Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

In Search for Biomarkers in Obsessive-Compulsive Disorder: New Evidence on Saliva as a Practical Source of DNA to Assess Epigenetic Regulation

Author(s): Claudio D’Addario, Monica Macellaro , Fabio Bellia, Beatrice Benatti, Eugenia Annunzi , Riccardo Palumbo, Dario Conti , Federica Fasciana, Matteo Vismara , Alberto Varinelli , Luca Ferrara , Laura Celebre, Caterina Viganò and Bernardo Dell’Osso*

Volume 29, Issue 36, 2022

Published on: 18 January, 2022

Page: [5782 - 5791] Pages: 10

DOI: 10.2174/0929867328666211208115536

Price: $65

Abstract

Background: Brain-Derived Neurotrophic Factor (BDNF) is a promising candidate biomarker in both the development and aetiology of different neuropsychiatric conditions, including obsessive-compulsive disorder (OCD). Most of the studies in the field have been carried out in blood cells, including peripheral blood mononucleated cells (PBMCs), although DNA of high quality can be easily isolated from saliva.

Objective: The objective of this study was to evaluate the epigenetic regulation of the BDNF gene in the saliva of a clinical sample of OCD patients in order to assess this source as an alternative to blood.

Methods: We first analyzed DNA methylation levels at BDNF in the saliva of subjects suffering from OCD (n= 50) and healthy controls (n=50). Then, we compared these data with the results previously obtained for the same genomic region in blood samples from the same patients and controls (CTRL).

Results: Our preliminary data showed a significant reduction of 5mC levels at BDNF gene (OCD: 1.23 ± 0.45; CTRL: 1.85 ± 0.64; p < 0.0001) and a significant correlation between DNA methylation in PBMCs and saliva (Spearman r = 0.2788).

Conclusion: We support the perspective that saliva could be a possible, reliable source, and a substitute for blood, in search of epigenetic biomarkers in OCD.

Keywords: BDNF, Obsessive-compulsive disorder, DNA methylation, DNA hydroxymethylation, blood, saliva, OCD, peripheral blood mononucleated cells (PBMCs).

« Previous
[1]
D’Addario, C.; Micale, V.; Di Bartolomeo, M.; Stark, T.; Pucci, M.; Sulcova, A.; Palazzo, M.; Babinska, Z.; Cremaschi, L.; Drago, F.; Carlo Altamura, A.; Maccarrone, M.; Dell’Osso, B. A preliminary study of endocannabinoid system regulation in psychosis: distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr. Res., 2017, 188, 132-140.
[http://dx.doi.org/10.1016/j.schres.2017.01.022] [PMID: 28108228]
[2]
Bellia, F.; Vismara, M.; Annunzi, E.; Cifani, C.; Benatti, B.; Dell'Osso, B.; D'Addario, C. Genetic and epigenetic architecture of obsessive-compulsive disorder: in search of possible diagnostic and prognostic biomarkers. J. Psychiatr. Res., 2021, 137, 554-571.
[3]
Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem, 2011, 12(2), 206-222.
[http://dx.doi.org/10.1002/cbic.201000195] [PMID: 21243710]
[4]
Schübeler, D. Function and information content of DNA methylation. Nature, 2015, 517(7534), 321-326.
[http://dx.doi.org/10.1038/nature14192] [PMID: 25592537]
[5]
Domschke, K.; Tidow, N.; Schwarte, K.; Deckert, J.; Lesch, K-P.; Arolt, V.; Zwanzger, P.; Baune, B.T. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int. J. Neuropsychopharmacol., 2014, 17(8), 1167-1176.
[http://dx.doi.org/10.1017/S146114571400039X] [PMID: 24679990]
[6]
Okada, S.; Morinobu, S.; Fuchikami, M.; Segawa, M.; Yokomaku, K.; Kataoka, T.; Okamoto, Y.; Yamawaki, S.; Inoue, T.; Kusumi, I.; Koyama, T.; Tsuchiyama, K.; Terao, T.; Kokubo, Y.; Mimura, M. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J. Psychiatr. Res., 2014, 53, 47-53.
[http://dx.doi.org/10.1016/j.jpsychires.2014.02.002] [PMID: 24657235]
[7]
Tadić, A.; Müller-Engling, L.; Schlicht, K.F.; Kotsiari, A.; Dreimüller, N.; Kleimann, A.; Bleich, S.; Lieb, K.; Frieling, H. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol. Psychiatry, 2014, 19(3), 281-283.
[http://dx.doi.org/10.1038/mp.2013.58] [PMID: 23670489]
[8]
Abdolmaleky, H.M.; Cheng, K.H.; Faraone, S.V.; Wilcox, M.; Glatt, S.J.; Gao, F.; Smith, C.L.; Shafa, R.; Aeali, B.; Carnevale, J.; Pan, H.; Papageorgis, P.; Ponte, J.F.; Sivaraman, V.; Tsuang, M.T.; Thiagalingam, S. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet., 2006, 15(21), 3132-3145.
[http://dx.doi.org/10.1093/hmg/ddl253] [PMID: 16984965]
[9]
Kinoshita, M.; Numata, S.; Tajima, A.; Shimodera, S.; Ono, S.; Imamura, A.; Iga, J.; Watanabe, S.; Kikuchi, K.; Kubo, H.; Nakataki, M.; Sumitani, S.; Imoto, I.; Okazaki, Y.; Ohmori, T. DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med., 2013, 15(1), 95-101.
[http://dx.doi.org/10.1007/s12017-012-8198-6] [PMID: 22961555]
[10]
Li, Y.; Wang, K.; Zhang, P.; Huang, J.; An, H.; Wang, N.; De Yang, F.; Wang, Z.; Tan, S.; Chen, S.; Tan, Y. Quantitative DNA methylation analysis of DLGAP2 gene using pyrosequencing in schizophrenia with Tardive Dyskinesia: a linear mixed model approach. Sci. Rep., 2018, 8(1), 17466.
[http://dx.doi.org/10.1038/s41598-018-35718-4] [PMID: 30504779]
[11]
Carlberg, L.; Scheibelreiter, J.; Hassler, M.R.; Schloegelhofer, M.; Schmoeger, M.; Ludwig, B.; Kasper, S.; Aschauer, H.; Egger, G.; Schosser, A. Brain-derived neurotrophic factor (BDNF)-epigenetic regulation in unipolar and bipolar affective disorder. J. Affect. Disord., 2014, 168, 399-406.
[http://dx.doi.org/10.1016/j.jad.2014.07.022] [PMID: 25106037]
[12]
D’Addario, C.; Dell’Osso, B.; Palazzo, M.C.; Benatti, B.; Lietti, L.; Cattaneo, E.; Galimberti, D.; Fenoglio, C.; Cortini, F.; Scarpini, E.; Arosio, B.; Di Francesco, A.; Di Benedetto, M.; Romualdi, P.; Candeletti, S.; Mari, D.; Bergamaschini, L.; Bresolin, N.; Maccarrone, M.; Altamura, A.C. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology, 2012, 37(7), 1647-1655.
[http://dx.doi.org/10.1038/npp.2012.10] [PMID: 22353757]
[13]
Dell’Osso, B.; D’Addario, C.; Carlotta Palazzo, M.; Benatti, B.; Camuri, G.; Galimberti, D.; Fenoglio, C.; Scarpini, E.; Di Francesco, A.; Maccarrone, M.; Altamura, A.C. Epigenetic modulation of BDNF gene: differences in DNA methylation between unipolar and bipolar patients. J. Affect. Disord., 2014, 166, 330-333.
[http://dx.doi.org/10.1016/j.jad.2014.05.020] [PMID: 25012449]
[14]
Williamson, S.; Munro, C.; Pickler, R.; Grap, M.J.; Elswick, R.K. Jr. Comparison of biomarkers in blood and saliva in healthy adults. Nurs. Res. Pract., 2012, 2012, 246178.
[http://dx.doi.org/10.1155/2012/246178] [PMID: 22619709]
[15]
Aps, J.K.M.; Martens, L.C. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int., 2005, 150(2-3), 119-131.
[http://dx.doi.org/10.1016/j.forsciint.2004.10.026] [PMID: 15944052]
[16]
Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta, 2007, 383(1-2), 30-40.
[http://dx.doi.org/10.1016/j.cca.2007.04.011] [PMID: 17512510]
[17]
Henson, B.S.; Wong, D.T. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol. Biol., 2010, 666, 21-30.
[http://dx.doi.org/10.1007/978-1-60761-820-1_2] [PMID: 20717775]
[18]
Abraham, J.E.; Maranian, M.J.; Spiteri, I.; Russell, R.; Ingle, S.; Luccarini, C.; Earl, H.M.; Pharoah, P.P.; Dunning, A.M.; Caldas, C. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med. Genom., 2012, 5, 19.
[http://dx.doi.org/10.1186/1755-8794-5-19] [PMID: 22647440]
[19]
Bruinsma, F.J.; Joo, J.E.; Wong, E.M.; Giles, G.G.; Southey, M.C. The utility of DNA extracted from saliva for genome-wide molecular research platforms. BMC Res. Notes, 2018, 11(1), 8.
[http://dx.doi.org/10.1186/s13104-017-3110-y]
[20]
Chuang, Y.H.; Paul, K.C.; Bronstein, J.M.; Bordelon, Y.; Horvath, S.; Ritz, B. Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med., 2017, 9(1), 76.
[http://dx.doi.org/10.1186/s13073-017-0466-5] [PMID: 28851441]
[21]
Murata, Y.; Fujii, A.; Kanata, S.; Fujikawa, S.; Ikegame, T.; Nakachi, Y.; Zhao, Z.; Jinde, S.; Kasai, K.; Bundo, M.; Iwamoto, K. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacol. Rep., 2019, 39(4), 301-305.
[http://dx.doi.org/10.1002/npr2.12075] [PMID: 31393092]
[22]
Nishitani, S.; Parets, S.E.; Haas, B.W.; Smith, A.K. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics, 2018, 13(4), 352-362.
[http://dx.doi.org/10.1080/15592294.2018.1461295] [PMID: 29912612]
[23]
Wikenius, E.; Myhre, A.M.; Page, C.M.; Moe, V.; Smith, L.; Heiervang, E.R.; Undlien, D.E.; LeBlanc, M. Prenatal maternal depressive symptoms and infant DNA methylation: a longitudinal epigenome-wide study. Nord. J. Psychiatry, 2019, 73(4-5), 257-263.
[http://dx.doi.org/10.1080/08039488.2019.1613446] [PMID: 31070508]
[24]
Helmerhorst, E.J.; Oppenheim, F.G. Saliva: a dynamic proteome. J. Dent. Res., 2007, 86(8), 680-693.
[http://dx.doi.org/10.1177/154405910708600802] [PMID: 17652194]
[25]
Mardis, E.R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2013, 6, 287-303.
[http://dx.doi.org/10.1146/annurev-anchem-062012-092628] [PMID: 23560931]
[26]
Sullivan, R.; Heavey, S.; Graham, D.G.; Wellman, R.; Khan, S.; Thrumurthy, S.; Simpson, B.S.; Baker, T.; Jevons, S.; Ariza, J.; Eneh, V.; Pye, H.; Luxton, H.; Hamoudi, R.; Whitaker, H.; Lovat, L.B. An optimised saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS One, 2020, 15(3), e0229791.
[http://dx.doi.org/10.1371/journal.pone.0229791] [PMID: 32150588]
[27]
Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol. Psychiatry, 2010, 15(1), 53-63.
[http://dx.doi.org/10.1038/mp.2008.94] [PMID: 18725912]
[28]
Dell’Osso, B.; Benatti, B.; Buoli, M.; Altamura, A.C.; Marazziti, D.; Hollander, E.; Fineberg, N.; Stein, D.J.; Pallanti, S.; Nicolini, H.; Van Ameringen, M.; Lochner, C.; Hranov, G.; Karamustafalioglu, O.; Hranov, L.; Menchon, J.M.; Zohar, J. The influence of age at onset and duration of illness on long-term outcome in patients with obsessive-compulsive disorder: a report from the International College of Obsessive Compulsive Spectrum Disorders (ICOCS). Eur. Neuropsychopharmacol., 2013, 23(8), 865-871.
[http://dx.doi.org/10.1016/j.euroneuro.2013.05.004] [PMID: 23791074]
[29]
Taylor, S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol. Psychiatry, 2013, 18(7), 799-805.
[http://dx.doi.org/10.1038/mp.2012.76] [PMID: 22665263]
[30]
Brem, S.; Grünblatt, E.; Drechsler, R.; Riederer, P.; Walitza, S. The neurobiological link between OCD and ADHD. Atten. Defic. Hyperact. Disord., 2014, 6(3), 175-202.
[http://dx.doi.org/10.1007/s12402-014-0146-x] [PMID: 25017045]
[31]
Stewart, S.E.; Mayerfeld, C.; Arnold, P.D.; Crane, J.R.; O’Dushlaine, C.; Fagerness, J.A.; Yu, D.; Scharf, J.M.; Chan, E.; Kassam, F.; Moya, P.R.; Wendland, J.R.; Delorme, R.; Richter, M.A.; Kennedy, J.L.; Veenstra-VanderWeele, J.; Samuels, J.; Greenberg, B.D.; McCracken, J.T.; Knowles, J.A.; Fyer, A.J.; Rauch, S.L.; Riddle, M.A.; Grados, M.A.; Bienvenu, O.J.; Cullen, B.; Wang, Y.; Shugart, Y.Y.; Piacentini, J.; Rasmussen, S.; Nestadt, G.; Murphy, D.L.; Jenike, M.A.; Cook, E.H.; Pauls, D.L.; Hanna, G.L.; Mathews, C.A. Meta-analysis of association between obsessive-compulsive disorder and the 3′ region of neuronal glutamate transporter gene SLC1A1. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2013, 162B(4), 367-379.
[http://dx.doi.org/10.1002/ajmg.b.32137] [PMID: 23606572]
[32]
Yue, W.; Cheng, W.; Liu, Z.; Tang, Y.; Lu, T.; Zhang, D.; Tang, M.; Huang, Y. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients. Sci. Rep., 2016, 6, 31333.
[http://dx.doi.org/10.1038/srep31333] [PMID: 27527274]
[33]
D’Addario, C.; Bellia, F.; Benatti, B.; Grancini, B.; Vismara, M.; Pucci, M.; De Carlo, V.; Viganò, C.; Galimberti, D.; Fenoglio, C.; Scarpini, E.; Maccarrone, M.; Dell’Osso, B. Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. J. Psychiatr. Res., 2019, 114, 17-23.
[http://dx.doi.org/10.1016/j.jpsychires.2019.04.006] [PMID: 31004918]
[34]
Rachman, S. Fear of contamination. Behav. Res. Ther., 2004, 42(11), 1227-1255.
[http://dx.doi.org/10.1016/j.brat.2003.10.009] [PMID: 15381436]
[35]
First, M.B.; Reed, G.M.; Hyman, S.E.; Saxena, S. The development of the ICD-11 clinical descriptions and diagnostic guidelines for mental and behavioural disorders. World Psychiatry, 2015, 14(1), 82-90.
[http://dx.doi.org/10.1002/wps.20189] [PMID: 25655162]
[36]
Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch. Gen. Psychiatry, 1989, 46(11), 1006-1011.
[http://dx.doi.org/10.1001/archpsyc.1989.01810110048007] [PMID: 2684084]
[37]
Koran, L.M.; Simpson, H.B. Guideline watch (March 2013): practice guideline for the treatment of patients with obsessive-compulsive disorder. APA Practice Guidelines, 2013.
[38]
Maxwell, J.A.J. A Model for qualitative research design. Qual. Res. Des., 1992, 62, 1-21.
[39]
Aidar, M.; Line, S.R.P. A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz. Dent. J., 2007, 18(2), 148-152.
[http://dx.doi.org/10.1590/S0103-64402007000200012] [PMID: 17982556]
[40]
Goode, M.R.; Cheong, S.Y.; Li, N.; Ray, W.C.; Bartlett, C.W. Collection and extraction of saliva DNA for next generation sequencing. J. Vis. Exp., 2014, 90(90), 51697.
[http://dx.doi.org/10.3791/51697] [PMID: 25225892]
[41]
Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G-Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods, 2007, 39(2), 175-191.
[http://dx.doi.org/10.3758/BF03193146] [PMID: 17695343]
[42]
Oliveira-Maia, A.J.; Castro-Rodrigues, P. Brain-derived neurotrophic factor: a biomarker for obsessive-compulsive disorder? Front. Neurosci., 2015, 9, 134.
[http://dx.doi.org/10.3389/fnins.2015.00134] [PMID: 25932008]
[43]
Şimşek, Ş.; Gençoğlan, S.; Yüksel, T.; Kaplan, İ.; Alaca, R. Cortisol and brain-derived neurotrophic factor levels prior to treatment in children with obsessive-compulsive disorder. J. Clin. Psychiatry, 2016, 77(7), e855-e859.
[http://dx.doi.org/10.4088/JCP.15m10146] [PMID: 27314567]
[44]
Maina, G.; Rosso, G.; Zanardini, R.; Bogetto, F.; Gennarelli, M.; Bocchio-Chiavetto, L. Serum levels of brain-derived neurotrophic factor in drug-naïve obsessive-compulsive patients: a case-control study. J. Affect. Disord., 2010, 122(1-2), 174-178.
[http://dx.doi.org/10.1016/j.jad.2009.07.009] [PMID: 19664825]
[45]
Fontenelle, L.F.; Barbosa, I.G.; Luna, J.V.; Rocha, N.P.; Silva Miranda, A.; Teixeira, A.L. Neurotrophic factors in obsessive-compulsive disorder. Psychiatry Res., 2012, 199(3), 195-200.
[http://dx.doi.org/10.1016/j.psychres.2012.03.034] [PMID: 22494702]
[46]
Thomas, M.; Knoblich, N.; Wallisch, A.; Glowacz, K.; Becker-Sadzio, J.; Gundel, F.; Brückmann, C.; Nieratschker, V. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin. Epigenetics, 2018, 10(1), 109.
[http://dx.doi.org/10.1186/s13148-018-0544-6] [PMID: 30134995]
[47]
Abdolmaleky, H.M.; Nohesara, S.; Ghadirivasfi, M.; Lambert, A.W.; Ahmadkhaniha, H.; Ozturk, S.; Wong, C.K.; Shafa, R.; Mostafavi, A.; Thiagalingam, S. DNA hypermethylation of serotonin transporter gene promoter in drug naïve patients with schizophrenia. Schizophr. Res., 2014, 152(2-3), 373-380.
[http://dx.doi.org/10.1016/j.schres.2013.12.007] [PMID: 24411530]
[48]
Papale, L.A.; Seltzer, L.J.; Madrid, A.; Pollak, S.D.; Alisch, R.S. Differentially methylated genes in saliva are linked to childhood stress. Sci. Rep., 2018, 8(1), 10785.
[http://dx.doi.org/10.1038/s41598-018-29107-0] [PMID: 30018309]
[49]
Rushing, A.; Sommer, E.C.; Zhao, S.; Po’e, E.K.; Barkin, S.L. Salivary epigenetic biomarkers as predictors of emerging childhood obesity. BMC Med. Genet., 2020, 21(1), 34.
[http://dx.doi.org/10.1186/s12881-020-0968-7] [PMID: 32059710]
[50]
Dell’Osso, B.; Camuri, G.; Benatti, B.; Buoli, M.; Altamura, A.C. Differences in latency to first pharmacological treatment (duration of untreated illness) in anxiety disorders: a study on patients with panic disorder, generalized anxiety disorder and obsessive-compulsive disorder. Early Interv. Psychiatry, 2013, 7(4), 374-380.
[http://dx.doi.org/10.1111/eip.12016] [PMID: 23347385]
[51]
Dell’osso, B.; Mundo, E.; Marazziti, D.; Altamura, A.C. Switching from serotonin reuptake inhibitors to duloxetine in patients with resistant obsessive compulsive disorder: a case series. J. Psychopharmacol., 2008, 22(2), 210-213.
[http://dx.doi.org/10.1177/0269881107079865] [PMID: 18208931]
[52]
Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[53]
D’Addario, C.; Dell’Osso, B.; Galimberti, D.; Palazzo, M.C.; Benatti, B.; Di Francesco, A.; Scarpini, E.; Altamura, A.C.; Maccarrone, M. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol. Psychiatry, 2013, 73(2), e6-e7.
[http://dx.doi.org/10.1016/j.biopsych.2012.07.009] [PMID: 22901293]
[54]
Koran, L.M.; Hanna, G.L.; Hollander, E.; Nestadt, G.; Simpson, H.B. Practice guideline for the treatment of patients with obsessive-compulsive disorder. Am. J. Psychiatry, 2007, 164(7)(Suppl.), 5-53.
[PMID: 17849776]
[55]
Godderis, L.; Schouteden, C.; Tabish, A.; Poels, K.; Hoet, P.; Baccarelli, A.A.; Van Landuyt, K. Global methylation and hydroxymethylation in DNA from blood and saliva in healthy volunteers. BioMed Res. Int., 2015, 2015, 845041.
[http://dx.doi.org/10.1155/2015/845041] [PMID: 26090450]
[56]
Bearer, E.L.; Mulligan, B.S. Epigenetic changes associated with early life experiences: saliva, A Biospecimen for DNA methylation signatures. Curr. Genomics, 2018, 19(8), 676-698.
[http://dx.doi.org/10.2174/1389202919666180307150508] [PMID: 30532647]
[57]
Wu, H.C.; Wang, Q.; Chung, W.K.; Andrulis, I.L.; Daly, M.B.; John, E.M.; Keegan, T.H.M.; Knight, J.; Bradbury, A.R.; Kappil, M.A.; Gurvich, I.; Santella, R.M.; Terry, M.B. Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY Girls study. Epigenetics, 2014, 9(7), 929-933.
[http://dx.doi.org/10.4161/epi.28902] [PMID: 24756002]
[58]
Philibert, R.A.; Zadorozhnyaya, O.; Beach, S.R.; Brody, G.H. Comparison of the genotyping results using DNA obtained from blood and saliva. Psychiatr. Genet., 2008, 18(6), 275-281.
[http://dx.doi.org/10.1097/YPG.0b013e3283060f81] [PMID: 19018232]
[59]
Braun, P.R.; Han, S.; Hing, B.; Nagahama, Y.; Gaul, L.N.; Heinzman, J.T.; Grossbach, A.J.; Close, L.; Dlouhy, B.J.; Howard, M.A., III; Kawasaki, H.; Potash, J.B.; Shinozaki, G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry, 2019, 9(1), 47.
[http://dx.doi.org/10.1038/s41398-019-0376-y] [PMID: 30705257]
[60]
Smith, A.K.; Kilaru, V.; Klengel, T.; Mercer, K.B.; Bradley, B.; Conneely, K.N.; Ressler, K.J.; Binder, E.B. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2015, 168B(1), 36-44.
[http://dx.doi.org/10.1002/ajmg.b.32278] [PMID: 25355443]
[61]
Bonne, N.J.; Wong, D.T. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Med., 2012, 4(10), 82.
[http://dx.doi.org/10.1186/gm383] [PMID: 23114182]
[62]
Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T.W. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin. Microbiol. Rev., 2013, 26(4), 781-791.
[http://dx.doi.org/10.1128/CMR.00021-13] [PMID: 24092855]
[63]
Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: current state and future applications. Clin. Chem., 2011, 57(5), 675-687.
[http://dx.doi.org/10.1373/clinchem.2010.153767] [PMID: 21383043]
[64]
Baum, A.; Grunberg, N. Measurement of stress hormones. Measuring stress: a guide for health and social scientists; Cohen, S.; Kessler, R.C.; Gordon, L.U., Eds.; Oxford University Press: New York , 1997, pp. 175-192.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy