Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

One-pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives via Multicomponent Reactions (MCRs) and their Applications in Medicinal Chemistry

Author(s): Swapan Kumar Biswas* and Debasis Das*

Volume 19, Issue 5, 2022

Published on: 21 January, 2022

Page: [552 - 568] Pages: 17

DOI: 10.2174/1570193X19666211220141622

Price: $65

Abstract

Background: Many pyrano[2,3-c]pyrazole derivatives display diverse biological activities and some of them are known as anticancer, analgesic, anticonvulsant, antimicrobial, antiinflammatory, and anti-malarial agents. In recent years, easy convergent, multicomponent reactions (MCRs) have been adopted to make highly functionalizedpyrano[2,3-c]pyrazole derivatives of biological interest. The synthesis of 1,4-dihydropyrano[2,3-c]pyrazole (1,4-DHPP, 2), 2,4- dihydropyrano[2,3-c]pyrazole (2,4-DHPP, 3), 4-hydroxypyrano[2,3-c]pyrazole (4-HPP, 4) derivatives, 1,4,4-substitied pyranopyrazole (SPP, 5) were reported via two-, three-, four- and fivecomponent reactions (MCRs).

Methods: This review article compiles the preparation of pyrano[2,3-c]pyrazole derivatives, and it highlights the applications of various pyrano[2,3-c]pyrazole derivatives in medicinal chemistry.

Results: Varieties of pyrano[2,3-c]pyrazole derivatives were achieved via “One-pot” multicomponent reactions (MCRs). Different reaction conditions in the presence of a catalyst or without catalysts were adapted to prepare the pyrano[2,3-c]pyrazole derivatives.

Conclusion: Biologically active pyrano[2,3-c]pyrazole derivatives were prepared and used in drug discovery research.

Keywords: Pyrano[2, 3-c]pyrazole, 1, 4-dihydropyrano[2, 2, One-pot, multicomponent reactions, medicinal chemistry, bioactive, heterocyclic scaffold.

Graphical Abstract

[1]
Li, J.J. Heterocyclic Chemistry in Drug Discovery; John Wiley & Sons: Hoboken, 2013.
[2]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[3]
Dhameliya, T.M.; Patel, K.I.; Tiwari, R.; Vagolu, S.K.; Panda, D.; Sriram, D.; Chakraborti, A.K. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg. Chem., 2021, 107, 104538.
[http://dx.doi.org/10.1016/j.bioorg.2020.104538] [PMID: 33349456]
[4]
Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
[http://dx.doi.org/10.2174/1389557516666160609075620] [PMID: 27292782]
[5]
Shekhar, A.; Lingaiah, B.; Rao, P.; Narsaiah, B.; Allanki, A.; Sijwali, P. Design, synthesis and biological evaluation of novel fluorinated heterocyclic hybrid molecules based on triazole & quinoxaline scaffolds lead to highly potent antimalarials and antibacterials. LDDD, 2015, 12, 393-407.
[http://dx.doi.org/10.2174/1570180812666141111235301]
[6]
Wolff, L. Ueber das azin des acetessigesters. Ber. Dtsch. Chem. Ges., 1905, 38, 3036-3041.
[http://dx.doi.org/10.1002/cber.190503803113]
[7]
Das, D.; Banerjee, R.; Mitra, A. Bioactive and pharmacologically important pyrano[2,3-c]pyrazoles. J. Chem. Pharm. Res., 2014, 6, 108-116.
[8]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[9]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[10]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[11]
Bhagat, S.; Supriya, M.; Pathak, S.; Sriram, D.; Chakraborti, A.K. α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg. Chem., 2019, 82, 246-252.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.023] [PMID: 30391855]
[12]
Kumar, D.; Kommi, D.N.; Bollineni, N.; Patel, A.R.; Chakraborti, A.K. Catalytic procedures for multicomponent synthesis of imidazoles: Selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles. Green Chem., 2012, 14, 2038.
[http://dx.doi.org/10.1039/c2gc35277j]
[13]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.012] [PMID: 27095514]
[14]
Myrboh, B.; Mecadon, H.; Rohman, Md. R.; Rajbangshi, M.; Kharkongor, I.; Laloo, B.M.; Kharbangar, I.; Kshiar, B Synthetic developments in functionalized pyrano[2,3-c]pyrazoles. A review. Org. Prep. Proced. Int., 2013, 45, 253-303.
[http://dx.doi.org/10.1080/00304948.2013.798566]
[15]
Aslam, N.; White, J.M.; Zafar, A.M.; Jabeen, M.; Ghafoor, A.; Sajjid, N.; Noreen, S.; Khan, M.A. 4H-pyrano[2,3-c]pyrazoles: A review. ARKIVOC, 2018, 2018, 139-203.
[http://dx.doi.org/10.24820/ark.5550190.p010.622]
[16]
Sikandar, S.; Zahoor, A.F. Synthesis of pyrano[2,3‐c]pyrazoles: A review. J. Heterocycl. Chem., 2021, 58, 685-705.
[http://dx.doi.org/10.1002/jhet.4191]
[17]
Bora, P.P.; Bihani, M.; Bez, G. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. J. Mol. Catal., B Enzym., 2013, 92, 24-33.
[http://dx.doi.org/10.1016/j.molcatb.2013.03.015]
[18]
Tacconi, G.; Gatti, G.; Desimoni, G.; Messori, V. A new route to 4H-pyrano[2,3-c]pyrazoles. J. Prakt. Chem., 1980, 322, 831-834.
[http://dx.doi.org/10.1002/prac.19803220519]
[19]
Junek, H.; Aigner, H. Synthesen mit nitrilen, XXXV. Reaktionen von tetracyanäthylen mit heterocyclen. Chem. Ber., 1973, 106, 914-921.
[http://dx.doi.org/10.1002/cber.19731060323]
[20]
Otto, H-H. Darstellung einiger 4H-pyrano[2.3-c]pyrazolderivate. Arch. Pharm. Pharm. Med. Chem., 1974, 307, 444-447.
[http://dx.doi.org/10.1002/ardp.19743070609]
[21]
Abdou, S.; Fahmy, S.M.; Khader, M.M.; Elnagdi, M.H. Activated nitriles in heterocyclic synthesis: Synthesis of several new coumarin derivatives. Monatsh. Chem., 1982, 113, 985-991.
[http://dx.doi.org/10.1007/BF00799239]
[22]
Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H. One-step synthesis of substituted 6-amino-5-cyanospiro-4-(piperidine-4′)- 2H,4H-dihydropyrazolo[3,4-b]pyrans. Org. Lett., 2002, 4(3), 423-425.
[http://dx.doi.org/10.1021/ol0102747] [PMID: 11820895]
[23]
Rodinovskaya, L.A.; Gromova, A.V.; Shestopalov, A.M.; Nesterov, V.N. Synthesis of 6-amino-4-aryl-5-cyano-3-(3-cyanopyridin-2-ylthiomethyl)-2,4-dihydropyrano[2,3-c]pyrazoles and their hydrogenated analogs. molecular structure of 6-amino-5-cyano-3-(3-cyano-4,6-dimethylpyridin-2-ylthiomethyl)-4-(2-nitro-phenyl)-2,4-dihydropyrano[2,3-c]pyrazole. Russ. Chem. Bull., 2003, 52, 2207-2213.
[http://dx.doi.org/10.1023/B:RUCB.0000011880.05561.c1]
[24]
Sheibani, H.; Babaie, M. Three-component reaction to form 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanides. Synth. Commun., 2009, 40, 257-265.
[http://dx.doi.org/10.1080/00397910902964866]
[25]
Jin, T.; Wang, A.; Cheng, Z.; Zhang, J.; Li, T. A clean and simple synthesis of 6‐amino‐4‐aryl‐5‐cyano‐3‐methyl‐1‐phenyl‐1,4‐dihydropyrano[2,3‐c]pyrazole in water. Synth. Commun., 2005, 35, 137-143.
[http://dx.doi.org/10.1081/SCC-200046527]
[26]
Lehmann, F.; Holm, M.; Laufer, S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem., 2008, 10(3), 364-367.
[http://dx.doi.org/10.1021/cc800028m] [PMID: 18407695]
[27]
Shi, D.; Mou, J.; Zhuang, Q.; Niu, L.; Wu, N.; Wang, X. Three‐component one‐pot synthesis of 1,4‐dihydropyrano[2,3‐c]pyrazole derivatives in aqueous media. Synth. Commun., 2004, 34, 4557-4563.
[http://dx.doi.org/10.1081/SCC-200043224]
[28]
Farahi, M.; Karami, B.; Sedighimehr, I.; Tanuraghaj, H.M. An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid. Chin. Chem. Lett., 2014, 25, 1580-1582.
[http://dx.doi.org/10.1016/j.cclet.2014.07.012]
[29]
Kamble, R.D.; Dawane, B.S.; Yemul, O.S.; Kale, A.B.; Patil, S.D. Bleaching earth clay (ph 12.5): A green catalyst for rapid synthesis of pyranopyrazole derivatives via a tandem three-component reaction. Res. Chem. Intermed., 2013, 39, 3859-3866.
[http://dx.doi.org/10.1007/s11164-012-0887-0]
[30]
Dalal, K.S.; Tayade, Y.A.; Wagh, Y.B.; Trivedi, D.R.; Dalal, D.S.; Chaudhari, B.L. Bovine serum albumin catalyzed one-pot, three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives in aqueous ethanol. RSC Advances, 2016, 6, 14868-14879.
[http://dx.doi.org/10.1039/C5RA13014J]
[31]
Khazaei, A.; Zolfigol, M.A.; Karimitabar, F.; Nikokar, I.; Moosavi-Zare, A.R.N. 2-dibromo-6-chloro-3,4-dihydro-2h-benzo[e][1,2,4]-thiadiazine-7-sulfonamide 1,1-dioxide: An efficient and homogeneous catalyst for one-pot synthesis of 4h-pyran, pyranopyrazole and pyrazolo[1,2-b]phthalazine derivatives under aqueous media. RSC Advances, 2015, 5, 71402-71412.
[http://dx.doi.org/10.1039/C5RA10730J]
[32]
Poomathi, N.; Kamalraja, J.; Mayakrishnan, S.; Muralidharan, D.; Perumal, P. Indium trichloride catalysed domino reactions of isatin: A facile access to the synthesis of spiro(indoline-3,4′-pyrano[2,3-c]pyrazol)-2-one derivatives. Synlett, 2014, 25, 708-712.
[http://dx.doi.org/10.1055/s-0033-1340666]
[33]
Kiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4-carbonitriles and 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Res. Chem. Intermed., 2018, 44, 2761-2778.
[http://dx.doi.org/10.1007/s11164-018-3260-0]
[34]
Irani, S.; Taher Maghsoodlou, M.; Saeed Hadavi, M.; Hazeri, N.; Lashkari, M. Ag/TiO2 nano thin films catalyzed efficient synthesis of 6-amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c] pyrazole-5-carbonitriles at green conditions. Orient. J. Chem., 2017, 33, 814-820.
[http://dx.doi.org/10.13005/ojc/330229]
[35]
Kaminwar, N.S.; Tekale, S.U.; Chidrawar, A.B.; Kótai, L.; Pawar, R.P. Eco-friendly synthesis of 1, 4-dihydropyrano-[2,3-c] pyrazoles using copper nanoparticles grafted on carbon microsphere as a heterogeneous catalyst. Lett. Appl. NanoBioSci., 2020, 9, 1521-1528.
[http://dx.doi.org/10.33263/LIANBS94.15211528]
[36]
Litvinov, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M. New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro[(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-carbonitriles. J. Comb. Chem., 2009, 11(5), 914-919.
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[37]
Vasuki, G.; Kumaravel, K. Rapid four-component reactions in water: Synthesis of pyranopyrazoles. Tetrahedron Lett., 2008, 49, 5636-5638.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.055]
[38]
Siddekha, A.; Nizam, A.; Pasha, M.A. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 431-440.
[http://dx.doi.org/10.1016/j.saa.2011.06.033] [PMID: 21795106]
[39]
Albadi, J.; Mansournezhad, A. Poly(4-vinylpyridine) efficiently catalyzed one-pot four-component synthesis of pyrano. Pyrazoles., 2014, 3, 221-227.
[http://dx.doi.org/10.5267/j.ccl.2014.10.001]
[40]
Amine Khodja, I.; Fisli, A.; Lebhour, O.; Boulcina, R.; Boumoud, B.; Debache, A. Four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by triphenylphosphine in aqueous medium. LOC, 2016, 13, 85-91.
[http://dx.doi.org/10.2174/1570178613666151203213214]
[41]
Li, X-T.; Zhao, A-D.; Mo, L-P.; Zhang, Z-H. Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Advances, 2014, 4, 51580-51588.
[http://dx.doi.org/10.1039/C4RA08689A]
[42]
Kiyani, H.; Samimi, H.A.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett., 2013, 197-206.
[http://dx.doi.org/10.5267/j.ccl]
[43]
Reddy, G.M.; Raul Garcia, J. Synthesis of pyranopyrazoles under eco-friendly approach by using acid catalysis: Synthesis of pyranopyrazoles under eco-friendly approach by using acid catalysis. J. Heterocycl. Chem., 2017, 54, 89-94.
[http://dx.doi.org/10.1002/jhet.2544]
[44]
Bihani, M.; Bora, P.P.; Bez, G.; Askari, H. Amberlyst A21 catalyzed chromatography-free method for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles in ethanol. ACS Sustain. Chem. Eng., 2013, 1, 440-447.
[http://dx.doi.org/10.1021/sc300173z]
[45]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[46]
Mecadon, H.; Rohman, Md. R.; Rajbangshi, M.; Myrboh, B. γ-alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyra-zole-5-carbonitriles in aqueous medium. Tetrahedron Lett., 2011, 52, 2523-2525.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.036]
[47]
Waghmare, A.S.; Pandit, S.S. DABCO catalyzed rapid one-pot synthesis of 1,4-dihydropyrano [2,3-c] pyrazole derivatives in aqueous media. J. Saudi Chem. Soc., 2017, 21, 286-290.
[http://dx.doi.org/10.1016/j.jscs.2015.06.010]
[48]
Safari, E.; Hasaninejad, A. One‐pot, multi‐component synthesis of novel bis‐spiro pyranopyrazole derivatives in the presence of DABCO as an efficient and reusable solid base catalyst. ChemistrySelect, 2018, 3, 3529-3533.
[http://dx.doi.org/10.1002/slct.201800410]
[49]
Adibia, H.; Hosseinzadeh, L.; Farhadib, S.; Ahmadi, F. Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile derivatives using borax with potential anticancer effects. J. Rep. Pharm. Sci., 2013, 2, 116-124.
[50]
Moosavi-Zare, A.R.; Afshar-Hezarkhani, H.; Rezaei, M.M. Tandem four component condensation reaction of aryl aldehydes with ethyl acetoacetate, malononitrile, and hydrazine hydrate using boric acid in water as an efficient and green catalytic system. Polycycl. Aromat. Compd., 2020, 40, 150-158.
[http://dx.doi.org/10.1080/10406638.2017.1382541]
[51]
Fatahpour, M.; Noori Sadeh, F.; Hazeri, N.; Maghsoodlou, M.T.; Lashkari, M. Aspirin: An efficient catalyst for synthesis of bis (pyrazol-5-ols), dihydropyrano[2,3-c]pyrazoles and spiropyrano-pyrazoles in an environmentally benign manner. J. Iran Chem. Soc., 2017, 14, 1945-1956.
[http://dx.doi.org/10.1007/s13738-017-1133-x]
[52]
Reddy, M.B.M.; Jayashankara, V.P.; Pasha, M.A. Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth. Commun., 2010, 40, 2930-2934.
[http://dx.doi.org/10.1080/00397910903340686]
[53]
Seydimemet, M.; Ablajan, K.; Hamdulla, M.; Li, W.; Omar, A.; Obul, M. L -proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3- c ]pyrazoles under ultrasonic irradiation. Tetrahedron, 2016, 72, 7599-7605.
[http://dx.doi.org/10.1016/j.tet.2016.10.016]
[54]
Guo, S.; Wang, S.; Li, J.D. L ‐proline‐catalyzed one‐pot synthesis of pyrans and pyrano[2,3‐c]pyrazole derivatives by a grinding method under solvent‐free conditions. Synth. Commun., 2007, 37, 2111-2120.
[http://dx.doi.org/10.1080/00397910701396906]
[55]
Rupnar, B.D.; Pagore, V.P.; Tekale, S.U.; Shisodia, S.U.; Pawar, R.P. L-tyrosine catalysed mild and efficient synthesis of dihydropyrano[2,3c] pyrazole under microwave irradiation. Der Chem. Sin., 2017, 7, 229-234.
[56]
Sikandar, S.; Zahoor, A.F.; Ahmad, S.; Anjum, M.N.; Ahmad, M.N.; Shah, M.S.U. L-cysteine catalyzed environmentally benign one-pot multicomponent approach towards the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Curr. Org. Synth., 2020, 17(6), 457-463.
[http://dx.doi.org/10.2174/1570179417666200511092332] [PMID: 32392115]
[57]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. An efficent protocol for the one-pot four-component synthesis of 6-amino-1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitrile derivatives using starch solution as a reaction media. Indian J. Chem., 2018, 57B, 576-582.
[58]
Shrivas, P.; Pandey, R.; Zodape, S.; Wankhade, A.; Pratap, U. Green synthesis of pyranopyrazoles via biocatalytic one-pot knoevenagel condensation-Michael-type addition-heterocyclization cascade in non-aqueous media. Res. Chem. Intermed., 2020, 46, 2805-2816.
[http://dx.doi.org/10.1007/s11164-020-04122-x]
[59]
Shinde, P.V.; Gujar, J.B.; Shingate, B.B.; Shingare, M.S. Silica in water: A potentially valuable reaction medium for the synthesis of pyrano[2,3-c]pyrazoles. Bull. Korean Chem. Soc., 2012, 33, 1345-1348.
[http://dx.doi.org/10.5012/bkcs.2012.33.4.1345]
[60]
Wu, M.; Feng, Q.; Wan, D.; Ma, J. CTACl as catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun., 2013, 43, 1721-1726.
[http://dx.doi.org/10.1080/00397911.2012.666315]
[61]
Dehbalaei, M.G.; Foroughifar, N.; Pasdar, H.; Khajeh-Amiri, A.; Foroughifar, N.; Alikarami, M. Choline chloride based thiourea catalyzed highly efficient, eco-friendly synthesis and anti-bacterial evaluation of some new 6-amino-4-aryl-2,4-dihydro-3-phenyl pyrano [2,3-c] pyrazole-5-carbonitrile derivatives. Res. Chem. Intermed., 2017, 43, 3035-3051.
[http://dx.doi.org/10.1007/s11164-016-2810-6]
[62]
Abd El Aleem, M.; El-Remaily, A. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron, 2014, 70, 2971-2975.
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[63]
Hosseini, M.N.; Gholizadeh, M. Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilized on aminated magnetic nanoparticles (Fe3O4@SiO2-EP-NH-HPA): a novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2020, 46, 3037-3066.
[http://dx.doi.org/10.1007/s11164-020-04133-8]
[64]
Faroughi Niya, H.; Hazeri, N.; Maghsoodlou, M.T. Synthesis and characterization of Fe3O4 @THAM‐SO3 H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3‐ c ]pyrazole derivatives. Appl. Organomet. Chem., 2020, 34(4), e5472.
[65]
Beerappa, M.; Shivashankar, K. Four component synthesis of highly functionalized pyrano[2,3- c ]pyrazoles from benzyl halides. Synth. Commun., 2018, 48, 146-154.
[http://dx.doi.org/10.1080/00397911.2017.1386788]
[66]
Hajizadeh, Z.; Maleki, A. Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol. Catal., 2018, 460, 87-93.
[http://dx.doi.org/10.1016/j.mcat.2018.09.018]
[67]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. An Efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst. RSC Advances, 2018, 8, 16336-16343.
[http://dx.doi.org/10.1039/C8RA01994K]
[68]
Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S.N.; Lavanya, P.; Jonnalagadda, S.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2. Arab. J. Chem., 2019, 12, 671-679.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.016]
[69]
Gangu, K.K.; Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B. Novel iron doped calcium oxalates as promising heterogeneous catalysts for one-pot multi-component synthesis of pyranopyrazoles. RSC Advances, 2017, 7, 423-432.
[http://dx.doi.org/10.1039/C6RA25372E]
[70]
Sachdeva, H.; Saroj, R. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water. ScientificWorldJournal, 2013, 2013, 680671.
[http://dx.doi.org/10.1155/2013/680671] [PMID: 24282386]
[71]
Chhattise, P.; Saleh, S.; Pandit, V.; Arbuj, S.; Chabukswar, V. ZnO nanostructures: A heterogeneous catalyst for the synthesis of benzoxanthene and pyranopyrazole scaffolds via a multi-component reaction strategy. Mater. Adv., 2020, 1, 2339-2345.
[http://dx.doi.org/10.1039/D0MA00403K]
[72]
Borhade, A.V.; Uphade, B.K. ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4h-pyrano[2,3-c]pyrazoles. J. Iran Chem. Soc., 2015, 12, 1107-1113.
[http://dx.doi.org/10.1007/s13738-014-0571-y]
[73]
Babaei, E.; Mirjalili, B.B.F. An expedient and eco-friendly approach for multicomponent synthesis of dihydropyrano[2,3- c ]pyrazoles using nano-Al2O3 /BF3 /Fe3O4 as reusable catalyst. Inorg.Nano-Met. Chem., 2020, 50, 16-21.
[http://dx.doi.org/10.1080/24701556.2019.1661458]
[74]
Dehghani Tafti, A.; Mirjalili, B.B.F.; Bamoniri, A.; Salehi, N. Rapid four-component synthesis of dihydropyrano[2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly compatible natural based catalyst. BMC Chem., 2021, 15(1), 6.
[http://dx.doi.org/10.1186/s13065-021-00734-5] [PMID: 33494797]
[75]
Mehravar, M.; Mirjalili, B.B.F.; Babaei, E.; Bamoniri, A. Preparation and application of nano-ALPO4/Ti (IV) as a new and recyclable catalyst for the four-component synthesis of dihydropyrano[2,3- c ]pyrazoles. Polycycl. Aromat. Compd., 2020, 1-10.
[http://dx.doi.org/10.1080/10406638.2020.1856149]
[76]
Chavan, H.V.; Babar, S.B.; Hoval, R.U.; Bandgar, B.P. Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull. Korean Chem. Soc., 2011, 32, 3963-3966.
[http://dx.doi.org/10.5012/bkcs.2011.32.11.3963]
[77]
Zolfigol, M.A.; Tavasoli, M.; Moosavi-Zare, A.R.; Moosavi, P.; Kruger, H.G.; Shiri, M.; Khakyzadeh, V. Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Advances, 2013, 3, 25681.
[http://dx.doi.org/10.1039/c3ra45289a]
[78]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci., 2012, 124, 1013-1017.
[http://dx.doi.org/10.1007/s12039-012-0310-9]
[79]
Khurana, J.M.; Nand, B.; Kumar, S. Rapid synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room-temperature ionic liquids. Synth. Commun., 2011, 41, 405-410.
[http://dx.doi.org/10.1080/00397910903576669]
[80]
Khurana, J.M.; Chaudhary, A. Efficient and green synthesis of 4 h -pyrans and 4 h -pyrano[2,3-c]pyrazoles catalyzed by task-specific ionic liquid [bmim]oh under solvent-free conditions. Green Chem. Lett. Rev., 2012, 5, 633-638.
[http://dx.doi.org/10.1080/17518253.2012.691183]
[81]
Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett., 2010, 51, 3312-3316.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.087]
[82]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Mousavi-Tashar, A. Synthesis of pyranopyrazole derivatives by in situ generation of trityl carbocation under mild and neutral media. Res. Chem. Intermed., 2016, 42, 7305-7312.
[http://dx.doi.org/10.1007/s11164-016-2537-4]
[83]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Salehi-Moratab, R.; Noroozizadeh, E. Catalytic application of 1-(carboxymethyl)-pyridinium iodide on the synthesis of pyranopyrazole derivatives. J. Mol. Catal. Chem., 2016, 415, 144-150.
[http://dx.doi.org/10.1016/j.molcata.2016.02.003]
[84]
Babaee, S.; Zarei, M.; Sepehrmansourie, H.; Zolfigol, M.A.; Rostamnia, S. Synthesis of metal-organic frameworks MIL-101(Cr)-NH2 containing phosphorous acid functional groups: Application for the synthesis of n-amino-2-pyridone and pyrano [2,3-c]pyrazole derivatives via a cooperative vinylogous anomeric-based oxidation. ACS Omega, 2020, 5(12), 6240-6249.
[http://dx.doi.org/10.1021/acsomega.9b02133] [PMID: 32258858]
[85]
Davarpanah, J.; Khoram, R. Synthesis of pyranopyrazole compounds using heterogeneous base catalyst based on 1,3,5-triazine-2,4,6-triamine modified nano rice husk silica. J. Nanoanalysis, 2017, 4(1), 20-30.
[86]
Narayana, M.S.; Maddila, S. van Zyl; W.E.; Jonnalagadda, S.B. Ru-Hydroxyapatite: An efficient and reusable catalyst for the multicomponent synthesis of pyranopyrazoles under facile green conditions. COS, 2016, 13, 893-900.
[http://dx.doi.org/10.2174/1570179413666151218202439]
[87]
Qvortrup, K.; Komnatnyy, V.V.; Nielsen, T.E. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles. Org. Lett., 2014, 16(18), 4782-4785.
[http://dx.doi.org/10.1021/ol502219s] [PMID: 25166929]
[88]
Kathrotiya, H.; Patel, R.; Patel, M. Microwave-assisted multi-component synthesis of 3′-indolyl substituted pyrano[2,3-c]pyrazoles and their antimicrobial activity. J. Serb. Chem. Soc., 2012, 77, 983-991.
[http://dx.doi.org/10.2298/JSC110805199K]
[89]
Bihani, M.; Bora, P.P.; Bez, G. A practical catalyst-free synthesis of 6-amino-4 alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyra-zole-carbonitrile in aqueous medium. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/920719]
[90]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res., 2015, 6(6), 975-985.
[http://dx.doi.org/10.1016/j.jare.2014.11.011] [PMID: 26644936]
[91]
Pati Tripathi, B.; Mishra, A.; Rai, P.; Kumar Pandey, Y.; Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. A green and clean pathway: One pot, multicomponent, and visible light assisted synthesis of pyrano[2,3-c]pyrazoles under catalyst-free and solvent-free conditions. New J. Chem., 2017, 41, 11148-11154.
[http://dx.doi.org/10.1039/C7NJ01688C]
[92]
Sharma, A.; Chowdhury, R.; Dash, S.; Pallavi, B.; Shukla, P. Fast microwave assisted synthesis of pyranopyrazole derivatives as new anticancer agents. CMIC, 2015, 3, 78-84.
[http://dx.doi.org/10.2174/2213335602666150116233238]
[93]
Ablajan, K.; Wang, L-J.; Maimaiti, Z.; Lu, Y-T. CeCl3-promoted one-pot synthesis of multisubstituted bispyrano[2,3-c]pyrazole derivatives. Monatsh. Chem., 2014, 145, 491-496.
[http://dx.doi.org/10.1007/s00706-013-1104-6]
[94]
Singh, P.; Kumar, M.; Quraishi, M.A.; Haque, J.; Singh, G. Bispyranopyrazoles as green corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical approach. ACS Omega, 2018, 3(9), 11151-11162.
[http://dx.doi.org/10.1021/acsomega.8b01300] [PMID: 31459224]
[95]
Farokhian, P.; Mamaghani, M.; Mahmoodi, N.O.; Tabatabaeian, K. A green and practical method for the synthesis of novel pyrano[2,3-c]pyrazoles and bis-pyrano[2,3-c]pyrazoles using sulfonic acid-functionalized ionic liquid. J. Iran Chem. Soc., 2018, 15, 11-16.
[http://dx.doi.org/10.1007/s13738-017-1203-0]
[96]
Jayabal, K.; Paramasivan, T.P. ChemInform abstract: An expedient four-component domino protocol for the regioselective synthesis of highly functionalized pyranopyrazoles and chromenopyrazoles via nitroketene-N,S-acetal chemistry under solvent-free condition. ChemInform, 2014, 55(12), 2010-2014.
[http://dx.doi.org/10.1002/chin.201435055]
[97]
Kanchithalaivan, S.; Sivakumar, S.; Ranjith Kumar, R.; Elumalai, P.; Ahmed, Q.N.; Padala, A.K. Four-component domino strategy for the combinatorial synthesis of novel 1,4-dihydropyrano[2,3-c]pyrazol-6-amines. ACS Comb. Sci., 2013, 15(12), 631-638.
[http://dx.doi.org/10.1021/co4000997] [PMID: 24147861]
[98]
Konakanchi, R.; Gondru, R.; Nishtala, V.B.; Kotha, L.R. NaF-catalyzed efficient one-pot synthesis of dihydropyrano[2,3- c ]pyrazoles under ultrasonic irradiation via MCR approach. Synth. Commun., 2018, 48, 1994-2001.
[http://dx.doi.org/10.1080/00397911.2018.1479758]
[99]
Gujar, J.B.; Chaudhari, M.A.; Kawade, D.S.; Shingare, M.S. Molecular sieves: An efficient and reusable catalyst for multi-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Tetrahedron Lett., 2014, 55, 6030-6033.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.127]
[100]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles. Res. Chem. Intermed., 2017, 43, 4313-4325.
[http://dx.doi.org/10.1007/s11164-017-2878-7]
[101]
Bhosale, V.N.; Khansole, G.S.; Angulwar, J.A.; Choudhare, S.S.; Karad, A.R.; Wadwale, N.B. One pot, four-component for the synthesis of pyrano pyrazole derivatives using tbahs as green catalyst and their biological evaluation. Asian J. Res. Chem, 2017, 10, 745.
[http://dx.doi.org/10.5958/0974-4150.2017.00126.2]
[102]
Koohshari, M.; Dabiri, M.; Salehi, P. Catalyst-free domino reaction in water/ethanol: an efficient, regio- and chemoselective one-pot multi-component synthesis of pyranopyrazole derivatives. RSC Advances, 2014, 4, 10669.
[http://dx.doi.org/10.1039/c3ra47639a]
[103]
Gein, V.L.; Zamaraeva, T.M.; Slepukhin, P.A. Diethyl oxalacetate sodium salt as a reagent to obtain functionalized spiro[indoline-3,4′-pyrano[2,3- c ]pyrazoles Tetrahedron Lett., 2017, 58, 134-136.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.117]
[104]
Alizadeh, A.; Bayat, F. Highly convergent one-pot four-component regioselective synthesis of spiro-pyranopyrazoles and oxa-aza-[3.3.3]propellanes. HCA, 2014, 97, 694-700.
[http://dx.doi.org/10.1002/hlca.201300260]
[105]
Wang, C.; Jiang, Y-H.; Yan, C-G. Convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4′-pyrano[2,3-c]pyrazoles] via four-component reaction. Chin. Chem. Lett., 2015, 26, 889-893.
[http://dx.doi.org/10.1016/j.cclet.2015.05.018]
[106]
Rezvanian, A.; Zadsirjan, V.; Saedi, P.; Heravi, M.M. Iodine‐catalyzed one‐pot four‐component synthesis of spiro[indoline‐3,4′‐pyrano‐pyrazole] derivatives. J. Heterocycl. Chem., 2018, 55, 2772-2780.
[http://dx.doi.org/10.1002/jhet.3342]
[107]
Safaei-Ghomi, J.; Ziarati, A.; Tamimi, M. A novel method for the one-pot five-component synthesis of highly functionalized pyranopyrazoles catalyzed by CuI nanoparticles. Acta Chim. Slov., 2013, 60(2), 403-410.
[PMID: 23878946]
[108]
Ramesh, V.; Shanmugam, S.; Devi, N.S. An efficient five-component synthesis of thioether containing dihydropyrano[2,3-c]pyrazoles: A green domino strategy. New J. Chem., 2016, 40, 9993-10001.
[http://dx.doi.org/10.1039/C6NJ02313D]
[109]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; Kumari, A.K.; Zyryanov, G.V.; Yuvaraja, G. An efficient and green approach: one pot, multi component, reusable catalyzed synthesis of pyranopyrazoles and investigation of biological assays. J. Saudi Chem. Soc., 2019, 23, 263-273.
[http://dx.doi.org/10.1016/j.jscs.2018.07.003]
[110]
Lu, Z.; Xiao, J.; Wang, D.; Li, Y. An efficient one-pot five-component tandem sequential approach for the synthesis of pyranopyrazole derivatives via suzuki coupling and multicomponent reaction. Asian J. Org. Chem., 2015, 4, 487-492.
[http://dx.doi.org/10.1002/ajoc.201500039]
[111]
Gogoi, S.; Zhao, C-G. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett., 2009, 50(19), 2252-2255.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.210] [PMID: 19915654]
[112]
Zheng, Y.; Cui, L.; Wang, Y.; Zhou, Z. Stereocontrolled construction of tetrahydropyrano[2,3-c]pyrazole scaffold via an organocatalyzed formal [3 + 3] annulation. J. Org. Chem., 2016, 81(10), 4340-4346.
[http://dx.doi.org/10.1021/acs.joc.6b00196] [PMID: 27100356]
[113]
Xie, J.; Sha, F.; Wu, X-Y. Asymmetric synthesis of pyrano[2,3-c]pyrazoles via a cascade reaction between Morita-Baylis-Hillman acetates of nitroalkenes and pyrazolones. Tetrahedron, 2016, 72, 4047-4054.
[http://dx.doi.org/10.1016/j.tet.2016.05.033]
[114]
Jiang, F.; Feng, X.; Wang, R.; Gao, X.; Jia, H.; Xiao, Y.; Zhang, C.; Guo, H. Asymmetric [3 + 3] annulation of copper-allenylidenes with pyrazolones: Synthesis of chiral 1,4-dihydropyrano[2,3- c]pyrazoles. Org. Lett., 2018, 20(17), 5278-5281.
[http://dx.doi.org/10.1021/acs.orglett.8b02214] [PMID: 30141947]
[115]
Rana, N.K.; Jha, R.K.; Joshi, H.; Singh, V.K. Enantioselective access to tetrahydropyrano[2,3-c]pyrazoles via an organocatalytic domino Michael-hydro-alkoxylation reaction. Tetrahedron Lett., 2017, 58, 2135-2139.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.059]
[116]
Foloppe, N.; Fisher, L.M.; Howes, R.; Potter, A.; Robertson, A.G.S.; Surgenor, A.E. Identification of chemically diverse CHK1 inhibitors by receptor-based virtual screening. Bioorg. Med. Chem., 2006, 14(14), 4792-4802.
[http://dx.doi.org/10.1016/j.bmc.2006.03.021] [PMID: 16574416]
[117]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmy, A.F.; El-Sayed, A.A. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem., 2010, 2, 400-417.
[118]
Erugu, Y.; Sangepu, B.; Varre, K.; Pamanji, R.; Yashwanth, B.; Rao, J.V.; Srinivasarao, V.; Tigulla, P.; Jetti, V.R. Design an efficient ecofriendly synthesis of spirooxidole derivatives and their anticancer activity supported by molecular docking studies. World J. Pharm. Pharm. Sci., 2014, 3, 1895-1914.
[119]
Shukla, P.; Sharma, A.; Fageria, L.; Chowdhury, R. Novel spiro/non-spiro pyranopyrazoles: eco-friendly synthesis, in-vitro anticancer activity, dna binding, and in-silico docking studies. CBC, 2019, 15, 257-267.
[http://dx.doi.org/10.2174/1573407213666170828165512]
[120]
Hafez, H.N.; El-Gazzar, A-R.B.A. Synthesis of pyranopyrazolo N-glycoside and pyrazolopyranopyrimidine C-glycoside derivatives as promising antitumor and antimicrobial agents. Acta Pharm., 2015, 65(3), 215-233.
[http://dx.doi.org/10.1515/acph-2015-0022] [PMID: 26431102]
[121]
Pantsar, T.; Singha, P.; Nevalainen, T.J.; Koshevoy, I.; Leppänen, J.; Poso, A.; Niskanen, J.M.A.; Pasonen-Seppänen, S.; Savinainen, J.R.; Laitinen, T.; Laitinen, J.T. Design, synthesis, and biological evaluation of 2,4-dihydropyrano[2,3-c]pyrazole derivatives as autotaxin inhibitors. Eur. J. Pharm. Sci., 2017, 107, 97-111.
[http://dx.doi.org/10.1016/j.ejps.2017.07.002] [PMID: 28687529]
[122]
Marani, M.; Paone, A.; Fiascarelli, A.; Macone, A.; Gargano, M.; Rinaldo, S.; Giardina, G.; Pontecorvi, V.; Koes, D.; McDermott, L.; Yang, T.; Paiardini, A.; Contestabile, R.; Cutruzzolà, F. A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget, 2016, 7(4), 4570-4583.
[http://dx.doi.org/10.18632/oncotarget.6726] [PMID: 26717037]
[123]
Saleh, N.M.; El-Gazzar, M.G.; Aly, H.M.; Othman, R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem., 2020, 7, 917.
[http://dx.doi.org/10.3389/fchem.2019.00917] [PMID: 32039146]
[124]
Zheng, X.; Jiang, Z.; Li, X.; Zhang, C.; Li, Z.; Wu, Y.; Wang, X.; Zhang, C.; Luo, H.B.; Xu, J.; Wu, D. Screening, synthesis, crystal structure, and molecular basis of 6-amino-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles as novel AKR1C3 inhibitors. Bioorg. Med. Chem., 2018, 26(22), 5934-5943.
[http://dx.doi.org/10.1016/j.bmc.2018.10.044] [PMID: 30429100]
[125]
Kouskoumvekaki, I.; Petersen, R.K.; Fratev, F.; Taboureau, O.; Nielsen, T.E.; Oprea, T.I.; Sonne, S.B.; Flindt, E.N.; Jónsdóttir, S.Ó.; Kristiansen, K. Discovery of a novel selective PPARγ ligand with partial agonist binding properties by integrated in silico/in vitro work flow. J. Chem. Inf. Model., 2013, 53(4), 923-937.
[http://dx.doi.org/10.1021/ci3006148] [PMID: 23432662]
[126]
Witschel, M.C.; Rottmann, M.; Schwab, A.; Leartsakulpanich, U.; Chitnumsub, P.; Seet, M.; Tonazzi, S.; Schwertz, G.; Stelzer, F.; Mietzner, T.; McNamara, C.; Thater, F.; Freymond, C.; Jaruwat, A.; Pinthong, C.; Riangrungroj, P.; Oufir, M.; Hamburger, M.; Mäser, P.; Sanz-Alonso, L.M.; Charman, S.; Wittlin, S.; Yuthavong, Y.; Chaiyen, P.; Diederich, F. Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): Cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J. Med. Chem., 2015, 58(7), 3117-3130.
[http://dx.doi.org/10.1021/jm501987h] [PMID: 25785478]
[127]
García-Cañaveras, J.C.; Lancho, O.; Ducker, G.S.; Ghergurovich, J.M.; Xu, X.; da Silva-Diz, V.; Minuzzo, S.; Indraccolo, S.; Kim, H.; Herranz, D.; Rabinowitz, J.D. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia, 2021, 35(2), 377-388.
[http://dx.doi.org/10.1038/s41375-020-0845-6] [PMID: 32382081]
[128]
Kuo, S.C.; Huang, L.J.; Nakamura, H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and anti-inflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J. Med. Chem., 1984, 27(4), 539-544.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[129]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Pyrazolopyrano-pyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[130]
Kumar, A.S.; Kudva, J.; Kumar, S.M.; Vishwanatha, U.; Kumar, V.; Naral, D. Synthesis, characterization, crystal structure, Hirshfeld interaction and bio-evaluation studies of 4-amino quinazoline sulfonamide derivatives. J. Mol. Struct., 2018, 1167, 142-153..
[http://dx.doi.org/10.1016/j.molstruc.2018.04.055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy