[43]
Larsen, C.A.; Dashwood, R.H. Suppression of Met activation in human colon cancer cells treated with (-)-epigallocatechin-3-gallate: Minor role of hydrogen peroxide. Biochem. Biophys. Res. Commun., 2009, 389(3), 527-530.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.019] [PMID: 19744467]
[44]
Jaquish, D.V.; Yu, P.T.; Shields, D.J.; French, R.P.; Maruyama, K.P.; Niessen, S.; Hoover, H.; A Cheresh, D.; Cravatt, B.; Lowy, A.M. IGF1-R signals through the RON receptor to mediate pancreatic cancer cell migration. Carcinogenesis, 2011, 32(8), 1151-1156.
[http://dx.doi.org/10.1093/carcin/bgr086] [PMID: 21565828]
[45]
Hill, K.S.; Gaziova, I.; Harrigal, L.; Guerra, Y.A.; Qiu, S.; Sastry, S.K.; Arumugam, T.; Logsdon, C.D.; Elferink, L.A. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer. PLoS One, 2012, 7(7), e40420.
[http://dx.doi.org/10.1371/journal.pone.0040420] [PMID: 22815748]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy