Review Article

MicroRNAs和长链非编码RNAs在人类乳腺癌血管生成调控中的作用:分子医学的视角

卷 22, 期 10, 2022

发表于: 11 January, 2022

页: [882 - 893] 页: 12

弟呕挨: 10.2174/1566524022666211217114527

价格: $65

摘要

MicroRNAs (miRNAs)和长链非编码RNAs (long non-coding RNAs, lncRNAs)能够在转录后调控基因表达。考虑到最近利用非编码RNAs (non-coding, ncRNAs)作为癌症治疗的趋势,miRNAs和lncRNAs作为生物标志物和新的治疗药物对抗血管生成是一个重要的科学方面。据估计,70%的基因组被转录,其中只有2%编码已知的蛋白质编码基因。长链非编码RNAs (Long non - coding RNAs, lncRNAs)是一种长度为> 200个核苷酸且不翻译成蛋白质,具有极其重要的意义,它在时间、空间和细胞环境依赖性方面对基因的表达起着至关重要的作用。血管生成是发育过程中器官形态发生和生长的重要过程,与成人损伤组织的修复有关。它由促血管生成和抗血管生成的平衡因素协调;然而,一旦受到影响,它会引发多种疾病,包括乳腺癌。这里涉及的信号通路是一个严格控制的系统,它可以调节细胞分化所需的基因表达的适当时间,这对组织的正常发育至关重要。最近,科学报告表明,ncRNAs,如miRNAs和lncRNAs,在乳腺癌相关血管生成中发挥关键作用。本文着重阐述了各种miRNAs和lncRNAs在乳腺癌血管生成调控中的具体作用,并从分子医学的角度重点关注这些ncRNAs调控的下游靶点和信号通路。

关键词: 血管生成,lncRNAs, MicroRNA,形态发生,分子医学,内皮细胞。

[1]
Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines 2017; 5(2): 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[2]
Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18(1): 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[3]
Phillips CM, Lima EABF, Woodall RT, Brock A, Yankeelov TE. A hybrid model of tumor growth and angiogenesis: in silico experiments. PLoS One 2020; 15(4): e0231137.
[http://dx.doi.org/10.1371/journal.pone.0231137] [PMID: 32275674]
[4]
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77(9): 1745-70.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[5]
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86(3): 353-64.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[6]
Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol 2009; 19(5): 329-37.
[http://dx.doi.org/10.1016/j.semcancer.2009.05.003] [PMID: 19482086]
[7]
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3(6): 401-10.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[8]
Xu J, Wu K, Jia Q, Ding X. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2020; 21(9): 673-89.
[http://dx.doi.org/10.1631/jzus.B1900709] [PMID: 32893525]
[9]
Singh R, Mo YY. Role of microRNAs in breast cancer. Cancer Biol Ther 2013; 14(3): 201-12.
[http://dx.doi.org/10.4161/cbt.23296] [PMID: 23291983]
[10]
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220(2): 126-39.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[11]
Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 2016; 67(10): 1214-26.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[12]
Wang W, Zhang E, Lin C. MicroRNAs in tumor angiogenesis. Life Sci 2015; 136: 28-35.
[http://dx.doi.org/10.1016/j.lfs.2015.06.025] [PMID: 26144623]
[13]
Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22(10): 4568-87.
[http://dx.doi.org/10.1111/jcmm.13700] [PMID: 29956461]
[14]
Xie T, Huang M, Wang Y, Wang L, Chen C, Chu X. MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer. Cell Physiol Biochem 2016; 40(1-2): 62-76.
[http://dx.doi.org/10.1159/000452525] [PMID: 27842308]
[15]
Wan Y, Liu X, Zheng D, et al. Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing. BMC Genomics 2019; 20(1): 559.
[http://dx.doi.org/10.1186/s12864-019-5903-y] [PMID: 31286854]
[16]
Zhang T, Hu H, Yan G, et al. Long Non-Coding RNA and breast cancer. Technol Cancer Res Treat 2019; 18: 1533033819843889.
[http://dx.doi.org/10.1177/1533033819843889] [PMID: 30983509]
[17]
Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics 2018; 8(13): 3654-75.
[http://dx.doi.org/10.7150/thno.26024] [PMID: 30026873]
[18]
Zhao J, Li L, Han ZY, Wang ZX, Qin LX. Long noncoding RNAs, emerging and versatile regulators of tumor-induced angiogenesis. Am J Cancer Res 2019; 9(7): 1367-81.
[PMID: 31392075]
[19]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020; 39(1): 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[20]
Ali AM, Ansari JAK, El-Aziz NMA, et al. Triple negative breast cancer: A tale of two decades. Anticancer Agents Med Chem 2017; 17(4): 491-9.
[http://dx.doi.org/10.2174/1871520616666160725112335] [PMID: 27456662]
[21]
Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA. Breast cancer early detection: A phased approach to implementation. Cancer 2020; 126(10): 2379-93.
[http://dx.doi.org/10.1002/cncr.32887] [PMID: 32348566]
[22]
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9(28): 20179-212.
[http://dx.doi.org/10.18632/oncotarget.24591] [PMID: 29732012]
[23]
Rodríguez Bautista R, Ortega Gómez A, Hidalgo Miranda A, et al. Long non-coding RNAs: Implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin Epigenetics 2018; 10: 88.
[http://dx.doi.org/10.1186/s13148-018-0514-z] [PMID: 29983835]
[24]
Ray SK, Mukherjee S. Consequences of extracellular matrix remodeling in headway and metastasis of cancer along with novel immunotherapies: a great promise for future endeavor. Anticancer Agents Med Chem 2021; 21.
[http://dx.doi.org/10.2174/1871520621666210712090017] [PMID: 34254930]
[25]
Ahmadi M, Rezaie J. Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. J Transl Med 2020; 18(1): 249.
[http://dx.doi.org/10.1186/s12967-020-02426-5] [PMID: 32571337]
[26]
Lv X, Li J, Zhang C, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis 2016; 4(1): 19-24.
[http://dx.doi.org/10.1016/j.gendis.2016.11.003] [PMID: 30258904]
[27]
Folkman J, Browder T, Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 2001; 86(1): 23-33.
[PMID: 11487011]
[28]
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 2019; 9(1): 84.
[http://dx.doi.org/10.3390/jcm9010084] [PMID: 31905724]
[29]
Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer 2020; 11(15): 4474-94.
[http://dx.doi.org/10.7150/jca.44313] [PMID: 32489466]
[30]
Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 2003; 9(6): 1144-55.
[http://dx.doi.org/10.3748/wjg.v9.i6.1144] [PMID: 12800214]
[31]
Campbell NE, Kellenberger L, Greenaway J, Moorehead RA, Linnerth-Petrik NM, Petrik J. Extracellular matrix proteins and tumor angiogenesis. J Oncol 2010; 2010: 586905.
[http://dx.doi.org/10.1155/2010/586905] [PMID: 20671917]
[32]
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: new insights into the regulation of breast cancer. Curr Mol Med 2021; 21(3): 194-210.
[http://dx.doi.org/10.2174/1566524020666200712182137] [PMID: 32652908]
[33]
Katayama Y, Uchino J, Chihara Y, et al. Tumor neovascularization and developments in therapeutics. Cancers (Basel) 2019; 11(3): 316.
[http://dx.doi.org/10.3390/cancers11030316] [PMID: 30845711]
[34]
López-Camarillo C, Ruiz-García E, Starling N, Marchat LA. Editorial: Neovascularization, angiogenesis and vasculogenic mimicry in cancer. Front Oncol 2020; 10: 1140.
[http://dx.doi.org/10.3389/fonc.2020.01140] [PMID: 32766149]
[35]
Heusschen R, van Gink M, Griffioen AW, Thijssen VL. MicroRNAs in the tumor endothelium: Novel controls on the angioregulatory switchboard. Biochim Biophys Acta 2010; 1805(1): 87-96.
[http://dx.doi.org/10.1016/j.bbcan.2009.09.005] [PMID: 19782719]
[36]
Cao Y. Future options of anti-angiogenic cancer therapy. Chin J Cancer 2016; 35: 21.
[http://dx.doi.org/10.1186/s40880-016-0084-4] [PMID: 26879126]
[37]
Coelho AL, Gomes MP, Catarino RJ, et al. Angiogenesis in NSCLC: Is vessel co-option the trunk that sustains the branches? Oncotarget 2017; 8(24): 39795-804.
[http://dx.doi.org/10.18632/oncotarget.7794] [PMID: 26950275]
[38]
Wahl ML, Moser TL, Pizzo SV. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res 2004; 59: 73-104.
[http://dx.doi.org/10.1210/rp.59.1.73] [PMID: 14749498]
[39]
Lee SH, Jeung IC, Park TW, et al. Extension of the in vivo half-life of endostatin and its improved anti-tumor activities upon fusion to a humanized antibody against tumor-associated glycoprotein 72 in a mouse model of human colorectal carcinoma. Oncotarget 2015; 6(9): 7182-94.
[http://dx.doi.org/10.18632/oncotarget.3121] [PMID: 25762629]
[40]
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9: 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[41]
Kuskunović-Vlahovljak S, Čamdžić N, Radović S, Dorić M, Babić M, Lazović Salčin E. Is the expression of matrix metalloproteinases (MMP-2, -9) and tissue inhibitors of metalloproteinases (TIMP-1, -2, and -3) associated with angiogenesis and clinicopathological features for breast cancer? J Health Sci 2017; 7(3): 158-68.
[http://dx.doi.org/10.17532/jhsci.2017.460]
[42]
Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 2018; 25(1): 21.
[http://dx.doi.org/10.1186/s12929-018-0423-7] [PMID: 29519245]
[43]
Zhao Y, Yu X, Li J. Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020; 10(11): 2018-36.
[http://dx.doi.org/10.1016/j.apsb.2020.09.014] [PMID: 33304777]
[44]
Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. (Review) Int J Mol Med 2013; 32(4): 763-7.
[http://dx.doi.org/10.3892/ijmm.2013.1444] [PMID: 23863927]
[45]
Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013; 123(8): 3190-200.
[http://dx.doi.org/10.1172/JCI70212] [PMID: 23908119]
[46]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[47]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[48]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[49]
Dai X, Kaushik AC, Zhang J. The emerging role of major regulatory RNAs in cancer control. Front Oncol 2019; 9: 920.
[http://dx.doi.org/10.3389/fonc.2019.00920] [PMID: 31608229]
[50]
Saman H, Raza SS, Uddin S, Rasul K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers (Basel) 2020; 12(5): 1172.
[http://dx.doi.org/10.3390/cancers12051172] [PMID: 32384792]
[51]
Rahat MA. Targeting angiogenesis with peptide vaccines. Front Immunol 2019; 10: 1924.
[http://dx.doi.org/10.3389/fimmu.2019.01924] [PMID: 31440262]
[52]
Kim BR, Kwon YW, Park GT, et al. Identification of a novel angiogenic peptide from periostin. PLoS One 2017; 12(11): e0187464.
[http://dx.doi.org/10.1371/journal.pone.0187464] [PMID: 29095886]
[53]
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8(6): 591-605.
[http://dx.doi.org/10.1016/j.jare.2017.06.006] [PMID: 28808589]
[54]
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221-33.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[55]
Nyante SJ, Wang T, Tan X, Ozdowski EF, Lawton TJ. Quantitative expression of MMPs 2, 9, 14, and collagen IV in LCIS and paired normal breast tissue. Sci Rep 2019; 9(1): 13432.
[http://dx.doi.org/10.1038/s41598-019-48602-6] [PMID: 31530842]
[56]
Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21(1): 149.
[http://dx.doi.org/10.1186/s12885-021-07860-2] [PMID: 33568081]
[57]
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 2015; 44-46: 94-112.
[http://dx.doi.org/10.1016/j.matbio.2015.04.004] [PMID: 25912949]
[58]
Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001; 93(4): 309-14.
[http://dx.doi.org/10.1093/jnci/93.4.309] [PMID: 11181778]
[59]
Fiorino S, Di Saverio S, Leandri P, et al. The role of matricellular proteins and tissue stiffness in breast cancer: a systematic review. Future Oncol 2018; 14(16): 1601-27.
[http://dx.doi.org/10.2217/fon-2017-0510] [PMID: 29939077]
[60]
Felix AS, Lenz P, Pfeiffer RM, et al. Relationships between mammographic density, tissue microvessel density, and breast biopsy diagnosis. Breast Cancer Res 2016; 18(1): 88.
[http://dx.doi.org/10.1186/s13058-016-0746-9] [PMID: 27552842]
[61]
Muhammad Sakri MS, Abdul Rahman WFW, Tengku Din TADA, Idris FM, Jaafar H. Microvessel density and vascular endothelial growth factor receptors in breast carcinoma under the influence of rapamycin and platelet factor 4. Indian J Pathol Microbiol 2020; 63(2): 205-9.
[http://dx.doi.org/10.4103/IJPM.IJPM_496_19] [PMID: 32317516]
[62]
Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol 2005; 23(8): 1782-90.
[http://dx.doi.org/10.1200/JCO.2005.12.017] [PMID: 15755986]
[63]
Albalawi IA, Mir R, Abu Duhier FM. Genetic effects of vascular endothelial growth factor a (VEGF-A) and its association with disease progression in breast cancer population of saudi arabia. Asian Pac J Cancer Prev 2020; 21(1): 139-45.
[http://dx.doi.org/10.31557/APJCP.2020.21.1.139] [PMID: 31983176]
[64]
Goussia A, Simou N, Zagouri F, et al. Associations of angiogenesis-related proteins with specific prognostic factors, breast cancer subtypes and survival outcome in early-stage breast cancer patients. A hellenic cooperative oncology group (HeCOG) trial. PLoS One 2018; 13(7): e0200302.
[http://dx.doi.org/10.1371/journal.pone.0200302] [PMID: 30063723]
[65]
Qu Z, Van Ginkel S, Roy AM, et al. Vascular endothelial growth factor reduces tamoxifen efficacy and promotes metastatic colonization and desmoplasia in breast tumors. Cancer Res 2008; 68(15): 6232-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5654] [PMID: 18676847]
[66]
Adams J, Carder PJ, Downey S, et al. Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res 2000; 60(11): 2898-905.
[PMID: 10850435]
[67]
Longatto Filho A, Lopes JM, Schmitt FC. Angiogenesis and breast cancer. J Oncol 2010; 2010: 576384.
[http://dx.doi.org/10.1155/2010/576384] [PMID: 20953378]
[68]
Salinas Vera YM, Marchat LA, Gallardo Rincón D, Ruiz García E, Astudillo De La Vega H, Echavarría Zepeda R. AngiomiRs: MicroRNAs driving angiogenesis in cancer. (Review) Int J Mol Med 2019; 43(2): 657-70.
[69]
Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res 2007; 101(1): 59-68.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.153916] [PMID: 17540974]
[70]
Kudela E, Samec M, Koklesova L, et al. MiRNA expression profiles in luminal a breast cancer-implications in biology, prognosis, and prediction of response to hormonal treatment. Int J Mol Sci 2020; 21(20): 7691.
[http://dx.doi.org/10.3390/ijms21207691] [PMID: 33080858]
[71]
Nikolic I, Plate KH, Schmidt MHH. EGFL7 meets miRNA-126: An angiogenesis alliance. J Angiogenes Res 2010; 2(1): 9.
[http://dx.doi.org/10.1186/2040-2384-2-9] [PMID: 20529320]
[72]
Zhu N, Zhang D, Xie H, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351(1-2): 157-64.
[http://dx.doi.org/10.1007/s11010-011-0723-7] [PMID: 21249429]
[73]
Lu YY, Sweredoski MJ, Huss D, Lansford R, Hess S, Tirrell DA. Prometastatic GPCR CD97 is a direct target of tumor suppressor microRNA-126. ACS Chem Biol 2014; 9(2): 334-8.
[http://dx.doi.org/10.1021/cb400704n] [PMID: 24274104]
[74]
Zhang Y, Yang P, Sun T, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013; 15(3): 284-94.
[http://dx.doi.org/10.1038/ncb2690] [PMID: 23396050]
[75]
Wu Z, Cai X, Huang C, Xu J, Liu A. miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep 2016; 35(3): 1696-702.
[http://dx.doi.org/10.3892/or.2015.4529] [PMID: 26718330]
[76]
Tu Y, Liu L, Zhao D, et al. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep 2015; 5: 13827.
[http://dx.doi.org/10.1038/srep13827] [PMID: 26345385]
[77]
Safa A, Abak A, Shoorei H, Taheri M, Ghafouri-Fard S. MicroRNAs as regulators of ERK/MAPK pathway: a comprehensive review. Biomed Pharmacother 2020; 132: 110853.
[http://dx.doi.org/10.1016/j.biopha.2020.110853] [PMID: 33068932]
[78]
Song M, Finley SD. ERK and Akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell Commun Signal 2020; 18(1): 114.
[http://dx.doi.org/10.1186/s12964-020-00595-w] [PMID: 32680529]
[79]
Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007; 26(2): 281-90.
[http://dx.doi.org/10.1007/s10555-007-9066-y] [PMID: 17603752]
[80]
Ray SK, Mukherjee S. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: impressive tool in drug discovery. Recent Pat Anticancer Drug Discov 2021; p. 34323197.
[http://dx.doi.org/10.2174/1574892816666210728115605]
[81]
Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012; 3: 21.
[http://dx.doi.org/10.3389/fimmu.2012.00021] [PMID: 22566905]
[82]
Fox SB, Generali DG, Harris AL. Breast tumour angiogenesis. Breast Cancer Res 2007; 9(6): 216.
[http://dx.doi.org/10.1186/bcr1796] [PMID: 18190723]
[83]
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. J Exp Clin Cancer Res 2020; 39(1): 27.
[http://dx.doi.org/10.1186/s13046-020-1535-y] [PMID: 32014012]
[84]
Chang S, Wang RH, Akagi K, et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 2011; 17(10): 1275-82.
[http://dx.doi.org/10.1038/nm.2459] [PMID: 21946536]
[85]
Danza K, De Summa S, Pinto R, et al. MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis. Oncotarget 2015; 6(1): 471-83.
[http://dx.doi.org/10.18632/oncotarget.2509] [PMID: 25333258]
[86]
Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 2010; 285(23): 17869-79.
[http://dx.doi.org/10.1074/jbc.M110.101055] [PMID: 20371610]
[87]
Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2014; 33(6): 679-89.
[http://dx.doi.org/10.1038/onc.2012.636] [PMID: 23353819]
[88]
Foekens JA, Sieuwerts AM, Smid M, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 2008; 105(35): 13021-6.
[http://dx.doi.org/10.1073/pnas.0803304105] [PMID: 18755890]
[89]
Lou W, Liu J, Gao Y, et al. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017; 8(70): 115787-802.
[http://dx.doi.org/10.18632/oncotarget.23115] [PMID: 29383201]
[90]
Ray SK, Mukherjee S. LncRNAs as architects in cancer biomarkers with interface of epitranscriptomics- incipient targets in cancer therapy. Curr Cancer Drug Targets 2021; 21(5): 416-27.
[http://dx.doi.org/10.2174/1568009620666210106122421] [PMID: 33413062]
[91]
Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA–lncRNA interactions. In: Feng Y, Zhang L, Eds. Long Non-Coding RNAs: Methods and Protocols. New York: Humana Press 2016; pp. 271-86.
[http://dx.doi.org/10.1007/978-1-4939-3378-5_21]
[92]
Smith MA, Mattick JS. Structural and functional annotation of long noncoding RNAs. In: Keith JM, Ed Bioinformatics: Volume II: Structure, Function, and Applications New York: Humana Press. 2017; pp. 65-85.
[http://dx.doi.org/10.1007/978-1-4939-6613-4_4]
[93]
Goyal R, Longo LD. Acclimatization to long-term hypoxia: Gene expression in ovine carotid arteries. Physiol Genomics 2014; 46(19): 725-34.
[http://dx.doi.org/10.1152/physiolgenomics.00073.2014] [PMID: 25052263]
[94]
Fantin A, Schwarz Q, Davidson K, Normando EM, Denti L, Ruhrberg C. The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 2011; 138(19): 4185-91.
[http://dx.doi.org/10.1242/dev.070037] [PMID: 21852397]
[95]
Trimarchi T, Bilal E, Ntziachristos P, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 2014; 158(3): 593-606.
[http://dx.doi.org/10.1016/j.cell.2014.05.049] [PMID: 25083870]
[96]
Chunharojrith P, Nakayama Y, Jiang X, et al. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015; 416: 27-35.
[http://dx.doi.org/10.1016/j.mce.2015.08.018] [PMID: 26284494]
[97]
Tee AE, Liu B, Song R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget 2016; 7(8): 8663-75.
[http://dx.doi.org/10.18632/oncotarget.6675] [PMID: 26848616]
[98]
Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 2013; 9(3): e1003368.
[http://dx.doi.org/10.1371/journal.pgen.1003368] [PMID: 23555285]
[99]
Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 2015; 19(6): 1418-25.
[http://dx.doi.org/10.1111/jcmm.12576] [PMID: 25787249]
[100]
Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of long non-coding RNAs (lncRNAs) in tumor angiogenesis. Noncoding RNA 2020; 6(4): 42.
[http://dx.doi.org/10.3390/ncrna6040042] [PMID: 32992718]
[101]
Wang PS, Chou CH, Lin CH, et al. A novel long non-coding RNA linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene 2018; 37(34): 4662-78.
[http://dx.doi.org/10.1038/s41388-018-0293-1] [PMID: 29755127]
[102]
Li J, Xu Q, Wang W, Sun S. MIR100HG: a credible prognostic biomarker and an oncogenic lncRNA in gastric cancer. Biosci Rep 2019; 39(4): BSR20190171.
[http://dx.doi.org/10.1042/BSR20190171] [PMID: 30886062]
[103]
Luo L, Tang H, Ling L, et al. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer. Oncogene 2018; 37(47): 6166-79.
[http://dx.doi.org/10.1038/s41388-018-0396-8] [PMID: 30002443]
[104]
Liang Y, Hu J, Li J, et al. Epigenetic activation of TWIST1 by MTDH promotes cancer stem-like cell traits in breast cancer. Cancer Res 2015; 75(17): 3672-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0930] [PMID: 26141861]
[105]
Costa FF. Non-coding RNAs: new players in eukaryotic biology. Gene 2005; 357(2): 83-94.
[http://dx.doi.org/10.1016/j.gene.2005.06.019] [PMID: 16111837]
[106]
Wang L, Luan T, Zhou S, et al. LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Med 2019; 8(9): 4389-403.
[http://dx.doi.org/10.1002/cam4.2335] [PMID: 31215169]
[107]
Vennin C, Spruyt N, Robin YM, Chassat T, Le Bourhis X, Adriaenssens E. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett 2017; 385: 198-206.
[http://dx.doi.org/10.1016/j.canlet.2016.10.023] [PMID: 27780718]
[108]
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer- An evolving aspect in medical biotechnology. Curr Pharm Biotechnol 2020; 22. Online ahead of print
[http://dx.doi.org/10.2174/1389201021666201211102710] [PMID: 33308128]
[109]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[110]
Ouyang M, Li Y, Ye S, et al. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One 2014; 9(5): e96228.
[http://dx.doi.org/10.1371/journal.pone.0096228] [PMID: 24788655]
[111]
Kolacinska A, Morawiec J, Pawlowska Z, et al. Association of microRNA-93, 190, 200b and receptor status in core biopsies from stage III breast cancer patients. DNA Cell Biol 2014; 33(9): 624-9.
[http://dx.doi.org/10.1089/dna.2014.2419] [PMID: 24865188]
[112]
Wang X, Chen T, Zhang Y, et al. Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway. J Cell Physiol 2019; 234(8): 13303-17.
[http://dx.doi.org/10.1002/jcp.28007] [PMID: 30618083]
[113]
Liu M, Xing LQ, Liu YJ. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine (Baltimore) 2017; 96(9): e6222.
[http://dx.doi.org/10.1097/MD.0000000000006222] [PMID: 28248879]
[114]
Atta-ur-Rahman, Choudhary, MI, Eds. Anti-Angiogenesis Drug Discovery and Development. UAE: Bentham Science Publishers.
[http://dx.doi.org/10.2174/97816080516251110101]
[115]
Kontomanolis EN, Fasoulakis Z, Papamanolis V, Koliantzaki S, Dimopoulos G, Kambas NJ. The impact of micrornas in breast cancer angiogenesis and progression. MicroRNA 2019; 8(2): 101-9.
[http://dx.doi.org/10.2174/2211536607666181017122921] [PMID: 30332982]
[116]
Flores-Pérez A, Marchat LA, Rodríguez-Cuevas S, et al. Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer. Sci Rep 2016; 6: 34504.
[http://dx.doi.org/10.1038/srep34504] [PMID: 27703260]
[117]
Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR, Ding H. Molecular interplay between microRNA-34a and Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther 2016; 356(2): 314-23.
[http://dx.doi.org/10.1124/jpet.115.226894] [PMID: 26582729]
[118]
Yang J, Meng X, Yu Y, Pan L, Zheng Q, Lin W. LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci Biotechnol Biochem 2019; 83(6): 1117-23.
[http://dx.doi.org/10.1080/09168451.2019.1588097] [PMID: 30843771]
[119]
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51(6): 344-57.
[http://dx.doi.org/10.3109/10408363.2014.944299] [PMID: 25123609]
[120]
Matamala N, Vargas MT, González-Cámpora R, et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin Chem 2015; 61(8): 1098-106.
[http://dx.doi.org/10.1373/clinchem.2015.238691] [PMID: 26056355]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy