Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Nucleophilic Approach to Cyanide Sensing by Chemosensors

Author(s): Ergin Keleş, Burcu Aydıner* and Zeynel Seferoğlu

Volume 20, Issue 1, 2023

Published on: 12 May, 2022

Page: [61 - 76] Pages: 16

DOI: 10.2174/1570179419666211221163435

Price: $65

Abstract

Cyanide anion has wide use in industrial areas; however, it has a high toxic effect on the environment as waste. Moreover, plant seeds contain cyanide that is often consumed by human beings. Therefore, many studies are carried out to determine cyanide. Especially, optical sensors showing colorimetric and fluorimetric changes have been of considerable interest due to their easy, cheap, and fast responses. This review discusses recent developments in the colorimetric and fluorimetric detection of cyanide by nucleophilic addition to different types of receptors via the chemodosimeter approach. The sensitivity and selectivity of the sensors have been reviewed for changes in absorption and fluorescence, naked-eye detection, real sample application, and detection limits when interacting with cyanide.

Keywords: Cyanide anion, optic sensors, chemodosimeter, fluorescence, real samples, naked-eye detection, chemosensors nucleophilic approach.

Graphical Abstract

[1]
Beer, P.D.; Gale, P.A. Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem. Int. Ed. Engl., 2001, 40(3), 486-516.
[http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486:AID-ANIE486>3.0.CO;2-P] [PMID: 11180358]
[2]
Yan, X.; Wang, M.; Cook, T.R.; Zhang, M.; Saha, M.L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P.J. Light-emitting superstructures with anion effect: Coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc., 2016, 138(13), 4580-4588.
[http://dx.doi.org/10.1021/jacs.6b00846] [PMID: 26982213]
[3]
Nural, Y. Keleş E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New naphthoquinone-imidazole hybrids: synthesis, anion recognition properties, DFT studies and acid dissociation constants. J. Mol. Liq., 2021, 327, 114855.
[http://dx.doi.org/10.1016/j.molliq.2020.114855]
[4]
Kulig, K.W.; Ballantyne, B.; Becker, C.; Borak, J.; Cannella, J.; Goldstein, B.; Hall, A.; Jackson, R.J.; Rodnick, J.; Wheater, R.; Wummer, B. Cyanide toxicity. Am. Fam. Physician, 1993, 48(1), 107-114.
[http://dx.doi.org/10.1007/978-3-642-00418-6_817] [PMID: 8322636]
[5]
Services, H. Toxicological profile for cyanide. ATSDR’s Toxicol; Profiles, 2002.
[http://dx.doi.org/10.1201/9781420061888_ch68]
[6]
Qian, G.; Li, X.; Wang, Z.Y. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide. J. Mater. Chem., 2009, 19(4), 522-530.
[http://dx.doi.org/10.1039/B813478B]
[7]
Sun, Y.; Wang, G.; Guo, W. Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives. Tetrahedron, 2009, 65(17), 3480-3485.
[http://dx.doi.org/10.1016/j.tet.2009.02.023]
[8]
Greenfield, R.A.; Brown, B.R.; Hutchins, J.B.; Iandolo, J.J.; Jackson, R.; Slater, L.N.; Bronze, M.S. Microbiological, biological, and chemical weapons of warfare and terrorism. Am. J. Med. Sci., 2002, 323(6), 326-340.
[http://dx.doi.org/10.1097/00000441-200206000-00005] [PMID: 12074487]
[9]
Thompson, D.T. Cyanide: Social, industrial and economic aspects. Gold Bull., 2001, 34(4), 133-133.
[http://dx.doi.org/10.1007/BF03214826]
[10]
Sun, H.; Zhang, Y.Y.; Si, S.H.; Zhu, D.R.; Fung, Y.S. Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized ag particles for determining cyanide at trace levels in water. Sensors and Actuators, B: Chemical; Elsevier, 2005, Vol. 108, pp. 925-932.
[http://dx.doi.org/10.1016/j.snb.2004.12.120]
[11]
Solomonson, L.P. Cyanide as a metabolic inhibitor cyanide biol vennesl, B., Ed. , 1981.
[12]
Logue, B.A.; Kirschten, N.P.; Petrikovics, I.; Moser, M.A.; Rockwood, G.A.; Baskin, S.I. Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 819(2), 237-244.
[http://dx.doi.org/10.1016/j.jchromb.2005.01.045] [PMID: 15833287]
[13]
Ding, Y.; Li, T.; Zhu, W.; Xie, Y. Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. Org. Biomol. Chem., 2012, 10(21), 4201-4207.
[http://dx.doi.org/10.1039/c2ob25297j] [PMID: 22522605]
[14]
Lebeda, F.J.; Deshpande, S.S. Potentiometric measurements of hydrogen and cyanide ions in buffered media. Anal. Biochem., 1990, 187(2), 302-309.
[http://dx.doi.org/10.1016/0003-2697(90)90460-Q] [PMID: 2382831]
[15]
Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury(II), fluoride and cyanide. Microchim. Acta, 2018, 185(12), 1-8.
[http://dx.doi.org/10.1007/s00604-018-3064-3]
[16]
Rocklin, R.D.; Johnson, E.L. Determination of cyanide, sulfide, iodide, and bromide by ion chromatography with electrochemical detection. Anal. Chem., 1983, 55(1), 4-7.
[http://dx.doi.org/10.1021/ac00252a005]
[17]
Lindsay, A.E.; O’Hare, D. The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Anal. Chim. Acta, 2006, 558(1-2), 158-163.
[http://dx.doi.org/10.1016/j.aca.2005.11.036]
[18]
Safavi, A.; Maleki, N.; Shahbaazi, H.R. Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Anal. Chim. Acta, 2004, 503(2), 213-221.
[http://dx.doi.org/10.1016/j.aca.2003.10.032]
[19]
Kaur, K.; Mittal, K. S.; K., A. K. S.; Kumar, Ashwani; Kumar, Subodh Viologen substituted anthrone derivatives for selective detection of cyanide ions using voltammetry. Anal. Methods, 2013, 5(20), 5565-5571.
[http://dx.doi.org/10.1039/c3ay40912k]
[20]
Gupta, S.; Chhibber, M.; Mittal, S.K. Amine Derivative of triphenyl ether as an optical sensor for the detection of cyanide ions and traces of water in acetonitrile supported with voltammetric studies. J. Appl. Electrochem., 2019, 502(2), 185-195.
[http://dx.doi.org/10.1007/s10800-019-01382-3]
[21]
Jaszczak, E. Polkowska, Ż Narkowicz, S.; Namieśnik, J. Cyanides in the environment-analysis-problems and challenges. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 15929-15948.
[http://dx.doi.org/10.1007/s11356-017-9081-7] [PMID: 28512706]
[22]
Bolstad-Johnson, D. M.; Burgess, J. L.; Crutchfield, C. D.; Storment, S.; Gerkin, R.; Wilson, J. R. Characterization of firefighter exposures during fire overhaul 2010, 61,(5), 636-641..
[http://dx.doi.org/10.1080/15298660008984572]
[23]
Gemili, M.; Nural, Y. Keleş E.; Aydıner, B.; Seferoğlu, N.; Şahin, E.; Sarı H.; Seferoğlu, Z. Novel 1,4-naphthoquinone N-aroylthioureas: Syntheses, crystal structure, anion recognition properties, DFT studies and determination of acid dissociation constants. J. Mol. Liq., 2018, 269, 920-932.
[http://dx.doi.org/10.1016/j.molliq.2018.08.054]
[24]
Gayretli, C.; Teknikel, E.; Cinar, S.; Unaleroglu, C. A finding on the direct regioselective cyanation of BODIPY. Synlett, 2020, 31(11), 1064-1066.
[http://dx.doi.org/10.1055/s-0039-1690888]
[25]
Yadav, N.; Kumar Singh, A. Dicarbohydrazide based chemosensors for copper and cyanide ions via a displacement approach. New J. Chem., 2018, 42(8), 6023-6033.
[http://dx.doi.org/10.1039/C8NJ00230D]
[26]
Tang, L.; Cai, M. A highly selective and sensitive fluorescent sensor for Cu2+ and its complex for successive sensing of cyanide via Cu2+ displacement approach. Sens. Actuators B Chem., 2012, 173, 862-867.
[http://dx.doi.org/10.1016/j.snb.2012.07.112]
[27]
Kumar, A.; Ahmed, N. Indirect approach for CN - detection: development of “naked-eye” Hg2+-induced turn-off fluorescence and turn-on cyanide sensing by the Hg2+ displacement approach. Ind. Eng. Chem. Res., 2017, 56(22), 6358-6368.
[http://dx.doi.org/10.1021/acs.iecr.7b00188]
[28]
Shahid, M.; Razi, S.S.; Srivastava, P.; Ali, R.; Maiti, B.; Misra, A. A useful scaffold based on acenaphthene exhibiting cu2+ induced excimer fluorescence and sensing cyanide via Cu2+ displacement approach. Tetrahedron, 2012, 68(44), 9076-9084.
[http://dx.doi.org/10.1016/j.tet.2012.08.052]
[29]
Çakmaz, D.; Özarslan, A. Aydıner, B.; Eroğlu, A.B.; Seferoğlu, N.; Şenöz, H.; Seferoğlu, Z. The novel sensitive and selective chemosensors for determination of multiple analytes. Dyes Pigments, 2020, 183, 108701.
[http://dx.doi.org/10.1016/j.dyepig.2020.108701]
[30]
Keleş E.; Yahya, M.; Aktan, E.; Aydıner, B.; Seferoğlu, N.; Barsella, A.; Seferoğlu, Z. Indole based push-pull dyes bearing azo and dimethine: Synthesis, spectroscopic, NLO, anion affinity properties and thermal characterization. J. Photochem. Photobiol. Chem., 2020, 402, 112818.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112818]
[31]
Yahaya, I. Keleş E.; Putra, A.U.; Yahya, M.; Seferoğlu, N.; Seferoğlu, Z. Microwave-enhanced and conventional procedures for the synthesis of coumarin-thiophene amides, sulfonamide, and urea derivatives: Synthesis, photophysical activities, and multiple anions signalling via different mechanisms. J. Mol. Struct., 2020, 1204, 127465.
[http://dx.doi.org/10.1016/j.molstruc.2019.127465]
[32]
Malkondu, S.; Erdemir, S.; Karakurt, S. Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: biological sensing and environmental analysis. Dyes Pigments, 2019, 2020(174), 108019.
[http://dx.doi.org/10.1016/j.dyepig.2019.108019]
[33]
Erdemir, S.; Malkondu, S. On-site and low-cost detection of cyanide by simple colorimetric and fluorogenic sensors: Smartphone and test strip applications. Talanta, 2020, 207(207), 120278.
[http://dx.doi.org/10.1016/j.talanta.2019.120278] [PMID: 31594612]
[34]
Erdemir, S.; Malkondu, S. Visual and quantitative detection of CN- ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta, 2021, 221(221), 121639.
[http://dx.doi.org/10.1016/j.talanta.2020.121639] [PMID: 33076159]
[35]
Xu, Z.; Chen, X.; Kim, H.N.; Yoon, J. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev., 2010, 39(1), 127-137.
[http://dx.doi.org/10.1039/B907368J] [PMID: 20023843]
[36]
Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S. Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord. Chem. Rev., 2012, 256(17-18), 1992-2028.
[http://dx.doi.org/10.1016/j.ccr.2012.04.013]
[37]
Martínez-Máñez, R.; Sancenón, F. Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coord. Chem. Rev., 2006, 250(23-24), 3081-3093.
[http://dx.doi.org/10.1016/j.ccr.2006.04.016]
[38]
Wang, F.; Wang, L.; Chen, X.; Yoon, J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev., 2014, 43(13), 4312-4324.
[http://dx.doi.org/10.1039/c4cs00008k] [PMID: 24668230]
[39]
Randviir, E.P.; Banks, C.E. The latest developments in quantifying cyanide and hydrogen cyanide. TrAC. Trends Analyt. Chem., 2015, 64, 75-85.
[http://dx.doi.org/10.1016/j.trac.2014.08.009]
[40]
Zelder, F.H.; Männel-Croisé, C. Recent advances in the colorimetric detection of cyanide. Chim. Int. J. Chem, 2009, 63(1-2), 58-62.
[http://dx.doi.org/10.2533/chimia.2009.58]
[41]
Udhayakumari, D. Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sens. Actuators B Chem., 2018, 259, 1022-1057.
[http://dx.doi.org/10.1016/j.snb.2017.12.006]
[42]
Yahaya, I.; Seferoglu, Z. Fluorescence dyes for determination of cyanide. Photochemi. Photophysic. Fundamentals to Applications; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.75090]
[43]
Pati, P.B. Organic chemodosimeter for cyanide: A nucleophilic approach. Sens. Actuators B Chem., 2016, 222, 374-390.
[http://dx.doi.org/10.1016/j.snb.2015.08.044]
[44]
Kieslich, D.; Christoffers, J. Cyanide anions as nucleophilic catalysts in organic synthesis. Synthesis (Stuttg), 2021, 53(19), 3485-3496.
[http://dx.doi.org/10.1055/a-1499-8943]
[45]
Kwart, H.; Baevsky, M.M. The cyanide ion catalyzed cleavage of aromatic α-diketones. J. Am. Chem. Soc., 1958, 80(3), 580-588.
[http://dx.doi.org/10.1021/ja01536a018]
[46]
Cho, D-G.; Kim, J.H.; Sessler, J.L. The benzil-cyanide reaction and its application to the development of a selective cyanide anion indicator. J. Am. Chem. Soc., 2008, 130(36), 12163-12167.
[http://dx.doi.org/10.1021/ja8039025] [PMID: 18698844]
[47]
Ramabhadran, R.O.; Hua, Y.; Flood, A.H.; Raghavachari, K. C vs N: which end of the cyanide anion is a better hydrogen bond acceptor? J. Phys. Chem. A, 2014, 118(35), 7418-7423.
[http://dx.doi.org/10.1021/jp412816w] [PMID: 24707902]
[48]
Niu, Q.; Lan, L.; Li, T.; Guo, Z.; Jiang, T.; Zhao, Z.; Feng, Z.; Xi, J. A highly selective turn-on fluorescent and naked-eye colorimetric sensor for cyanide detection in food samples and its application in imaging of living cells. Sens. Actuators B Chem., 2018, 276, 13-22.
[http://dx.doi.org/10.1016/j.snb.2018.08.066]
[49]
Deng, K.; Wang, L.; Xia, Q.; Liu, R.; Qu, J. A turn-on fluorescent chemosensor based on aggregation-induced emission for cyanide detection and its bioimaging applications. Sens. Actuators B Chem., 2019, 296, 126645.
[http://dx.doi.org/10.1016/j.snb.2019.126645]
[50]
Zhao, Y.; Feng, L.; Meng, X.; Guan, J. Triphenylamine-thiophene dyad as a chemodosimeter for specific recognition of cyanide ions in aqueous solutions. Dyes Pigments, 2020, 183, 108713.
[http://dx.doi.org/10.1016/j.dyepig.2020.108713]
[51]
Reddy, S.T.; Moon, H.; Choi, M.S. Turn-on fluorescent naphthalimide-benzothiazole probe for cyanide detection and its two-mode aggregation-induced emission behavior. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 252, 119535.
[http://dx.doi.org/10.1016/j.saa.2021.119535] [PMID: 33582439]
[52]
Peng, T.; Li, S.; Zhou, Y.; Liu, R.; Qu, J. Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells. Talanta, 2021, 234, 122615.
[http://dx.doi.org/10.1016/j.talanta.2021.122615] [PMID: 34364424]
[53]
Wang, L.; Li, L.; Cao, D. A BODIPY-based dye with red fluorescence in solid state and used as a fluorescent and colorimetric probe for highly selective detection of cyanide. Sens. Actuators B Chem., 2017, 239, 1307-1317.
[http://dx.doi.org/10.1016/j.snb.2016.09.112]
[54]
Manickam, S.; Iyer, S.K. Highly sensitive turn-off fluorescent detection of cyanide in aqueous medium using dicyanovinyl-substituted phenanthridine fluorophore. RSC Advances, 2020, 10(20), 11791-11799.
[http://dx.doi.org/10.1039/D0RA00623H]
[55]
Padghan, S.D.; Wang, C.Y.; Liu, W.C.; Sun, S.S.; Liu, K.M.; Chen, K.Y. A naphthalene-based colorimetric and fluorometric dual-channel chemodosimeter for sensing cyanide in a wide PH range. Dyes Pigments, 2020, 183, 108724.
[http://dx.doi.org/10.1016/j.dyepig.2020.108724]
[56]
Mu, S.; Gao, H.; Li, C.; Li, S.; Wang, Y.; Zhang, Y.; Ma, C.; Zhang, H.; Liu, X. A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals. Talanta, 2021, 221(221), 121606.
[http://dx.doi.org/10.1016/j.talanta.2020.121606] [PMID: 33076136]
[57]
Şahin, Ö.; Özdemir, Ü.Ö.; Seferoğlu, N.; Aydıner, B.; Sarı, M.; Tunç, T.; Seferoğlu, Z. A Highly selective and sensitive chemosensor derived coumarin-thiazole for colorimetric and fluorimetric detection of cn-ion in dmso and aqueous solution: synthesis, sensing ability, Pd(II)/Pt(II) complexes and theoretical studies. Tetrahedron,, 2016, 72(39), 5843-5852..
[http://dx.doi.org/10.1016/j.tet.2016.08.004]
[58]
Aydiner, B. Şahin, Ö.; Çakmaz, D.; Kaplan, G.; Kaya, K.; Özdemir, Ü.Ö.; Seferoǧlu, N.; Seferoǧlu, Z. A highly sensitive and selective fluorescent turn-on chemosensor bearing a 7-diethylaminocoumarin moiety for the detection of cyanide in organic and aqueous solutions. New J. Chem., 2020, 44(44), 19155-19165.
[http://dx.doi.org/10.1039/D0NJ03003A]
[59]
Chemchem, M.; Yahaya, I. Aydıner, B.; Doluca, O.; Seferoğlu, N.; Seferoğlu, Z. Substituent dependent selectivity of fluorescent chemosensors derived from coumarin for biologically relevant DNA structures and anions. Sens. Actuators B Chem., 2020, 305, 127316.
[http://dx.doi.org/10.1016/j.snb.2019.127316]
[60]
Kumar, P.S.; Lakshmi, P.R.; Elango, K.P. Rational design and application of a fluorogenic chemodosimeter for selective detection of cyanide in an aqueous solution via excimer formation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 221, 117172.
[http://dx.doi.org/10.1016/j.saa.2019.117172] [PMID: 31174138]
[61]
Sun, T.; Niu, Q.; Li, Y.; Li, T.; Hu, T.; Wang, E.; Liu, H. A novel oligothiophene-based colorimetric and fluorescent “turn on” sensor for highly selective and sensitive detection of cyanide in aqueous media and its practical applications in water and food samples. Sens. Actuators B Chem., 2018, 258, 64-71.
[http://dx.doi.org/10.1016/j.snb.2017.11.095]
[62]
Aydıner, B. A chemodosimeter approach for selective colorimetric and fluorimetric cyanide detection using coumarin based fluorescent dyes. J. Photochem. Photobiol. Chem., 2019, 382, 111916.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111916]
[63]
Ali, R.; Dwivedi, S.K.; Mishra, H.; Misra, A. Imidazole-coumarin containing D - A type fluorescent probe: synthesis photophysical properties and sensing behavior for F- and CN- anion. Dyes Pigments, 2020, 175, 108163.
[http://dx.doi.org/10.1016/j.dyepig.2019.108163]
[64]
Suganya, S.; Ravindran, E.; Mahato, M.K.; Prasad, E. Orange emitting fluorescence probe for the selective detection of cyanide ion in solution and solid states. Sens. Actuators B Chem., 2019, 291, 426-432.
[http://dx.doi.org/10.1016/j.snb.2019.04.066]
[65]
Park, J.H.; Manivannan, R.; Jayasudha, P.; Son, Y.A. Selective detection of cyanide ion in 100% water by indolium based dual reactive binding site optical sensor. J. Photochem. Photobiol. Chem., 2020, 397, 112571.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112571]
[66]
Rao, P.G.; Saritha, B.; Rao, T.S. Highly selective reaction based colorimetric and fluorometric chemosensors for cyanide detection via ICT off in aqueous solution. J. Photochem. Photobiol. Chem., 2019, 372, 177-185.
[http://dx.doi.org/10.1016/j.jphotochem.2018.12.018]
[67]
Lohar, S.; Dhara, K.; Roy, P.; Sinha Babu, S.P.; Chattopadhyay, P. Highly sensitive ratiometric chemosensor and biomarker for cyanide ions in the aqueous medium. ACS Omega, 2018, 3(8), 10145-10153.
[http://dx.doi.org/10.1021/acsomega.8b01035] [PMID: 30221241]
[68]
Maurya, N.; Kumar Singh, A. A chromogenic and fluorogenic chemodosimeter for selective detection of CN-. Inorg. Chim. Acta, 2020, 499, 119156.
[http://dx.doi.org/10.1016/j.ica.2019.119156]
[69]
Yoo, M.; Park, S.; Kim, H.J. Highly selective detection of cyanide by 2-hydroxyphenylsalicylimine of latent fluorescence through the cyanide-catalyzed imine-to-oxazole transformation. Sens. Actuators B Chem., 2015, 220, 788-793.
[http://dx.doi.org/10.1016/j.snb.2015.06.021]
[70]
Ali, R.; Razi, S.S.; Srivastava, P.; Misra, A. Tetrasubstituted imidazole core containing ESIPT fluorescent chemodosimeter for selective detection of cyanide in different medium. Sens. Actuators B Chem., 2015, 221, 1236-1247.
[http://dx.doi.org/10.1016/j.snb.2015.07.087]
[71]
Keleş E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. A new mechanism for selective recognition of cyanide in organic and aqueous solution. Eur. J. Org. Chem., 2020, 2020(30), 4681-4692.
[http://dx.doi.org/10.1002/ejoc.202000342]
[72]
Tamilarasan, D.; Suhasini, R.; Thiagarajan, V.; Balamurugan, R. Reversible addition of cyanide to triphenylamine attached difluoroboron β-diketonate facilitated selective colorimetric and fluorimetric detection of cyanide ion. Eur. J. Org. Chem., 2020, 2020(8), 993-1000.
[http://dx.doi.org/10.1002/ejoc.201901820]
[73]
Wu, Q.; Wang, S.; Hao, E.; Jiao, L. Highly selective, colorimetric probes for cyanide ion based on β-formylBODIPY dyes by an unprecedented nucleophilic addition reaction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119102.
[http://dx.doi.org/10.1016/j.saa.2020.119102] [PMID: 33186819]
[74]
Erdemir, S.; Malkondu, S. Cyanobiphenyl-spiropyrane and -hemicyanine conjugates for cyanide detection in organic/aqueous media through reverse ICT direction: Their practical applications. Talanta, 2021, 231, 122385.
[http://dx.doi.org/10.1016/j.talanta.2021.122385] [PMID: 33965047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy