Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

A Novel Approach for Designing Electrochemical Aptamer-Based Biosensor for Ultrasensitive Detection of Zearalenone as a Prevalent Estrogenic Mycotoxin

Author(s): Shokoufeh Hassani*, Armin Salek Maghsoudi, Milad Rezaei Akmal, Shahram Shoeibi, Fatemeh Ghadipasha, Taraneh Mousavi, Mohammad Reza Ganjali, Rohollah Hosseini and Mohammad Abdollahi

Volume 29, Issue 37, 2022

Published on: 31 January, 2022

Page: [5881 - 5894] Pages: 14

DOI: 10.2174/0929867328666211214165814

Price: $65

Abstract

Background: Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, is a biomarker of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity.

Introduction: This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products.

Methods: An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrodeposition process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication.

Results: The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor.

Conclusion: Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.

Keywords: Biomarker, aptamer, biosensor, mycotoxins, zearalenone, electrochemical, SPGEs.

[1]
Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019, 162, 46-56.
[http://dx.doi.org/10.1016/j.toxicon.2019.03.004] [PMID: 30851274]
[2]
Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; Kumar, P. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins (Basel), 2021, 13(2), 92.
[http://dx.doi.org/10.3390/toxins13020092] [PMID: 33530606]
[3]
Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska- Ciesielska, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol., 2016, 48, 141-149.
[http://dx.doi.org/10.1016/j.etap.2016.10.015] [PMID: 27771507]
[4]
Pajewska, M.; Łojko, M.; Cendrowski, K.; Sawicki, W.; Kowalkowski, T.; Buszewski, B.; Gadzała-Kopciuch, R. The determination of zearalenone and its major metabolites in endometrial cancer tissues. Anal. Bioanal. Chem., 2018, 410(5), 1571-1582.
[http://dx.doi.org/10.1007/s00216-017-0807-7] [PMID: 29368148]
[5]
Zhang, X.; Eremin, S.A.; Wen, K.; Yu, X.; Li, C.; Ke, Y.; Jiang, H.; Shen, J.; Wang, Z. Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the zearalenone class of mycotoxins in maize. J. Agric. Food Chem., 2017, 65(10), 2240-2247.
[http://dx.doi.org/10.1021/acs.jafc.6b05614] [PMID: 28231710]
[6]
Luo, L.; Ma, S.; Li, L.; Liu, X.; Zhang, J.; Li, X.; Liu, D.; You, T. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem., 2019, 292, 98-105.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.050] [PMID: 31054698]
[7]
Wu, Z.; Xu, E.; Chughtai, M.F.J.; Jin, Z.; Irudayaraj, J. Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem., 2017, 230, 673-680.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.100] [PMID: 28407965]
[8]
He, B.; Yan, X. An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Mikrochim. Acta, 2019, 186(6), 383.
[http://dx.doi.org/10.1007/s00604-019-3500-z] [PMID: 31140009]
[9]
Niazi, S.; Khan, I.M.; Yu, Y.; Pasha, I.; Shoaib, M.; Mohsin, A.; Mushtaq, B.S.; Akhtar, W.; Wang, Z. A “turnon” aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Mikrochim. Acta, 2019, 186(8), 575.
[http://dx.doi.org/10.1007/s00604-019-3570-y] [PMID: 31342182]
[10]
Dohnal, V.; Dvořák, V.; Malíř, F.; Ostrý, V.; Roubal, T. A comparison of ELISA and HPLC methods for determination of ochratoxin A in human blood serum in the Czech Republic. Food Chem. Toxicol., 2013, 62, 427-431.
[http://dx.doi.org/10.1016/j.fct.2013.09.010] [PMID: 24036139]
[11]
Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol., 2017, 91(1), 109-130.
[http://dx.doi.org/10.1007/s00204-016-1875-8] [PMID: 27761595]
[12]
Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron., 2017, 8, 1-9.
[http://dx.doi.org/10.4172/2155-6210.1000235]
[13]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[14]
Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-based biosensors for antibiotic detection: A review. Biosensors (Basel), 2018, 8(2), 54.
[http://dx.doi.org/10.3390/bios8020054] [PMID: 29891818]
[15]
Hassani, S.; Salek Maghsoudi, A.; Rezaei Akmal, M.; Rahmani, S.R.; Sarihi, P.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. A sensitive aptamer-based biosensor for electrochemical quantification of PSA as a specific diagnostic marker of prostate cancer. J. Pharm. Pharm. Sci., 2020, 23, 243-258.
[http://dx.doi.org/10.18433/jpps31171] [PMID: 32649855]
[16]
Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M-L.; Wang, J. Aptamer-based biosensor for detection of mycotoxins. Front Chem., 2020, 8, 195.
[http://dx.doi.org/10.3389/fchem.2020.00195] [PMID: 32373573]
[17]
Salek Maghsoudi, A.; Hassani, S.; Rezaei Akmal, M.; Ganjali, M.R.; Mirnia, K.; Norouzi, P.; Abdollahi, M. An electrochemical aptasensor platform based on flower-like gold microstructure-modified screen-printed carbon electrode for detection of serpin A12 as a Type 2 Diabetes Biomarker. Int. J. Nanomedicine, 2020, 15, 2219-2230.
[http://dx.doi.org/10.2147/IJN.S244315] [PMID: 32280216]
[18]
Kim, Y.S.; Raston, N.H.A.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron., 2016, 76, 2-19.
[http://dx.doi.org/10.1016/j.bios.2015.06.040] [PMID: 26139320]
[19]
Hassani, S.; Rezaei Akmal, M.; Salek Maghsoudi, A.; Rahmani, S.; Vakhshiteh, F.; Norouzi, P.; Ganjali, M.R.; Abdollahi, M. High-performance voltammetric aptasensing platform for ultrasensitive detection of Bisphenol A as an environmental pollutant. Front. Bioeng. Biotechnol., 2020, 8, 574846.
[http://dx.doi.org/10.3389/fbioe.2020.574846] [PMID: 33015024]
[20]
Hassani, S.; Akmal, M.R.; Salek-Maghsoudi, A.; Rahmani, S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Novel label-free electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosens. Bioelectron., 2018, 120, 122-128.
[http://dx.doi.org/10.1016/j.bios.2018.08.041] [PMID: 30172234]
[21]
Li, M.; Li, Y-T.; Li, D-W.; Long, Y-T. Recent developments and applications of screen-printed electrodes in environmental assays-a review. Anal. Chim. Acta, 2012, 734, 31-44.
[http://dx.doi.org/10.1016/j.aca.2012.05.018] [PMID: 22704470]
[22]
Zhang, Y.; Chen, X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: From design to application. Nanoscale, 2019, 11(41), 19105-19118.
[http://dx.doi.org/10.1039/C9NR05696C] [PMID: 31549117]
[23]
Salek Maghsoudi, A.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent advances in nanotechnology-based biosensors development for detection of Arsenic, Lead, Mercury, and Cadmium. Int. J. Nanomedicine, 2021, 16, 803-832.
[http://dx.doi.org/10.2147/IJN.S294417] [PMID: 33568907]
[24]
Shkembi, X.; Svobodova, M.; Skouridou, V.; Bashammakh, A.S.; Alyoubi, A.O.; O’Sullivan, C.K. Aptasensors for mycotoxin detection: A review. Anal. Biochem., 2021, 114156.
[http://dx.doi.org/10.1016/j.ab.2021.114156] [PMID: 33716125]
[25]
Anas, N.A.A.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.M.E.M.M.; Ramdzan, N.S.M.; Saleviter, S. Development of graphene quantum dots-based optical sensor for toxic metal ion detection. Sensors (Basel), 2019, 19(18), 3850.
[http://dx.doi.org/10.3390/s19183850] [PMID: 31489912]
[26]
Torabi, R.; Bagherzadeh, K.; Ghourchian, H.; Amanlou, M. An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: A molecular dynamic simulations approach. Org. Biomol. Chem., 2016, 14(34), 8141-8153.
[http://dx.doi.org/10.1039/C6OB01094F] [PMID: 27511589]
[27]
Yan, Y.; Tao, H.; He, J.; Huang, S-Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc., 2020, 15(5), 1829-1852.
[http://dx.doi.org/10.1038/s41596-020-0312-x] [PMID: 32269383]
[28]
Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuators B Chem., 2015, 209, 336-342.
[http://dx.doi.org/10.1016/j.snb.2014.11.127]
[29]
Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn (II), Pb (II) and Cu (II). Mikrochim. Acta, 2017, 184, 4731-4740.
[http://dx.doi.org/10.1007/s00604-017-2521-8]
[30]
Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens. Bioelectron., 2018, 112, 186-192.
[http://dx.doi.org/10.1016/j.bios.2018.04.026] [PMID: 29705616]
[31]
Jarczewska, M.; Rębiś, J.; Górski, Ł.; Malinowska, E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta, 2018, 189, 45-54.
[http://dx.doi.org/10.1016/j.talanta.2018.06.035] [PMID: 30086945]
[32]
Torabi, R.; Rezvanipour, A.A.; Heiat, M. A challenging choice of aptamer for the selective enrichment of ochratoxin A. J. Sep. Sci., 2021, 44(4), 903-907.
[http://dx.doi.org/10.1002/jssc.202001044] [PMID: 33289273]
[33]
Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical impedance spectroscopy based biosensors: mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem, 2019, 6, 989-1003.
[34]
Radi, A-E.; Eissa, A.; Wahdan, T. Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted polymer on the surface of screen-printed gold electrode. Int. J. Environ. Anal. Chem., 2021, 101(15), 2586-2597.
[http://dx.doi.org/10.1080/03067319.2019.1699548]
[35]
Yawari, I.; Kaykhaii, M. Determination of (S)-warfarin using an activated screen printed gold electrode modified with gold nanoparticles and an enantioselective molecularly imprinted polymer. Anal. Methods, 2017, 9, 6583-6589.
[http://dx.doi.org/10.1039/C7AY02031G]
[36]
Jalalvand, A.R. Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int. J. Biol. Macromol., 2019, 126, 1065-1073.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.012] [PMID: 30611810]
[37]
Benvidi, A.; Banaei, M.; Tezerjani, M.D.; Molahosseini, H.; Jahanbani, S. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers. Mikrochim. Acta, 2017, 185(1), 50.
[http://dx.doi.org/10.1007/s00604-017-2589-1] [PMID: 29594398]
[38]
Song, J.; Zhou, Y.; Chen, B.; Lou, W.; Gu, J. Development of electrochemical aptamer biosensor for tumor marker MUC1 determination. Int. J. Electrochem. Sci., 2017, 12, 5618-5627.
[http://dx.doi.org/10.20964/2017.06.46]
[39]
Han, Z.; Tang, Z.; Jiang, K.; Huang, Q.; Meng, J.; Nie, D.; Zhao, Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS2-Au) for multiplex detection of mycotoxins. Biosens. Bioelectron., 2020, 150, 111894.
[http://dx.doi.org/10.1016/j.bios.2019.111894] [PMID: 31761484]
[40]
He, B.; Yan, X. Ultrasensitive electrochemical aptasensor based on CoSe2/AuNRs and 3D structured DNA-PtNi@ Co-MOF networks for the detection of zearalenone. Sens. Actuators B Chem., 2020, 306, 127558.
[http://dx.doi.org/10.1016/j.snb.2019.127558]
[41]
Azri, F.A.; Eissa, S.; Zourob, M.; Chinnappan, R.; Sukor, R.; Yusof, N.A.; Raston, N.H.A.; Alhoshani, A.; Jinap, S. Electrochemical determination of zearalenone using a label-free competitive aptasensor. Mikrochim. Acta, 2020, 187(5), 266.
[http://dx.doi.org/10.1007/s00604-020-4218-7] [PMID: 32279134]
[42]
Ma, L.; Bai, L.; Zhao, M.; Zhou, J.; Chen, Y.; Mu, Z. An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS2-MWCNTs nanocomposite for signal enhancement. Anal. Chim. Acta, 2019, 1060, 71-78.
[http://dx.doi.org/10.1016/j.aca.2019.02.012] [PMID: 30902333]
[43]
Ji, X.; Yu, C.; Wen, Y.; Chen, J.; Yu, Y.; Zhang, C.; Gao, R.; Mu, X.; He, J. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Biosens. Bioelectron., 2019, 129, 139-146.
[http://dx.doi.org/10.1016/j.bios.2019.01.012] [PMID: 30690178]
[44]
Regiart, M.; Fernández, O.; Vicario, A.; Villarroel-Rocha, J.; Sapag, K.; Messina, G.A.; Raba, J.; Bertolino, F.A. Mesoporous immunosensor applied to zearalenone determination in Amaranthus cruentus seeds. Microchem. J., 2018, 141, 388-394.
[http://dx.doi.org/10.1016/j.microc.2018.05.051]
[45]
Gu, W.; Zhu, P.; Jiang, D.; He, X.; Li, Y.; Ji, J.; Zhang, L.; Sun, Y.; Sun, X. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens. Bioelectron., 2015, 70, 447-454.
[http://dx.doi.org/10.1016/j.bios.2015.03.074] [PMID: 25863342]
[46]
Afzali, D.; Padash, M.; Mostafavi, A. Determination of trace amounts of zearalenone in beverage samples with an electrochemical sensor. Mycotoxin Res., 2015, 31(4), 203-208.
[http://dx.doi.org/10.1007/s12550-015-0232-8] [PMID: 26400862]
[47]
Sadrabadi, N.R.; Ensafi, A.A.; Heydari-Bafrooei, E.; Fazilati, M. Screening of food samples for zearalenone toxin using an electrochemical bioassay based on DNA–zearalenone interaction. Food Anal. Methods, 2016, 9, 2463-2470.
[http://dx.doi.org/10.1007/s12161-016-0437-2]
[48]
Riberi, W.I.; Tarditto, L.V.; Zon, M.A.; Arévalo, F.J.; Fernández, H. Development of an electrochemical immunosensor to determine zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine dispersions. Sens. Actuators B Chem., 2018, 254, 1271-1277.
[http://dx.doi.org/10.1016/j.snb.2017.07.113]
[49]
Xu, W.; Qing, Y.; Chen, S.; Chen, J.; Qin, Z.; Qiu, J.; Li, C. Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Mikrochim. Acta, 2017, 184, 3339-3347.
[http://dx.doi.org/10.1007/s00604-017-2342-9]
[50]
Liu, N.; Nie, D.; Tan, Y.; Zhao, Z.; Liao, Y.; Wang, H.; Sun, C.; Wu, A. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Mikrochim. Acta, 2017, 184, 147-153.
[http://dx.doi.org/10.1007/s00604-016-1996-z]
[51]
Goud, K.Y.; Hayat, A.; Satyanarayana, M.; Kumar, V.S.; Catanante, G.; Gobi, K.V.; Marty, J.L. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Mikrochim. Acta, 2017, 184, 4401-4408.
[http://dx.doi.org/10.1007/s00604-017-2487-6]
[52]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Emrani, A.S.; Abnous, K. Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Appl. Mater. Interfaces, 2018, 10(15), 12504-12509.
[http://dx.doi.org/10.1021/acsami.8b02349] [PMID: 29565121]
[53]
Tan, H.; Guo, T.; Zhou, H.; Dai, H.; Yu, Y.; Zhu, H.; Wang, H.; Fu, Y.; Zhang, Y.; Ma, L. A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Anal. Bioanal. Chem., 2020, 412(23), 5627-5635.
[http://dx.doi.org/10.1007/s00216-020-02778-3] [PMID: 32601897]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy