Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Biomacromolecule-Functionalized Nanoparticle-Based Conjugates for Potentiation of Anticancer Therapy

Author(s): Priyank Shah and Pravin Shende*

Volume 22, Issue 1, 2022

Published on: 21 January, 2022

Page: [31 - 48] Pages: 18

DOI: 10.2174/1568009621666211206102942

Price: $65

Abstract

Cancer is a rapidly growing life-threatening disease that affected 18.1 million people worldwide in 2018. Various conventional techniques like surgery, radiation, and chemotherapy are considered as a mainstream treatment for patients but show some limitations like cytotoxicity due to off-targeted action, poor intra-tumor localization, development of multi-drug resistance by tumor cells, physical and psychological stresses, etc. Such limitations have motivated the scientists to work towards more patient-centric and precision therapy using advanced drug delivery systems like liposomes, nanoparticles, nanoconjugates, etc. However, these carriers also face limitations like poor biocompatibility, lesser payload capacity, leakage of encapsulated drug, and short-term stability. So, this review article explores the profound insights for the development of biomacromolecule- functionalized nanoconjugates to potentiate the anticancer activity of therapeutic agents for various cancers like lung, colorectal, ovarian, breast and liver cancer. Researchers have shown interest in biofunctionalized nanoconjugates because of advantages like biocompatibility, site-specificity with better localization, higher entrapment with long-term stability and lesser off-target toxicity. The progressive trend of biomacromolecule nanoconjugates will encourage further research for the development of effective transport of drugs, nutraceuticals and phytoconstituents for on-site effect at cancer microenvironment and tumor cells with higher safety profile.

Keywords: Bioconjugates, cancer, nanoconjugates, biotherapy, nanoparticles, nanocarriers, therapeutics.

Graphical Abstract

[1]
WHO. Cancer Today - World. Int. Agency Res. Cancer, 2019, 876, 2018-2019. Available from: https://gco.iarc.fr/today/about
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Damyanov, C.A.; Maslev, I.K.; Pavlov, V.S. Conventional treatment of cancer realities and problems. Ann. Complement. Altern. Med., 2018, 1, 1-9.
[4]
Griffin, A.M.; Butow, P.N.; Coates, A.S.; Childs, A.M.; Ellis, P.M.; Dunn, S.M.; Tattersall, M.H.N. On the receiving end. V: Patient perceptions of the side effects of cancer chemotherapy in 1993. Ann. Oncol., 1996, 7(2), 189-195.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a010548] [PMID: 8777177]
[5]
Remesh, A. Toxicities of anticancer drugs and its management. Int. J. Basic Clin. Pharmacol., 2012, 1, 2.
[http://dx.doi.org/10.5455/2319-2003.ijbcp000812]
[6]
Dietel, M.; Jöhrens, K.; Laffert, M. V; Hummel, M.; Bläker, H.; Bm, P.; Lehmann, A.; Denkert, C.; Lenze, D. REVIEW A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: A review focussing on clinical relevance. Cancer Gene Ther., 2015, 22(9), 1-14.
[http://dx.doi.org/10.1038/cgt.2015.39]
[7]
Shah, A.; Patel, A.; Dharamsi, A. Optimization of solid lipid nanoparticles and nanostructured lipidic carriers as promising delivery for gefitinib: Characterization and in vitro evaluation. Curr. Drug Ther., 2021, 16, 1-14.
[http://dx.doi.org/10.2174/1574885516666210125111945]
[8]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[9]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[10]
Boyiadzis, M.; Foon, K.A. Approved monoclonal antibodies for cancer therapy. Expert Opin. Biol. Ther., 2008, 8(8), 1151-1158.
[http://dx.doi.org/10.1517/14712598.8.8.1151] [PMID: 18613766]
[11]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[12]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[13]
Farokhzad, O.C.; Karp, J.M.; Langer, R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv., 2006, 3(3), 311-324.
[http://dx.doi.org/10.1517/17425247.3.3.311] [PMID: 16640493]
[14]
Shende, P.; Wakade, V.S. Biointerface: A nano-modulated way for biological transportation. J. Drug Target., 2020, 28(5), 456-467.
[http://dx.doi.org/10.1080/1061186X.2020.1720218] [PMID: 31961758]
[15]
Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater., 2011, 23(12), H18-H40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[16]
Couto, C.; Vitorino, R.; Daniel-da-Silva, A.L. Gold nanoparticles and bioconjugation: A pathway for proteomic applications. Crit. Rev. Biotechnol., 2017, 37(2), 238-250.
[http://dx.doi.org/10.3109/07388551.2016.1141392] [PMID: 26863269]
[17]
Aioub, M.; Austin, L.A.; El-Sayed, M.A. Gold Nanoparticles for Cancer Diagnostics, Spectroscopic Imaging, Drug Delivery, and Plasmonic Photothermal Therapy; Elsevier Inc.: Amsterdam, 2018.
[http://dx.doi.org/10.1016/B978-0-12-813661-4.00002-X]
[18]
Chen, S.; Li, Q.; Xu, Y.; Li, H.; Ding, X.; Ding, X. Gold nanorods bioconjugates for intracellular delivery and cancer cell apoptosis. J. Lab. Autom., 2015, 20(4), 418-422.
[http://dx.doi.org/10.1177/2211068215576871] [PMID: 25787806]
[19]
Guo, J.; O’Driscoll, C.M.; Holmes, J.D.; Rahme, K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int. J. Pharm., 2016, 509(1-2), 16-27.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.027] [PMID: 27188645]
[20]
Rahme, K. Bioconjugated gold nanoparticles enhance siRNA delivery in prostate cancer cells.RNA Interference and Cancer Therapy: Methods and Protocols; Kumar Dinesh, L., Ed.; , Ed.: Springer US: New York, 2019, pp. 291-301.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_21]
[21]
Mahendran, G.; Ponnuchamy, K. Coumarin-gold nanoparticle bioconjugates: Preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells. Appl. Nanosci., 2018, 8, 447-453.
[http://dx.doi.org/10.1007/s13204-018-0816-7]
[22]
Dziawer, Ł.; Majkowska-Pilip, A.; Gaweł, D.; Godlewska, M.; Pruszyński, M.; Jastrzębski, J.; Wąs, B.; Bilewicz, A. Trastuzumab-modified gold nanoparticles labeled with 211 At as a prospective tool for local treatment of HER2-positive breast cancer. Nanomaterials (Basel), 2019, 9(4), E632.
[http://dx.doi.org/10.3390/nano9040632] [PMID: 31003512]
[23]
Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Samiei, M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol., 2016, 42(2), 173-180.
[http://dx.doi.org/10.3109/1040841X.2014.912200] [PMID: 24937409]
[24]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), E1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[25]
Preethi, R.; Padma, P.R. Anticancer activity of silver nanobioconjugates synthesised from piper betle leaves extract and its active compound eugenol. Int. J. Pharm. Pharm. Sci., 2016, 8, 201-205.
[http://dx.doi.org/10.22159/ijpps.2016.v8i9.12993]
[26]
Casañas Pimentel, R.G.; Robles Botero, V.; San Martín Martínez, E.; Gómez García, C.; Hinestroza, J.P. Soybean agglutinin-conjugated silver nanoparticles nanocarriers in the treatment of breast cancer cells. J. Biomater. Sci. Polym. Ed., 2016, 27(3), 218-234.
[http://dx.doi.org/10.1080/09205063.2015.1116892] [PMID: 26540350]
[27]
Zhu, C.N.; Chen, G.; Tian, Z.Q.; Wang, W.; Zhong, W.Q.; Li, Z.; Zhang, Z.L.; Pang, D.W. Near-infrared fluorescent Ag2 Se-cetuximab nanoprobes for targeted imaging and therapy of cancer. Small, 2017, 13(3), 1-10.
[http://dx.doi.org/10.1002/smll.201602309] [PMID: 28084692]
[28]
Prasher, P.; Sharma, M.; Mudila, H.; Gupta, G.; Sharma, A.K.; Kumar, D.; Bakshi, H.A.; Negi, P.; Kapoor, D.N.; Chellappan, D.K. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci. Commun., 2020, 35, 100244.
[http://dx.doi.org/10.1016/j.colcom.2020.100244]
[29]
Shende, P.; Shah, P. Carbohydrate-based magnetic nanocomposites for effective cancer treatment. Int. J. Biol. Macromol., 2021, 175, 281-293.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.044] [PMID: 33571584]
[30]
Banerjee, A.; Pons, T.; Lequeux, N.; Dubertret, B. Quantum dots-DNA bioconjugates: Synthesis to applications. Interface Focus, 2016, 6(6), 20160064.
[http://dx.doi.org/10.1098/rsfs.2016.0064] [PMID: 27920898]
[31]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[32]
Yao, J.; Li, P.; Li, L.; Yang, M. Biochemistry and biomedicine of quantum dots: From biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater., 2018, 74, 36-55.
[http://dx.doi.org/10.1016/j.actbio.2018.05.004] [PMID: 29734008]
[33]
Xu, W.; Liu, L.; Brown, N.J.; Christian, S.; Hornby, D. Quantum dot-conjugated anti-GRP78 scFv inhibits cancer growth in mice. Molecules, 2012, 17(1), 796-808.
[http://dx.doi.org/10.3390/molecules17010796] [PMID: 22249409]
[34]
Yao, C.; Tu, Y.; Ding, L.; Li, C.; Wang, J.; Fang, H.; Huang, Y.; Zhang, K.; Lu, Q.; Wu, M.; Wang, Y. Cell-specific nuclear targeting of functionalized graphene quantum dots in vivo. Bioconjug. Chem., 2017, 28(10), 2608-2619.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00466] [PMID: 28903003]
[35]
Santana, C.P.; Mansur, A.A.P.; Carvalho, S.M.; da Silva-Cunha, A.; Mansur, H.S. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Mater. Lett., 2019, 252, 333-337.
[http://dx.doi.org/10.1016/j.matlet.2019.06.022]
[36]
Sangtani, A.; Petryayeva, E.; Wu, M.; Susumu, K.; Oh, E.; Huston, A.L.; Lasarte-Aragones, G.; Medintz, I.L.; Algar, W.R.; Delehanty, J.B. Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjug. Chem., 2018, 29(1), 136-148.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00658] [PMID: 29191007]
[37]
Mansur, A.A.P.; Mansur, H.S.; Carvalho, S.M.; Caires, A.J. One-pot aqueous synthesis of fluorescent Ag-In-Zn-S quantum dot/polymer bioconjugates for multiplex optical bioimaging of glioblastoma cells. Contrast Media Mol. Imaging, 2017, 2017, 3896107.
[38]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine (Lond.), 2018, 13(8), 953-971.
[http://dx.doi.org/10.2217/nnm-2017-0336] [PMID: 29376469]
[39]
Caizer, C. Magnetic Hyperthermia-Using Magnetic Metal/Oxide Nanoparticles with Potential in Cancer Therapy.Metal Nanoparticles in Pharma; Rai, R.S., Ed.; Springer International Publishing: Cham, 2017, Vol. M, pp. 1-493.
[http://dx.doi.org/10.1007/978-3-319-63790-7_10]
[40]
Shende, P.; Patel, D. Potential of tribological properties of metal nanomaterials in biomedical applications. Adv. Exp. Med. Biol., 2020, 1237, 121-134.
[http://dx.doi.org/10.1007/5584_2019_440] [PMID: 31802447]
[41]
Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci., 2018, 61(4), 400-414.
[http://dx.doi.org/10.1007/s11427-017-9271-1] [PMID: 29675551]
[42]
Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[43]
Jalalian, S.H.; Taghdisi, S.M.; Shahidi Hamedani, N.; Kalat, S.A.M.; Lavaee, P.; Zandkarimi, M.; Ghows, N.; Jaafari, M.R.; Naghibi, S.; Danesh, N.M.; Ramezani, M.; Abnous, K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur. J. Pharm. Sci., 2013, 50(2), 191-197.
[http://dx.doi.org/10.1016/j.ejps.2013.06.015] [PMID: 23835028]
[44]
Varshosaz, J.; Hassanzadeh, F.; Aliabadi, H.S.; Khoraskani, F.R.; Mirian, M.; Behdadfar, B. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int. J. Biol. Macromol., 2016, 93(Pt A), 1192-1205.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.025]
[45]
Azhdarzadeh, M.; Atyabi, F.; Saei, A.A.; Varnamkhasti, B.S.; Omidi, Y.; Fateh, M.; Ghavami, M.; Shanehsazzadeh, S.; Dinarvand, R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf. B Biointerfaces, 2016, 143, 224-232.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.058] [PMID: 27015647]
[46]
Gawęda, W.; Osial, M.; Żuk, M.; Pękała, M.; Bilewicz, A.; Krysinski, P. Lanthanide-doped SPIONs bioconjugation with trastuzumab for potential multimodal anticancer activity and magnetic hyperthermia. Nanomaterials (Basel), 2020, 10(2), E288.
[http://dx.doi.org/10.3390/nano10020288] [PMID: 32046284]
[47]
Cuellar, M.; Cifuentes, J.; Perez, J.; Suarez-Arnedo, A.; Serna, J.A.; Groot, H.; Muñoz-Camargo, C.; Cruz, J.C. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine, 2018, 13, 8087-8094.
[http://dx.doi.org/10.2147/IJN.S188074] [PMID: 30568447]
[48]
Huerta-Núñez, L.F.E.; Villanueva-Lopez, G.C.; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J.G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, M.E.; González, C.A. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging. J. Nanopart. Res., 2016, 18, 284.
[http://dx.doi.org/10.1007/s11051-016-3594-8]
[49]
Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B, 2018, 8(2), 165-177.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[50]
Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater., 2020, 30, 3-5.
[http://dx.doi.org/10.1002/adfm.201902634]
[51]
Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules, 2017, 23(1), 1-19.
[http://dx.doi.org/10.3390/molecules23010047] [PMID: 29295564]
[52]
Li, Y.; Duo, Y.; Bao, S.; He, L.; Ling, K.; Luo, J.; Zhang, Y.; Huang, H.; Zhang, H.; Yu, X. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. Int. J. Nanomedicine, 2017, 12, 6239-6257.
[http://dx.doi.org/10.2147/IJN.S143293] [PMID: 28894364]
[53]
Watermann, A.; Brieger, J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel), 2017, 7(7), E189.
[http://dx.doi.org/10.3390/nano7070189] [PMID: 28737672]
[54]
Li, L.L.; Yin, Q.; Cheng, J.; Lu, Y. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv. Healthc. Mater., 2012, 1(5), 567-572.
[http://dx.doi.org/10.1002/adhm.201200116] [PMID: 23184791]
[55]
Delpiano, G.R.; Casula, M.F.; Piludu, M.; Corpino, R.; Ricci, P.C.; Vallet-Regí, M.; Sanjust, E.; Monduzzi, M.; Salis, A. Assembly of multicomponent nano-bioconjugates composed of mesoporous silica nanoparticles, proteins, and gold nanoparticles. ACS Omega, 2019, 4(6), 11044-11052.
[http://dx.doi.org/10.1021/acsomega.9b01240] [PMID: 31460202]
[56]
Maheshwari, N.; Tekade, M.; Soni, N.; Ghode, P.; Sharma, M.C.; Deb, P.K.; Tekade, R.K. Functionalized Carbon Nanotubes for Protein, Peptide, and Gene Delivery; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814427-5.00016-0]
[57]
Hermanson, G.T. Buckyballs, Fullerenes, and Carbon Nanotubes; Bioconjugate Tech, 2013, pp. 741-755.
[58]
Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L. Functionalized single-walled carbon nanotubes: Cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.017] [PMID: 28300630]
[59]
Liu, Z.; Tabakman, S.M.; Chen, Z.; Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc., 2009, 4(9), 1372-1382.
[http://dx.doi.org/10.1038/nprot.2009.146] [PMID: 19730421]
[60]
Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.001] [PMID: 21982868]
[61]
Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug. Chem., 2012, 23(11), 2201-2213.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[62]
Taghavi, S.; HashemNia, A.; Mosaffa, F.; Askarian, S.; Abnous, K.; Ramezani, M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.021] [PMID: 26731195]
[63]
Singh, R.P.; Sharma, G.; Sonali, ; Singh, S.; Patne, S.C.U.; Pandey, B.L.; Koch, B.; Muthu, M.S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater. Sci. Eng. C, 2016, 67, 313-325.
[http://dx.doi.org/10.1016/j.msec.2016.05.013] [PMID: 27287127]
[64]
Singh, R.P.; Sharma, G.; Sonali, ; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[65]
Wang, D.; Ren, Y.; Shao, Y.; Yu, D.; Meng, L. Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment. Bioconjug. Chem., 2017, 28(11), 2815-2822.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00515] [PMID: 28968063]
[66]
Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.116] [PMID: 30445095]
[67]
Umemura, K.; Sato, S. Scanning techniques for nanobioconjugates of carbon nanotubes. Scanning, 2018, 2018, 6254692.
[http://dx.doi.org/10.1155/2018/6254692] [PMID: 30008981]
[68]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[69]
Mandpe, P.; Prabhakar, B.; Shende, P. Role of liposomes-based stem cell for multimodal cancer therapy. Stem Cell Rev. Rep., 2020, 16(1), 103-117.
[http://dx.doi.org/10.1007/s12015-019-09933-z] [PMID: 31786749]
[70]
Leamon, C.P.; Cooper, S.R.; Hardee, G.E. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: Evaluation in vitro and in vivo. Bioconjug. Chem., 2003, 14(4), 738-747.
[http://dx.doi.org/10.1021/bc020089t] [PMID: 12862426]
[71]
Baek, S.E.; Lee, K.H.; Park, Y.S.; Oh, D.K.; Oh, S.; Kim, K.S.; Kim, D.E. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J. Control. Release, 2014, 196, 234-242.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.018] [PMID: 25450401]
[72]
Alshaer, W.; Hillaireau, H.; Vergnaud, J.; Ismail, S.; Fattal, E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug. Chem., 2015, 26(7), 1307-1313.
[http://dx.doi.org/10.1021/bc5004313] [PMID: 25343502]
[73]
Han, N.K.; Shin, D.H.; Kim, J.S.; Weon, K.Y.; Jang, C.Y.; Kim, J.S. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int. J. Nanomedicine, 2016, 11, 1413-1425.
[http://dx.doi.org/10.2147/IJN.S95850] [PMID: 27103799]
[74]
Yang, Y.; Xie, X.; Xu, X.; Xia, X.; Wang, H.; Li, L.; Dong, W.; Ma, P.; Yang, Y.; Liu, Y.; Mei, X. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf. B Biointerfaces, 2016, 146, 607-615.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.002] [PMID: 27429294]
[75]
Kim, D.M.; Kim, M.; Park, H. Bin; Kim, K.S.; Kim, D.E. Anti- MUC1/CD44 dual-aptamer-conjugated liposomes for cotargeting breast cancer cells and cancer stem cells ACS Appl. Bio Mater., 2019, 2, 4622-4633.
[http://dx.doi.org/10.1021/acsabm.9b00705]
[76]
Vakhshiteh, F.; Khabazian, E.; Atyabi, F.; Ostad, S.N.; Madjd, Z.; Dinarvand, R. Peptide-conjugated liposomes for targeted miR-34a delivery to suppress breast cancer and cancer stem-like population. J. Drug Deliv. Sci. Technol., 2020, 57, 101687.
[http://dx.doi.org/10.1016/j.jddst.2020.101687]
[77]
Patil, Y.; Shmeeda, H.; Amitay, Y.; Ohana, P.; Kumar, S.; Gabizon, A. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via Prostate-Specific Membrane Antigen (PSMA). Nanomedicine, 2018, 14(4), 1407-1416.
[http://dx.doi.org/10.1016/j.nano.2018.04.011] [PMID: 29680672]
[78]
Zhu, X.; Kong, Y.; Liu, Q.; Lu, Y.; Xing, H.; Lu, X.; Yang, Y.; Xu, J.; Li, N.; Zhao, D.; Chen, X.; Lu, Y. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther., 2019, 55, 50-61.
[http://dx.doi.org/10.1016/j.pupt.2019.02.001] [PMID: 30738974]
[79]
Munster, P.; Krop, I.E.; LoRusso, P.; Ma, C.; Siegel, B.A.; Shields, A.F.; Molnár, I.; Wickham, T.J.; Reynolds, J.; Campbell, K.; Hendriks, B.S.; Adiwijaya, B.S.; Geretti, E.; Moyo, V.; Miller, K.D. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: A phase 1 dose-escalation study. Br. J. Cancer, 2018, 119(9), 1086-1093.
[http://dx.doi.org/10.1038/s41416-018-0235-2] [PMID: 30361524]
[80]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[81]
Rezigue, M. Lipid and polymeric nanoparticles: Drug delivery applications. Integrative Nanomedicine for New Therapies; Chuturgoon, A.K.A., Ed.; Springer: Heidelberg, 2020, pp. 167-230.
[http://dx.doi.org/10.1007/978-3-030-36260-7_7]
[82]
Abd Ellah, N.H.; Abouelmagd, S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: Approaches and challenges. Expert Opin. Drug Deliv., 2017, 14(2), 201-214.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[83]
Girija, A.R. Medical Applications of Polymer/Functionalized Nanoparticle Systems; Elsevier Inc.: Amsterdam, 2018.
[84]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[85]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[86]
Saleh, T.; Soudi, T.; Shojaosadati, S.A. Aptamer functionalized curcumin-loaded Human Serum Albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int. J. Biol. Macromol., 2019, 130, 109-116.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
[87]
Baneshi, M.; Dadfarnia, S.; Shabani, A.M.H.; Sabbagh, S.K.; Haghgoo, S.; Bardania, H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int. J. Pharm., 2019, 564, 145-152.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.025] [PMID: 30978484]
[88]
Chen, Y.; Wang, J.; Wang, J.; Wang, L.; Tan, X.; Tu, K.; Tong, X.; Qi, L. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J. Biomed. Nanotechnol., 2016, 12(4), 656-666.
[http://dx.doi.org/10.1166/jbn.2016.2203] [PMID: 27301192]
[89]
Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett., 2018, 16, 101-112.
[http://dx.doi.org/10.1007/s10311-017-0670-y]
[90]
Laskar, K.; Faisal, S.M.; Rauf, A.; Ahmed, A.; Owais, M. Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr. Polym., 2017, 166, 14-23.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.082] [PMID: 28385217]
[91]
Adena, S.K.R.; Upadhyay, M.; Vardhan, H.; Mishra, B. Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using Box-Behnken experimental design. Drug Dev. Ind. Pharm., 2018, 44(3), 493-501.
[http://dx.doi.org/10.1080/03639045.2017.1402919] [PMID: 29161920]
[92]
Dey, S.; Sreenivasan, K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr. Polym., 2014, 99, 499-507.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.067] [PMID: 24274536]
[93]
Lachowicz, D.; Karabasz, A.; Bzowska, M.; Szuwarzyński, M.; Karewicz, A.; Nowakowska, M. Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. Eur. Polym. J., 2019, 113, 208-219.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[94]
Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics, 2020, 12(4), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics12040298] [PMID: 32218326]
[95]
Kallinteri, P.; Higgins, S.; Hutcheon, G.A.; St Pourçain, C.B.; Garnett, M.C. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules, 2005, 6(4), 1885-1894.
[http://dx.doi.org/10.1021/bm049200j] [PMID: 16004425]
[96]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Mokhtarzadeh, A.; Ramezani, M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm., 2017, 113, 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
[97]
Nosrati, H.; Barzegari, P.; Danafar, H.; Kheiri Manjili, H. Biotin- functionalized copolymeric PEG-PCL micelles for in vivo tumour- targeted delivery of artemisinin. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 104-114.
[http://dx.doi.org/10.1080/21691401.2018.1543199] [PMID: 30663422]
[98]
Luo, X.; Yang, Y.; Kong, F.; Zhang, L.; Wei, K. CD30 aptamer- functionalized PEG-PLGA nanoparticles for the superior delivery of doxorubicin to anaplastic large cell lymphoma cells. Int. J. Pharm., 2019, 564, 340-349.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.013] [PMID: 31002934]
[99]
Saravanakumar, K.; Hu, X.; Shanmugam, S.; Chelliah, R.; Sekar, P.; Oh, D.H.; Vijayakumar, S.; Kathiresan, K.; Wang, M.H. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch. Biochem. Biophys., 2019, 671, 143-151.
[http://dx.doi.org/10.1016/j.abb.2019.07.004] [PMID: 31283911]
[100]
Guo, J.; Gao, X.; Su, L.; Xia, H.; Gu, G.; Pang, Z.; Jiang, X.; Yao, L.; Chen, J.; Chen, H. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials, 2011, 32(31), 8010-8020.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.004] [PMID: 21788069]
[101]
Li, J.; Pu, K. Semiconducting Polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res., 2020, 53(4), 752-762.
[http://dx.doi.org/10.1021/acs.accounts.9b00569] [PMID: 32027481]
[102]
Li, J.; Huang, J.; Lyu, Y.; Huang, J.; Jiang, Y.; Xie, C.; Pu, K. Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc., 2019, 141(9), 4073-4079.
[http://dx.doi.org/10.1021/jacs.8b13507] [PMID: 30741538]
[103]
Zhen, X.; Xie, C.; Jiang, Y.; Ai, X.; Xing, B.; Pu, K. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett., 2018, 18(2), 1498-1505.
[http://dx.doi.org/10.1021/acs.nanolett.7b05292] [PMID: 29342359]
[104]
Wang, A.Z.; Bagalkot, V.; Vasilliou, C.C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M.J.; Langer, R.; Kantoff, P.W.; Bander, N.H.; Jon, S.; Farokhzad, O.C. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 2008, 3(9), 1311-1315.
[http://dx.doi.org/10.1002/cmdc.200800091] [PMID: 18613203]
[105]
Kalita, H.; Patowary, M. Fluorescent tumor-targeted polymer-bioconjugate: A potent theranostic platform for cancer therapy. Eur. Polym. J., 2020, 130, 109661.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109661]
[106]
Cheng, W.; Nie, J.; Xu, L.; Liang, C.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L.; Zeng, X. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(22), 18462-18473.
[http://dx.doi.org/10.1021/acsami.7b02457] [PMID: 28497681]
[107]
Li, Y.; Duo, Y.; Zhai, P.; He, L.; Zhong, K.; Zhang, Y.; Huang, K.; Luo, J.; Zhang, H.; Yu, X. Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Nanomedicine (Lond.), 2018, 13(14), 1753-1772.
[http://dx.doi.org/10.2217/nnm-2017-0353] [PMID: 30084727]
[108]
Leto, I.; Coronnello, M.; Righeschi, C.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Enhanced efficacy of artemisinin loaded in transferrin- conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. ChemMedChem, 2016, 11(16), 1745-1751.
[http://dx.doi.org/10.1002/cmdc.201500586] [PMID: 26999297]
[109]
Moosavian, S.A.; Abnous, K.; Akhtari, J.; Arabi, L.; Gholamzade Dewin, A.; Jafari, M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2054-2065.
[http://dx.doi.org/10.1080/21691401.2017.1408120] [PMID: 29205059]
[110]
Salahpour Anarjan, F. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct. Nano-Objects, 2019, 19, 100370.
[http://dx.doi.org/10.1016/j.nanoso.2019.100370]
[111]
Wadhawan, A.; Chatterjee, M.; Singh, G. Present scenario of bioconjugates in cancer therapy: A review. Int. J. Mol. Sci., 2019, 20(21), 1-23.
[http://dx.doi.org/10.3390/ijms20215243] [PMID: 31652668]
[112]
Govindan, S.V.; Goldenberg, D.M. New antibody conjugates in cancer therapy. Sci. World J., 2010, 10, 2070-2089.
[http://dx.doi.org/10.1100/tsw.2010.191] [PMID: 20953556]
[113]
Chudasama, V.; Maruani, A.; Caddick, S. Recent advances in the construction of antibody-drug conjugates. Nat. Chem., 2016, 8(2), 114-119.
[http://dx.doi.org/10.1038/nchem.2415] [PMID: 26791893]
[114]
Merten, H.; Brandl, F.; Plückthun, A.; Zangemeister-Wittke, U. Antibody-drug conjugates for tumor targeting-novel conjugation chemistries and the promise of non-IgG binding proteins. Bioconjug. Chem., 2015, 26(11), 2176-2185.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00260] [PMID: 26086208]
[115]
Rao, C.; Rangan, V.S.; Deshpande, S. Challenges in antibody- drug conjugate discovery: A bioconjugation and analytical perspective. Bioanalysis, 2015, 7(13), 1561-1564.
[http://dx.doi.org/10.4155/bio.15.81] [PMID: 26226306]
[116]
Li, S.; Bouchy, S.; Penninckx, S.; Marega, R.; Fichera, O.; Gallez, B.; Feron, O.; Martinive, P.; Heuskin, A.C.; Michiels, C.; Lucas, S. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine (Lond.), 2019, 14(3), 317-333.
[http://dx.doi.org/10.2217/nnm-2018-0161] [PMID: 30675822]
[117]
Patri, A.K.; Myc, A.; Beals, J.; Thomas, T.P.; Bander, N.H.; Baker, J.R., Jr Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug. Chem., 2004, 15(6), 1174-1181.
[http://dx.doi.org/10.1021/bc0499127] [PMID: 15546182]
[118]
Wu, Y.Z.; Sun, J.; Zhang, Y.; Pu, M.; Zhang, G.; He, N.; Zeng, X. Effective integration of targeted tumor imaging and therapy using functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl. Mater. Interfaces, 2017, 9(15), 13068-13078.
[http://dx.doi.org/10.1021/acsami.7b02641] [PMID: 28358188]
[119]
Andrade, L.M.; Martins, E.M.N.; Versiani, A.F.; Reis, D.S.; da Fonseca, F.G.; Souza, I.P.; Paniago, R.M.; Pereira-Maia, E.; Ladeira, L.O. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Mater. Sci. Eng. C, 2020, 107, 110203.
[http://dx.doi.org/10.1016/j.msec.2019.110203] [PMID: 31761220]
[120]
Yang, Y.; Zhao, X.; Li, X.; Yan, Z.; Liu, Z.; Li, Y. Effects of anti-CD44 monoclonal antibody IM7 carried with chitosan polylactic acid-coated nano-particles on the treatment of ovarian cancer. Oncol. Lett., 2017, 13(1), 99-104.
[http://dx.doi.org/10.3892/ol.2016.5413] [PMID: 28123528]
[121]
Hartati, Y.W.; Letelay, L.K.; Gaffar, S.; Wyantuti, S.; Bahti, H.H. Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens. Biosensing Res., 2020, 27, 100316.
[http://dx.doi.org/10.1016/j.sbsr.2019.100316]
[122]
Korb, M.L.; Hartman, Y.E.; Kovar, J.; Zinn, K.R.; Bland, K.I.; Rosenthal, E.L. Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. J. Surg. Res., 2014, 188(1), 119-128.
[http://dx.doi.org/10.1016/j.jss.2013.11.1089] [PMID: 24360117]
[123]
Liang, Y.; Liu, J.; Liu, T.; Yang, X. Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett., 2017, 14(2), 2254-2260.
[http://dx.doi.org/10.3892/ol.2017.6383] [PMID: 28789447]
[124]
Alexis, F.; Basto, P.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Zhang, L.; Pridgen, E.; Wang, A.Z.; Marein, S.L.; Westerhof, K.; Molnar, L.K.; Farokhzad, O.C. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem, 2008, 3(12), 1839-1843.
[http://dx.doi.org/10.1002/cmdc.200800122] [PMID: 19012296]
[125]
Maghsoudi, S.; Shahraki, B.T.; Rabiee, N.; Afshari, R.; Fatahi, Y.; Dinarvand, R.; Ahmadi, S.; Bagherzadeh, M.; Rabiee, M.; Tahriri, M. Recent advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. J. Drug Deliv. Sci. Technol., 2019, 53, 101146.
[http://dx.doi.org/10.1016/j.jddst.2019.101146]
[126]
Zhou, G.; Wilson, G.; Hebbard, L.; Duan, W.; Liddle, C.; George, J.; Qiao, L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget, 2016, 7(12), 13446-13463.
[http://dx.doi.org/10.18632/oncotarget.7178] [PMID: 26863567]
[127]
Das, V.; Chikkaputtaiah, C.; Pal, M. Aptamer-Conjugated Functionalized Nano-Biomaterials for Diagnostic and Targeted Drug Delivery Applications; Elsevier Ltd.: Amsterdm, 2019.
[http://dx.doi.org/10.1016/B978-0-08-102555-0.00014-5]
[128]
Zununi Vahed, S.; Fathi, N.; Samiei, M.; Maleki Dizaj, S.; Sharifi, S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J. Drug Target., 2019, 27(3), 292-299.
[http://dx.doi.org/10.1080/1061186X.2018.1491978] [PMID: 29929413]
[129]
Zhou, G.; Latchoumanin, O.; Bagdesar, M.; Hebbard, L.; Duan, W.; Liddle, C.; George, J.; Qiao, L. Aptamer-based therapeutic approaches to target cancer stem cells. Theranostics, 2017, 7(16), 3948-3961.
[http://dx.doi.org/10.7150/thno.20725] [PMID: 29109790]
[130]
Duan, T.; Xu, Z.; Sun, F.; Wang, Y.; Zhang, J.; Luo, C.; Wang, M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother., 2019, 117, 109121.
[http://dx.doi.org/10.1016/j.biopha.2019.109121] [PMID: 31252265]
[131]
Taghavi, S.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett., 2017, 400, 1-8.
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[132]
Wu, D.; Wang, W.; He, X.; Jiang, M.; Lai, C.; Hu, X.; Xi, J.; Wang, M. Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. Mater. Sci. Eng. C, 2019, 97, 827-832.
[http://dx.doi.org/10.1016/j.msec.2018.12.009] [PMID: 30678973]
[133]
Zhou, W.; Zhou, Y.; Wu, J.; Liu, Z.; Zhao, H.; Liu, J.; Ding, J. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J. Drug Target., 2014, 22(1), 57-66.
[http://dx.doi.org/10.3109/1061186X.2013.839683] [PMID: 24156476]
[134]
Shen, Y.; Zhang, J.; Hao, W.; Wang, T.; Liu, J.; Xie, Y.; Xu, S.; Liu, H. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int. J. Nanomedicine, 2018, 13, 537-553.
[http://dx.doi.org/10.2147/IJN.S149942] [PMID: 29416334]
[135]
Yazdanparast, S.; Benvidi, A.; Banaei, M.; Nikukar, H.; Tezerjani, M.D.; Azimzadeh, M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Mikrochim. Acta, 2018, 185(9), 405.
[http://dx.doi.org/10.1007/s00604-018-2918-z] [PMID: 30094655]
[136]
Vrettos, E.I.; Mező, G.; Tzakos, A.G. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J. Org. Chem., 2018, 14, 930-954.
[http://dx.doi.org/10.3762/bjoc.14.80] [PMID: 29765474]
[137]
Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev., 2018, 47(10), 3574-3620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[138]
Maggi, V.; Bianchini, F.; Portioli, E.; Peppicelli, S.; Lulli, M.; Bani, D.; Sole, R.D.; Zanardi, F.; Sartori, A.; Fiammengo, R. Gold nanoparticles functionalized with RGD-semipeptides: A simple yet highly effective targeting system for αV β3 integrins. Chemistry, 2018, 24(46), 12093-12100.
[http://dx.doi.org/10.1002/chem.201801823] [PMID: 29923243]
[139]
Mansur, A.A.P.; Carvalho, S.M.; Lobato, Z.I.P.; Leite, M.F.; Cunha, A.D.S., Jr; Mansur, H.S. Design and development of polysaccharide-doxorubicin-peptide bioconjugates for dual synergistic effects of integrin-targeted and cell-penetrating peptides for cancer chemotherapy. Bioconjug. Chem., 2018, 29(6), 1973-2000.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00208] [PMID: 29790738]
[140]
Ranjitha, V.R.; Muddegowda, U.; Ravishankar Rai, V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev. Ind. Pharm., 2019, 45(9), 1496-1505.
[http://dx.doi.org/10.1080/03639045.2019.1634090] [PMID: 31241372]
[141]
Nazemian, M.; Hojati, V.; Zavareh, S.; Madanchi, H.; Hashemi- Moghaddam, H. Immobilized peptide on the surface of poly l-DOPA/silica for targeted delivery of 5-fluorouracil to breast tumor. Int. J. Pept. Res. Ther., 2020, 26, 259-269.
[http://dx.doi.org/10.1007/s10989-019-09834-2]
[142]
Jyoti, K.; Jain, S.; Katare, O.P.; Katyal, A.; Chandra, R.; Madan, J. Non-Small Cell Lung Cancer Tumour Antigen, MUC-1 Peptide-Loaded Non-Aggregated Poly (Lactide-co-Glycolide) Nanoparticles Augmented Cellular Uptake in Mouse Professional Antigen-Presenting Cells: Optimisation and Characterisation; Taylor & Francis: New York, 2020.
[143]
Sangtani, A.; Petryayeva, E.; Susumu, K.; Oh, E.; Huston, A.L.; Lasarte-Aragones, G.; Medintz, I.L.; Algar, W.R.; Delehanty, J.B. Nanoparticle-peptide-drug bioconjugates for unassisted defeat of multidrug resistance in a model cancer cell line. Bioconjug. Chem., 2019, 30(3), 525-530.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00755] [PMID: 30735042]
[144]
Yu, M.; Li, X.; Huang, X.; Zhang, J.; Zhang, Y.; Wang, H. New cell-penetrating peptide (krp) with multiple physicochemical properties endows doxorubicin with tumor targeting and improves its therapeutic index. ACS Appl. Mater. Interfaces, 2019, 11(2), 2448-2458.
[http://dx.doi.org/10.1021/acsami.8b21027] [PMID: 30576099]
[145]
Ding, H.; Gangalum, P.R.; Galstyan, A.; Fox, I.; Patil, R.; Hubbard, P.; Murali, R.; Ljubimova, J.Y.; Holler, E. HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug. Nanomedicine, 2017, 13(2), 631-639.
[http://dx.doi.org/10.1016/j.nano.2016.07.013] [PMID: 27520726]
[146]
Hanafi-Bojd, M.Y.; Moosavian Kalat, S.A.; Taghdisi, S.M.; Ansari, L.; Abnous, K.; Malaekeh-Nikouei, B. MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(1), 13-18.
[http://dx.doi.org/10.1080/03639045.2017.1371734] [PMID: 28832225]
[147]
Mioc, M.; Pavel, I.Z.; Ghiulai, R.; Coricovac, D.E.; Farcaş, C.; Mihali, C.V.; Oprean, C.; Serafim, V.; Popovici, R.A.; Dehelean, C.A.; Shtilman, M.I.; Tsatsakis, A.M.; Şoica, C. The cytotoxic effects of betulin-conjugated gold nanoparticles as stable formulations in normal and melanoma cells. Front. Pharmacol., 2018, 9, 429.
[http://dx.doi.org/10.3389/fphar.2018.00429] [PMID: 29773989]
[148]
Shim, M.K.; Park, J.; Yoon, H.Y.; Lee, S.; Um, W.; Kim, J.H.; Kang, S.W.; Seo, J.W.; Hyun, S.W.; Park, J.H.; Byun, Y.; Kwon, I.C.; Kim, K. Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. J. Control Release, 2019, 294, 376-389.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.032] [PMID: 30550940]
[149]
de Carvalho, S.M.; Mansur, A.A.P.; Mansur, H.S.; Guedes, M.I.M.C.; Lobato, Z.I.P.; Leite, M.F. In vitro and in vivo assessment of nanotoxicity of CdS quantum dot/aminopolysaccharide bionanoconjugates. Mater. Sci. Eng. C, 2017, 71, 412-424.
[http://dx.doi.org/10.1016/j.msec.2016.10.023] [PMID: 27987725]
[150]
Li, X.; Wu, X.; Yang, H.; Li, L.; Ye, Z.; Rao, Y. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed. Pharmacother., 2019, 117, 109072.
[http://dx.doi.org/10.1016/j.biopha.2019.109072] [PMID: 31202169]
[151]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[153]
U.S. Food and Drug Administration. New Drug Therapy Approvals, 2017. Available from: https://www.fda.gov/files/about%20fda/published/2017-New-Drug-Therapy-Approvals-Report.pdf.
[154]
Kim, E.G.; Kim, K.M. Strategies and advancement in antibody- drug conjugate optimization for targeted cancer therapeutics. Biomol. Ther. (Seoul), 2015, 23(6), 493-509.
[http://dx.doi.org/10.4062/biomolther.2015.116] [PMID: 26535074]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy