Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Trends in Drug Development for the Treatment of Adenocarcinoma Breast Cancer: Thiazole, Triazole, and Thiosemicarbazone Analogues as Efficient Scaffolds

Author(s): Cauê Benito Scarim * and Chung Man Chin

Volume 22, Issue 12, 2022

Published on: 01 February, 2022

Page: [2204 - 2240] Pages: 37

DOI: 10.2174/1871520621666211201152815

Price: $65

Abstract

Thiazoles, triazoles, and thiosemicarbazones function as efficient scaffolds in compounds for the treatment of several illnesses, including cancers. In this review article, we have demonstrated various studies involving these three pharmacophore classes (thiazoles, triazoles, and thiosemicarbazones) in medicinal chemistry over the last decade (2011-2021) with a focus on MCF-7 adenocarcinoma breast cancer cells. Our objective is to facilitate drug discovery of novel chemotherapeutic agents by detailing anti-proliferative compounds.

Keywords: Thiazoles, triazoles, thiosemicarbazones, anti-proliferative, breast cancer, MCF-7.

Graphical Abstract

[1]
Kundu, J.K.; Surh, Y. J. Inflammation: gearing the journey to cancer. Mutat. Res., 2008, 659(1-2), 15-30.
[http://dx.doi.org/10.1016/j.mrrev.2008.03.002] [PMID: 18485806]
[2]
Kundu, J.K.; Surh, Y.J. Emerging avenues linking inflammation and cancer. Free Radic. Biol. Med., 2012, 52(9), 2013-2037.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.035] [PMID: 22391222]
[3]
Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol., 2006, 72(11), 1605-1621.
[http://dx.doi.org/10.1016/j.bcp.2006.06.029] [PMID: 16889756]
[4]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[5]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[6]
Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 2005, 7(3), 211-217.
[http://dx.doi.org/10.1016/j.ccr.2005.02.013] [PMID: 15766659]
[7]
Dou, X.; Tong, P.; Huang, H.; Zellmer, L.; He, Y.; Jia, Q.; Zhang, D.; Peng, J.; Wang, C.; Xu, N.; Liao, D.J. Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. J. Cancer, 2020, 11(10), 2887-2920.
[http://dx.doi.org/10.7150/jca.41324] [PMID: 32226506]
[8]
Fidler, M.M.; Bray, F.; Soerjomataram, I. The global cancer burden and human development: A review. Scand. J. Public Health, 2018, 46(1), 27-36.
[http://dx.doi.org/10.1177/1403494817715400] [PMID: 28669281]
[9]
Yusuf, S.W.; Cipolla, C.; Durand, J.B.; Lenihan, D.J. Cancer and cardiovascular disease. Cardiol. Res. Pract., 2011, 2011(1)943748
[PMID: 21904686]
[11]
Clemenceau, A.; Michou, L.; Diorio, C.; Durocher, F. Breast cancer and microcalcifications: An osteoimmunological disorder? Int. J. Mol. Sci., 2020, 21(22), 8613.
[http://dx.doi.org/10.3390/ijms21228613] [PMID: 33203195]
[12]
Escala-Garcia, M.; Guo, Q.; Dörk, T.; Canisius, S.; Keeman, R.; Dennis, J.; Beesley, J.; Lecarpentier, J.; Bolla, M.K.; Wang, Q.; Abraham, J.; Andrulis, I.L.; Anton-Culver, H.; Arndt, V.; Auer, P.L.; Beckmann, M.W.; Behrens, S.; Benitez, J.; Bermisheva, M.; Bernstein, L.; Blomqvist, C.; Boeckx, B.; Bojesen, S.E.; Bonanni, B.; Børresen-Dale, A.L.; Brauch, H.; Brenner, H.; Brentnall, A.; Brinton, L.; Broberg, P.; Brock, I.W.; Brucker, S.Y.; Burwinkel, B.; Caldas, C.; Caldés, T.; Campa, D.; Canzian, F.; Carracedo, A.; Carter, B.D.; Castelao, J.E.; Chang-Claude, J.; Chanock, S.J.; Chenevix-Trench, G.; Cheng, T.D.; Chin, S.F.; Clarke, C.L.; Cordina-Duverger, E.; Couch, F.J.; Cox, D.G.; Cox, A.; Cross, S.S.; Czene, K.; Daly, M.B.; Devilee, P.; Dunn, J.A.; Dunning, A.M.; Durcan, L.; Dwek, M.; Earl, H.M.; Ekici, A.B.; Eliassen, A.H.; Ellberg, C.; Engel, C.; Eriksson, M.; Evans, D.G.; Figueroa, J.; Flesch-Janys, D.; Flyger, H.; Gabrielson, M.; Gago-Dominguez, M.; Galle, E.; Gapstur, S.M.; García-Closas, M.; García-Sáenz, J.A.; Gaudet, M.M.; George, A.; Georgoulias, V.; Giles, G.G.; Glendon, G.; Goldgar, D.E.; González-Neira, A.; Alnæs, G.I.G.; Grip, M.; Guénel, P.; Haeberle, L.; Hahnen, E.; Haiman, C.A.; Håkansson, N.; Hall, P.; Hamann, U.; Hankinson, S.; Harkness, E.F.; Harrington, P.A.; Hart, S.N.; Hartikainen, J.M.; Hein, A.; Hillemanns, P.; Hiller, L.; Holleczek, B.; Hollestelle, A.; Hooning, M.J.; Hoover, R.N.; Hopper, J.L.; Howell, A.; Huang, G.; Humphreys, K.; Hunter, D.J.; Janni, W.; John, E.M.; Jones, M.E.; Jukkola-Vuorinen, A.; Jung, A.; Kaaks, R.; Kabisch, M.; Kaczmarek, K.; Kerin, M.J.; Khan, S.; Khusnutdi-nova, E.; Kiiski, J.I.; Kitahara, C.M.; Knight, J.A.; Ko, Y.D.; Koppert, L.B.; Kosma, V.M.; Kraft, P.; Kristensen, V.N.; Krüger, U.; Kühl, T.; Lambrechts, D.; Le Marchand, L.; Lee, E.; Lejbkowicz, F.; Li, L.; Lindblom, A.; Lindström, S.; Linet, M.; Lissowska, J.; Lo, W.Y.; Loibl, S. Lubiński, J.; Lux, M.P.; MacInnis, R.J.; Maierthaler, M.; Maishman, T.; Makalic, E.; Mannermaa, A.; Manoochehri, M.; Man-oukian, S.; Margolin, S.; Martinez, M.E.; Mavroudis, D.; McLean, C.; Meindl, A.; Middha, P.; Miller, N.; Milne, R.L.; Moreno, F.; Mulli-gan, A.M.; Mulot, C.; Nassir, R.; Neuhausen, S.L.; Newman, W.T.; Nielsen, S.F.; Nordestgaard, B.G.; Norman, A.; Olsson, H.; Orr, N.; Pankratz, V.S.; Park-Simon, T.W.; Perez, J.I.A.; Pérez-Barrios, C.; Peterlongo, P.; Petridis, C.; Pinchev, M.; Prajzendanc, K.; Prentice, R.; Presneau, N.; Prokofieva, D.; Pylkäs, K.; Rack, B.; Radice, P.; Ramachandran, D.; Rennert, G.; Rennert, H.S.; Rhenius, V.; Romero, A.; Roylance, R.; Saloustros, E.; Sawyer, E.J.; Schmidt, D.F.; Schmutzler, R.K.; Schneeweiss, A.; Schoemaker, M.J.; Schumacher, F.; Schwentner, L.; Scott, R.J.; Scott, C.; Seynaeve, C.; Shah, M.; Simard, J.; Smeets, A.; Sohn, C.; Southey, M.C.; Swerdlow, A.J.; Talhouk, A.; Tamimi, R.M.; Tapper, W.J.; Teixeira, M.R.; Tengström, M.; Terry, M.B.; Thöne, K.; Tollenaar, R.A.E.M.; Tomlinson, I.; Torres, D.; Truong, T.; Turman, C.; Turnbull, C.; Ulmer, H.U.; Untch, M.; Vachon, C.; van Asperen, C.J.; van den Ouweland, A.M.W.; van Veen, E.M.; Wendt, C.; Whittemore, A.S.; Willett, W.; Winqvist, R.; Wolk, A.; Yang, X.R.; Zhang, Y.; Easton, D.F.; Fasching, P.A.; Nevanlinna, H.; Eccles, D.M.; Pharoah, P.D.P.; Schmidt, M.K. Genome-wide association study of germline variants and breast cancer-specific mortali-ty. Br. J. Cancer, 2019, 120(6), 647-657.
[http://dx.doi.org/10.1038/s41416-019-0393-x] [PMID: 30787463]
[13]
Hamdi, Y.; Soucy, P.; Adoue, V.; Michailidou, K.; Canisius, S.; Lemaçon, A.; Droit, A.; Andrulis, I.L.; Anton-Culver, H.; Arndt, V.; Baynes, C.; Blomqvist, C.; Bogdanova, N.V.; Bojesen, S.E.; Bolla, M.K.; Bonanni, B.; Borresen-Dale, A.L.; Brand, J.S.; Brauch, H.; Bren-ner, H.; Broeks, A.; Burwinkel, B.; Chang-Claude, J.; Couch, F.J.; Cox, A.; Cross, S.S.; Czene, K.; Darabi, H.; Dennis, J.; Devilee, P.; Dörk, T.; Dos-Santos-Silva, I.; Eriksson, M.; Fasching, P.A.; Figueroa, J.; Flyger, H.; García-Closas, M.; Giles, G.G.; Goldberg, M.S.; González-Neira, A.; Grenaker-Alnæs, G.; Guénel, P.; Haeberle, L.; Haiman, C.A.; Hamann, U.; Hallberg, E.; Hooning, M.J.; Hopper, J.L.; Jakubow-ska, A.; Jones, M.; Kabisch, M.; Kataja, V.; Lambrechts, D.; Le Marchand, L.; Lindblom, A.; Lubinski, J.; Mannermaa, A.; Maranian, M.; Margolin, S.; Marme, F.; Milne, R.L.; Neuhausen, S.L.; Nevanlinna, H.; Neven, P.; Olswold, C.; Peto, J.; Plaseska-Karanfilska, D.; Pylkäs, K.; Radice, P.; Rudolph, A.; Sawyer, E.J.; Schmidt, M.K.; Shu, X.O.; Southey, M.C.; Swerdlow, A.; Tollenaar, R.A.; Tomlinson, I.; Torres, D.; Truong, T.; Vachon, C.; Van Den Ouweland, A.M.; Wang, Q.; Winqvist, R.; Zheng, W.; Benitez, J.; Chenevix-Trench, G.; Dunning, A.M.; Pharoah, P.D.; Kristensen, V.; Hall, P.; Easton, D.F.; Pastinen, T.; Nord, S.; Simard, J. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7(49), 80140-80163.
[http://dx.doi.org/10.18632/oncotarget.12818] [PMID: 27792995]
[14]
Picon-Ruiz, M.; Morata-Tarifa, C.; Valle-Goffin, J.J.; Friedman, E.R.; Slingerland, J.M. Obesity and adverse breast cancer risk and out-come: Mechanistic insights and strategies for intervention. CA Cancer J. Clin., 2017, 67(5), 378-397.
[http://dx.doi.org/10.3322/caac.21405] [PMID: 28763097]
[15]
Bodai, B.I.; Tuso, P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm. J., 2015, 19(2), 48-79.
[http://dx.doi.org/10.7812/TPP/14-241] [PMID: 25902343]
[16]
Gray, J.M.; Rasanayagam, S.; Engel, C.; Rizzo, J. State of the Evidence 2017: An update on the connection between breast cancer and the environment. Environ. Health, 2017, 16(1), 94.
[http://dx.doi.org/10.1186/s12940-017-0287-4] [PMID: 28865460]
[17]
Shipitsin, M.; Campbell, L.L.; Argani, P.; Weremowicz, S.; Bloushtain-Qimron, N.; Yao, J.; Nikolskaya, T.; Serebryiskaya, T.; Beroukhim, R.; Hu, M.; Halushka, M.K.; Sukumar, S.; Parker, L.M.; Anderson, K.S.; Harris, L.N.; Garber, J.E.; Richardson, A.L.; Schnitt, S.J.; Ni-kolsky, Y.; Gelman, R.S.; Polyak, K. Molecular definition of breast tumor heterogeneity. Cancer Cell, 2007, 11(3), 259-273.
[http://dx.doi.org/10.1016/j.ccr.2007.01.013] [PMID: 17349583]
[18]
Hait, W.N. Anticancer drug development: the grand challenges. Nat. Rev. Drug Discov., 2010, 9(4), 253-254.
[http://dx.doi.org/10.1038/nrd3144] [PMID: 20369394]
[19]
Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Sales Júnior, P.A.; Romanha, A.J.; Murta, S.M.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[20]
Santos, B.M.D.; Gonzaga, D.T.G.; da Silva, F.C.; Ferreira, V.F.; Garcia, C.R.S. Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development. Biomolecules, 2020, 10(8), 1197.
[http://dx.doi.org/10.3390/biom10081197] [PMID: 32824696]
[21]
Demoro, B.; Sarniguet, C.; Sánchez-Delgado, R.; Rossi, M.; Liebowitz, D.; Caruso, F.; Olea-Azar, C.; Moreno, V.; Medeiros, A.; Comini, M.A.; Otero, L.; Gambino, D. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: Potential anti-trypanosomal agents. Dalton Trans., 2012, 41(5), 1534-1543.
[http://dx.doi.org/10.1039/C1DT11519G] [PMID: 22138896]
[22]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. Eur. J. Med. Chem., 2016, 117, 179-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.010] [PMID: 27092415]
[23]
Haraguchi, S.K.; Silva, A.A.; Vidotti, G.J.; dos Santos, P.V.; Garcia, F.P.; Pedroso, R.B.; Nakamura, C.V.; de Oliveira, C.M.A.; da Silva, C.C. Antitrypanasomal activity of novel benzaldehyde-thiosemicarbazone derivatives from kaurenoic acid. Molecules, 2011, 16(2), 1166-1180.
[http://dx.doi.org/10.3390/molecules16021166] [PMID: 21270733]
[24]
Franklim, T.N.; Freire-de-Lima, L.; de Nazareth Sá Diniz, J.; Previato, J.O.; Castro, R.N.; Mendonça-Previato, L.; de Lima, M.E.F. Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules, 2013, 18(6), 6366-6382.
[http://dx.doi.org/10.3390/molecules18066366] [PMID: 23760033]
[25]
Borcea, A.M. Ionuț I.; Crișan, O.; Oniga, O. An Overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624.
[http://dx.doi.org/10.3390/molecules26030624] [PMID: 33504100]
[26]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[27]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; Dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone deriva-tives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[28]
Rogolino, D.; Gatti, A.; Carcelli, M.; Pelosi, G.; Bisceglie, F.; Restivo, F.M.; Degola, F.; Buschini, A.; Montalbano, S.; Feretti, D.; Zani, C. Thiosemicarbazone scaffold for the design of antifungal and antiaflatoxigenic agents: Evaluation of ligands and related copper complexes. Sci. Rep., 2017, 7(1), 11214.
[http://dx.doi.org/10.1038/s41598-017-11716-w] [PMID: 28894265]
[29]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[30]
Strzelecka, M. Pharmaceuticals (Basel), 2021, 14(3), 224.
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[31]
Mohammad, H.; Reddy, P.V.N.; Monteleone, D.; Mayhoub, A.S.; Cushman, M.; Hammac, G.K.; Seleem, M.N. Antibacterial Characteriza-tion of novel synthetic thiazole compounds against methicillin-resistant Staphylococcus pseudintermedius. PLoS One, 2015, 10(6)e0130385
[http://dx.doi.org/10.1371/journal.pone.0130385] [PMID: 26086336]
[32]
Khan, S.A.; Asiri, A.M.; Al-Amry, K.; Malik, M.A. Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone and its Cu(II), Ni(II), and Co(II). Complexes. Sci. World J., 2014, 2014592375
[http://dx.doi.org/10.1155/2014/592375] [PMID: 24523641]
[33]
Ohui, K.; Afanasenko, E.; Bacher, F.; Ting, R.L.X.; Zafar, A.; Blanco-Cabra, N.; Torrents, E.; Dömötör, O.; May, N.V.; Darvasiova, D.; Enyedy, É.A. Popović-Bijelić A.; Reynisson, J.; Rapta, P.; Babak, M.V.; Pastorin, G.; Arion, V.B. New water-soluble copper(ii) complex-es with morpholine-thiosemicarbazone hybrids: Insights into the anticancer and antibacterial mode of action. J. Med. Chem., 2019, 62(2), 512-530.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01031] [PMID: 30507173]
[34]
Oniga, S.D.; Araniciu, C.; Palage, M.D.; Popa, M.; Chifiriuc, M.C.; Marc, G.; Pirnau, A.; Stoica, C.I.; Lagoudis, I.; Dragoumis, T.; Oniga, O. New 2-phenylthiazoles as potential sortase A inhibitors: Synthesis, biological evaluation and molecular docking. Molecules, 2017, 22(11), 1827.
[http://dx.doi.org/10.3390/molecules22111827] [PMID: 29077016]
[35]
Li, Y.; Bionda, N.; Fleeman, R.; Wang, H.; Ozawa, A.; Houghten, R.A.; Shaw, L. Identification of 5,6-dihydroimidazo[2,1-b]thiazoles as a new class of antimicrobial agents. Bioorg. Med. Chem., 2016, 24(21), 5633-5638.
[http://dx.doi.org/10.1016/j.bmc.2016.09.027] [PMID: 27663549]
[36]
Zhang, J.; Van Den Heuvel, J.; Debets, A.J.M.; Verweij, P.E.; Melchers, W.J.G.; Zwaan, B.J.; Schoustra, S.E. Evolution of cross-resistance to medical triazoles in Aspergillus Fumigatus through selection pressure of environmental fungicides., 2017.
[37]
Vora, D.; Upadhyay, N.; Tilekar, K.; Jain, V.; Ramaa, C.S. Development of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis. Iran. J. Pharm. Res., 2019, 18(4), 1742-1758.
[http://dx.doi.org/10.22037/ijpr.2019.112039.13495] [PMID: 32184843]
[38]
Venugopala, K.N.; Kandeel, M.; Pillay, M.; Deb, P.K.; Abdallah, H.H.; Mahomoodally, M.F.; Chopra, D. Anti-tubercular properties of 4-amino-5-(4-fluoro-3- phenoxyphenyl)-4H -1,2,4-triazole-3-thiol and its Schiff bases: Computational input and molecular dynamics. Antibiotics (Basel), 2020, 9(9), 559.
[http://dx.doi.org/10.3390/antibiotics9090559] [PMID: 32878018]
[39]
Karczmarzyk, Z.; Swatko-Ossor, M.; Wysocki, W.; Drozd, M.; Ginalska, G.; Pachuta-Stec, A.; Pitucha, M. New application of 1,2,4-triazole derivatives as antitubercular agents. Structure, in vitro screening and docking studies. Molecules, 2020, 25(24), 6033.
[http://dx.doi.org/10.3390/molecules25246033] [PMID: 33352814]
[40]
Yan, X.; Lv, Z.; Wen, J.; Zhao, S.; Xu, Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem., 2018, 143, 899-904.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.090] [PMID: 29227930]
[41]
Garg, A.; Borah, D.; Trivedi, P.; Gogoi, D.; Chaliha, A.K.; Ali, A.A.; Chetia, D.; Chaturvedi, V.; Sarma, D. A Simple work-up-free, solvent-free approach to novel amino acid linked 1,4-disubstituted 1,2,3-triazoles as potent antituberculosis agents. ACS Omega, 2020, 5(46), 29830-29837.
[http://dx.doi.org/10.1021/acsomega.0c03862] [PMID: 33251417]
[42]
Özadali Sari, K.; Ünsal Tan, O.; Sriram, D.; Balkan, A. Some new hydrazone derivatives bearing the 1,2,4-triazole moiety as potential antimycobacterial agents. J. Pharm. Sci., 2019, 16(4), 432-436.
[http://dx.doi.org/10.4274/tjps.galenos.2018.43660] [PMID: 32454746]
[43]
Beteck, R.M.; Seldon, R.; Jordaan, A.; Warner, D.F.; Hoppe, H.C.; Laming, D.; Khanye, S.D. New quinolone-based thiosemicarbazones showing activity against Plasmodium falciparum and Mycobacterium tuberculosis. Molecules, 2019, 24(9), 1740.
[http://dx.doi.org/10.3390/molecules24091740] [PMID: 31060249]
[44]
Alsayed, S.S.R.; Lun, S.; Luna, G.; Beh, C.C.; Payne, A.D.; Foster, N.; Bishai, W.R.; Gunosewoyo, H. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Advances, 2020, 10(13), 7523-7540.
[http://dx.doi.org/10.1039/C9RA10663D] [PMID: 33014349]
[45]
Moraski, G.C.; Deboosère, N.; Marshall, K.L.; Weaver, H.A.; Vandeputte, A.; Hastings, C.; Woolhiser, L.; Lenaerts, A.J.; Brodin, P.; Mil-ler, M.J. Intracellular and in vivo evaluation of imidazo[2,1-b]thiazole-5-carboxamide anti-tuberculosis compounds. PLoS One, 2020, 15(1)e0227224
[http://dx.doi.org/10.1371/journal.pone.0227224] [PMID: 31905374]
[46]
Geronikaki, A.; Hadjipavlou-Litina, D.; Zablotskaya, A.; Segal, I. Organosilicon-containing thiazole derivatives as potential lipoxygenase inhibitors and anti-inflammatory agents. Bioinorg. Chem. Appl., 2007, 2007, 92145.
[http://dx.doi.org/10.1155/2007/92145] [PMID: 18256725]
[47]
Shawish, H.B.; Wong, W.Y.; Wong, Y.L.; Loh, S.W.; Looi, C.Y.; Hassandarvish, P.; Phan, A.Y.L.; Wong, W.F.; Wang, H.; Paterson, I.C.; Ea, C.K.; Mustafa, M.R.; Maah, M.J. Nickel(II) complex of polyhydroxybenzaldehyde N4-thiosemicarbazone exhibits anti-inflammatory activity by inhibiting NF-κB transactivation. PLoS One, 2014, 9(6)e100933
[http://dx.doi.org/10.1371/journal.pone.0100933] [PMID: 24977407]
[48]
Oniga, S.D.; Pacureanu, L.; Stoica, C.I.; Palage, M.D. Crăciun, A.; Rusu, L.R.; Crisan, E.L.; Araniciu, C. COX Inhibition profile and mo-lecular docking studies of some 2-(trimethoxyphenyl)-thiazoles. Molecules, 2017, 22(9), 1507.
[http://dx.doi.org/10.3390/molecules22091507] [PMID: 28891941]
[49]
Al-Omar, M.A.; Al-Abdullah, E.S.; Shehata, I.A.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 5-(1-adamantyl)-4-arylideneamino-3-mercapto-1,2,4-triazoles and related derivatives. Molecules, 2010, 15(4), 2526-2550.
[http://dx.doi.org/10.3390/molecules15042526] [PMID: 20428062]
[50]
Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M. Faheem; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their In Silico stud-ies. ACS Omega, 2020, 5(39), 25228-25239.
[http://dx.doi.org/10.1021/acsomega.0c03386] [PMID: 33043201]
[51]
Al-Abdullah, E.S.; Asiri, H.H.; Lahsasni, S.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols. Drug Des. Devel. Ther., 2014, 8, 505-518.
[http://dx.doi.org/10.2147/DDDT.S62465] [PMID: 24872681]
[52]
Araniciu, C.; Pârvu, A.E.; Palage, M.D.; Oniga, S.D.; Benedec, D.; Oniga, I.; Oniga, O. The effect of some 4,2 and 5,2 bisthiazole deriva-tives on nitro-oxidative stress and phagocytosis in acute experimental inflammation. Molecules, 2014, 19(7), 9240-9256.
[http://dx.doi.org/10.3390/molecules19079240] [PMID: 24991757]
[53]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[54]
Assis, S.P.D.O.; da Silva, M.T.; de Oliveira, R.N.; Lima, V.L.D.M. Synthesis and anti-inflammatory activity of new alkyl-substituted phthalimide 1H-1,2,3-triazole derivatives. ScientificWorldJournal, 2012, 2012925925
[http://dx.doi.org/10.1100/2012/925925] [PMID: 23304092]
[55]
Galstyan, A.S.; Martiryan, A.I.; Grigoryan, K.R.; Ghazaryan, A.G.; Samvelyan, M.A.; Ghochikyan, T.V.; Nenajdenko, V.G. Synthesis of carvone-derived 1,2,3-triazoles study of their antioxidant properties and interaction with bovine serum albumin. Molecules, 2018, 23(11), 2991.
[http://dx.doi.org/10.3390/molecules23112991] [PMID: 30453471]
[56]
Yakan, H. Preparation, structure elucidation, and antioxidant activity of new bis(thiosemicarbazone) derivatives. Turk. J. Chem., 2020, 44(4), 1085-1099.
[http://dx.doi.org/10.3906/kim-2002-76] [PMID: 33488214]
[57]
Secci, D.; Carradori, S.; Petzer, A.; Guglielmi, P.; D’Ascenzio, M.; Chimenti, P.; Bagetta, D.; Alcaro, S.; Zengin, G.; Petzer, J.P.; Ortuso, F. 4-(3-nitrophenyl)thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: Synthesis, biological activity and computational analysis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 597-612.
[http://dx.doi.org/10.1080/14756366.2019.1571272] [PMID: 30727777]
[58]
Yehye, W.A.; Abdul Rahman, N.; Saad, O.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M.; Matlob, A.A. Rational design and synthesis of new, high efficiency, multipotent Schiff base-1,2,4-triazole antioxidants bearing butylated hydroxytoluene moie-ties. Molecules, 2016, 21(7), 847.
[http://dx.doi.org/10.3390/molecules21070847] [PMID: 27367658]
[59]
Nazarbahjat, N.; Nordin, N.; Abdullah, Z.; Abdulla, M.A.; Yehye, W.A.; Halim, S.N.A.; Kee, C.H.; Ariffin, A. New thiosemicarbazides and 1,2,4-triazolethiones derived from 2-(ethylsulfanyl) benzohydrazide as potent antioxidants. Molecules, 2014, 19(8), 11520-11537.
[http://dx.doi.org/10.3390/molecules190811520] [PMID: 25093989]
[60]
Nastasă C.; Tiperciuc, B.; Duma, M.; Benedec, D.; Oniga, O. New hydrazones bearing thiazole scaffold: Synthesis, characterization, anti-microbial, and antioxidant investigation. Molecules, 2015, 20(9), 17325-17338.
[http://dx.doi.org/10.3390/molecules200917325] [PMID: 26393564]
[61]
Barbuceanu, S.F.; Ilies, D.C.; Saramet, G.; Uivarosi, V.; Draghici, C.; Radulescu, V. Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int. J. Mol. Sci., 2014, 15(6), 10908-10925.
[http://dx.doi.org/10.3390/ijms150610908] [PMID: 24941252]
[62]
Yang, L.; Liu, H.; Xia, D.; Wang, S. Antioxidant properties of camphene-based thiosemicarbazones: experimental and theoretical evalua-tion. Molecules, 2020, 25(5), 1192.
[http://dx.doi.org/10.3390/molecules25051192] [PMID: 32155763]
[63]
Grozav, A.; Porumb, I.D. Găină L.I.; Filip, L.; Hanganu, D. Cytotoxicity and antioxidant potential of novel 2-(2-((1H-indol-5yl)methylene)-hydrazinyl)-thiazole Derivatives. Molecules, 2017, 22(2), 260.
[http://dx.doi.org/10.3390/molecules22020260] [PMID: 28208774]
[64]
Almasirad, A.; Mousavi, Z.; Tajik, M.; Assarzadeh, M.J.; Shafiee, A. Synthesis, analgesic and anti-inflammatory activities of new methyl-imidazolyl-1,3,4-oxadiazoles and 1,2,4-triazoles. Daru, 2014, 22(1), 22.
[http://dx.doi.org/10.1186/2008-2231-22-22] [PMID: 24450412]
[65]
Harris, H.M.; Eans, S.O.; Ganno, M.L.; Davis, J.C.; Dooley, C.T.; McLaughlin, J.P.; Nefzi, A. Antinociceptive activity of thiazole-containing cyclized DAMGO and Leu-(Met) enkephalin analogs. Org. Biomol. Chem., 2019, 17(21), 5305-5315.
[http://dx.doi.org/10.1039/C9OB00882A] [PMID: 31094391]
[66]
Pember, S.O.; Mejia, G.L.; Price, T.J.; Pasteris, R.J. Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties. Bioorg. Med. Chem. Lett., 2016, 26(12), 2965-2973.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.061] [PMID: 27130358]
[67]
Saad, H.A.; Osman, N.A.; Moustafa, A.H. Synthesis and analgesic activity of some new pyrazoles and triazoles bearing a 6,8-dibromo-2-methylquinazoline moiety. Molecules, 2011, 16(12), 10187-10201.
[http://dx.doi.org/10.3390/molecules161210187] [PMID: 22157581]
[68]
Modi, G.; Antonio, T.; Reith, M.; Dutta, A. Structural modifications of neuroprotective anti-Parkinsonian (-)-N6-(2-(4-(biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): an effort toward the improvement of in vivo efficacy of the parent molecule. J. Med. Chem., 2014, 57(4), 1557-1572.
[http://dx.doi.org/10.1021/jm401883v] [PMID: 24471976]
[69]
Kaproń B.; Łuszczki, J.; Paneth, A.; Wujec, M.; Siwek, A.; Karcz, T.; Mordyl, B.; Głuch-Lutwin, M.; Gryboś A.; Nowak, G.; Pająk, K.; Jóźwiak, K.; Tomczykowski, A.; Plech, T. Molecular mechanism of action and safety of 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione - a novel anticonvulsant drug candidate. Int. J. Med. Sci., 2017, 14(8), 741-749.
[http://dx.doi.org/10.7150/ijms.20001] [PMID: 28824309]
[70]
Jiang, Z.G.; Lebowitz, M.S.; Ghanbari, H.A. Neuroprotective activity of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (PAN-811), a cancer therapeutic agent. CNS Drug Rev., 2006, 12(1), 77-90.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00077.x] [PMID: 16834759]
[71]
Huuskonen, M.T.; Tuo, Q.Z.; Loppi, S.; Dhungana, H.; Korhonen, P.; McInnes, L.E.; Donnelly, P.S.; Grubman, A.; Wojciechowski, S.; Lejavova, K.; Pomeshchik, Y.; Periviita, L.; Kosonen, L.; Giordano, M.; Walker, F.R.; Liu, R.; Bush, A.I.; Koistinaho, J.; Malm, T.; White, A.R.; Lei, P.; Kanninen, K.M. The copper bis(thiosemicarbazone) complex CuII(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu. Neurotherapeutics, 2017, 14(2), 519-532.
[http://dx.doi.org/10.1007/s13311-016-0504-9] [PMID: 28050710]
[72]
Jones, M.R.; Mathieu, E.; Dyrager, C.; Faissner, S.; Vaillancourt, Z.; Korshavn, K.J.; Lim, M.H.; Ramamoorthy, A.; Wee Yong, V.; Tsut-sui, S.; Stys, P.K.; Storr, T. Multi-target-directed phenol-triazole ligands as therapeutic agents for Alzheimer’s disease. Chem. Sci. (Camb.), 2017, 8(8), 5636-5643.
[http://dx.doi.org/10.1039/C7SC01269A] [PMID: 28989601]
[73]
Bica, L.; Liddell, J.R.; Donnelly, P.S.; Duncan, C.; Caragounis, A.; Volitakis, I.; Paterson, B.M.; Cappai, R.; Grubman, A.; Camakaris, J.; Crouch, P.J.; White, A.R. Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation. PLoS One, 2014, 9(2)e90070
[http://dx.doi.org/10.1371/journal.pone.0090070] [PMID: 24587210]
[74]
Qin, Z.; Luo, J.; VandeVrede, L.; Tavassoli, E.; Fa’, M.; Teich, A.F.; Arancio, O.; Thatcher, G.R.J. Design and synthesis of neuroprotec-tive methylthiazoles and modification as NO-chimeras for neurodegenerative therapy. J. Med. Chem., 2012, 55(15), 6784-6801.
[http://dx.doi.org/10.1021/jm300353r] [PMID: 22779770]
[75]
Avila, B.; Roth, A.; Streets, H.; Dwyer, D.S.; Kurth, M.J. Triazolbenzo[d]thiazoles: Efficient synthesis and biological evaluation as neuro-protective agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5976-5978.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.022] [PMID: 22892117]
[76]
Ghosh, B.; Antonio, T.; Zhen, J.; Kharkar, P.; Reith, M.E.A.; Dutta, A.K. Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson’s disease animal models. J. Med. Chem., 2010, 53(3), 1023-1037.
[http://dx.doi.org/10.1021/jm901184n] [PMID: 20038106]
[77]
Ferroni, C.; Pepe, A.; Kim, Y.S.; Lee, S.; Guerrini, A.; Parenti, M.D.; Tesei, A.; Zamagni, A.; Cortesi, M.; Zaffaroni, N.; De Cesare, M.; Beretta, G.L.; Trepel, J.B.; Malhotra, S.V.; Varchi, G. 1,4-substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. J. Med. Chem., 2017, 60(7), 3082-3093.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00105] [PMID: 28272894]
[78]
Serda, M.; Kalinowski, D.S.; Rasko, N. Potůčková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Małecki, J.G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Gołąb, J.; Simůnek, T.; Richardson, D.R.; Polanski, J. Exploring the anti-cancer activity of novel thiosemicarbazones gen-erated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One, 2014, 9(10)e110291
[http://dx.doi.org/10.1371/journal.pone.0110291] [PMID: 25329549]
[79]
Karlsson, H.; Fryknäs, M.; Strese, S.; Gullbo, J.; Westman, G.; Bremberg, U.; Sjöblom, T.; Pandzic, T.; Larsson, R.; Nygren, P. Mechanis-tic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget, 2017, 8(18), 30217-30234.
[http://dx.doi.org/10.18632/oncotarget.16324] [PMID: 28415818]
[80]
Yalowich, J.C.; Wu, X.; Zhang, R.; Kanagasabai, R.; Hornbaker, M.; Hasinoff, B.B. The anticancer thiosemicarbazones Dp44mT and triap-ine lack inhibitory effects as catalytic inhibitors or poisons of DNA topoisomerase II&#945. Biochem. Pharmacol., 2012, 84(1), 52-58.
[http://dx.doi.org/10.1016/j.bcp.2012.03.021] [PMID: 22503743]
[81]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[82]
Costa, A.V.; Oliveira, M.V.L.; Pinto, R.T.; Moreira, L.C.; Gomes, E.M.C.; Alves, T.A.; Pinheiro, P.F.; Queiroz, V.T.; Vieira, L.F.A.; Teixeira, R.R.; Júnior, W.C.J. Synthesis of novel glycerol-derived 1,2,3-triazoles and evaluation of their fungicide, phytotoxic and cytotox-ic activities. Molecules, 2017, 22(10), 1666.
[http://dx.doi.org/10.3390/molecules22101666] [PMID: 28991165]
[83]
Altıntop, M.D.; Temel, H.E.; Sever, B.; Akalın Çiftçi, G.; Kaplancıklı Z.A. Synthesis and evaluation of new benzodioxole- based thio-semicarbazone derivatives as potential antitumor agents. Molecules, 2016, 21(11), 1598.
[http://dx.doi.org/10.3390/molecules21111598] [PMID: 27879683]
[84]
Bormio Nunes, J.H.; Hager, S.; Mathuber, M.; Pósa, V.; Roller, A.; Enyedy, É.A.; Stefanelli, A.; Berger, W.; Keppler, B.K.; Heffeter, P.; Kowol, C.R. Cancer cell resistance against the clinically investigated thiosemicarbazone COTI-2 is based on formation of intracellular cop-per complex glutathione adducts and ABCC1-mediated efflux. J. Med. Chem., 2020, 63(22), 13719-13732.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01277] [PMID: 33190481]
[85]
Mabkhot, Y.N.; Alharbi, M.M.; Al-Showiman, S.S.; Ghabbour, H.A.; Kheder, N.A.; Soliman, S.M.; Frey, W. Stereoselective synthesis, X-ray analysis, computational studies and biological evaluation of new thiazole derivatives as potential anticancer agents. Chem. Cent. J., 2018, 12(1), 56.
[http://dx.doi.org/10.1186/s13065-018-0420-7] [PMID: 29748782]
[86]
Papadopoulou, M.V.; Ji, M.; Bloomer, W.D. Novel fluorinated hypoxia-targeted compounds as Non-invasive probes for measuring tumor-hypoxia by 19F-magnetic resonance spectroscopy (19F-MRS). Anticancer Res., 2006, 26(5A), 3253-3258.
[PMID: 17094437]
[87]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[88]
Zhao, M.Y.; Yin, Y.; Yu, X.W.; Sangani, C.B.; Wang, S.F.; Lu, A.M.; Yang, L.F.; Lv, P.C.; Jiang, M.G.; Zhu, H.L. Synthesis, biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as BRAF(V⁶⁰⁰E) inhibitors. Bioorg. Med. Chem., 2015, 23(1), 46-54.
[http://dx.doi.org/10.1016/j.bmc.2014.11.029] [PMID: 25496804]
[91]
Ho, W.K.; Tan, M.M.; Mavaddat, N.; Tai, M.C.; Mariapun, S.; Li, J.; Ho, P.J.; Dennis, J.; Tyrer, J.P.; Bolla, M.K.; Michailidou, K.; Wang, Q.; Kang, D.; Choi, J.Y.; Jamaris, S.; Shu, X.O.; Yoon, S.Y.; Park, S.K.; Kim, S.W.; Shen, C.Y.; Yu, J.C.; Tan, E.Y.; Chan, P.M.Y.; Muir, K.; Lophatananon, A.; Wu, A.H.; Stram, D.O.; Matsuo, K.; Ito, H.; Chan, C.W.; Ngeow, J.; Yong, W.S.; Lim, S.H.; Lim, G.H.; Kwong, A.; Chan, T.L.; Tan, S.M.; Seah, J.; John, E.M.; Kurian, A.W.; Koh, W.P.; Khor, C.C.; Iwasaki, M.; Yamaji, T.; Tan, K.M.V.; Tan, K.T.B.; Spinelli, J.J.; Aronson, K.J.; Hasan, S.N.; Rahmat, K.; Vijayananthan, A.; Sim, X.; Pharoah, P.D.P.; Zheng, W.; Dunning, A.M.; Simard, J.; van Dam, R.M.; Yip, C.H.; Taib, N.A.M.; Hartman, M.; Easton, D.F.; Teo, S.H.; Antoniou, A.C. European polygenic risk score for predic-tion of breast cancer shows similar performance in Asian women. Nat. Commun., 2020, 11(1), 3833.
[http://dx.doi.org/10.1038/s41467-020-17680-w] [PMID: 32737321]
[92]
Howell, A.; Anderson, A.S.; Clarke, R.B.; Duffy, S.W.; Evans, D.G.; Garcia-Closas, M.; Gescher, A.J.; Key, T.J.; Saxton, J.M.; Harvie, M.N. Risk determination and prevention of breast cancer. Breast Cancer Res., 2014, 16(5), 446.
[http://dx.doi.org/10.1186/s13058-014-0446-2] [PMID: 25467785]
[93]
Mavaddat, N.; Pharoah, P.D.P.; Michailidou, K.; Tyrer, J.; Brook, M.N.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Shah, M.; Lu-ben, R.; Brown, J.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Czene, K.; Darabi, H.; Eriksson, M.; Peto, J.; Dos-Santos-Silva, I.; Dudbridge, F.; Johnson, N.; Schmidt, M.K.; Broeks, A.; Verhoef, S.; Rutgers, E.J.; Swerdlow, A.; Ashworth, A.; Orr, N.; Schoe-maker, M.J.; Figueroa, J.; Chanock, S.J.; Brinton, L.; Lissowska, J.; Couch, F.J.; Olson, J.E.; Vachon, C.; Pankratz, V.S.; Lambrechts, D.; Wildiers, H.; Van Ongeval, C.; van Limbergen, E.; Kristensen, V.; Grenaker Alnæs, G.; Nord, S.; Borresen-Dale, A.L.; Nevanlinna, H.; Muranen, T.A.; Aittomäki, K.; Blomqvist, C.; Chang-Claude, J.; Rudolph, A.; Seibold, P.; Flesch-Janys, D.; Fasching, P.A.; Haeberle, L.; Ekici, A.B.; Beckmann, M.W.; Burwinkel, B.; Marme, F.; Schneeweiss, A.; Sohn, C.; Trentham-Dietz, A.; Newcomb, P.; Titus, L.; Egan, K.M.; Hunter, D.J.; Lindstrom, S.; Tamimi, R.M.; Kraft, P.; Rahman, N.; Turnbull, C.; Renwick, A.; Seal, S.; Li, J.; Liu, J.; Humphreys, K.; Benitez, J.; Pilar Zamora, M.; Arias Perez, J.I.; Menéndez, P.; Jakubowska, A.; Lubinski, J.; Jaworska-Bieniek, K.; Durda, K.; Bogdanova, N.V.; Antonenkova, N.N.; Dörk, T.; Anton-Culver, H.; Neuhausen, S.L.; Ziogas, A.; Bernstein, L.; Devilee, P.; Tollenaar, R.A.; Seynaeve, C.; van Asperen, C.J.; Cox, A.; Cross, S.S.; Reed, M.W.; Khusnutdinova, E.; Bermisheva, M.; Prokofyeva, D.; Takhirova, Z.; Meindl, A.; Schmutzler, R.K.; Sutter, C.; Yang, R.; Schürmann, P.; Bremer, M.; Christiansen, H.; Park-Simon, T.W.; Hillemanns, P.; Guénel, P.; Tru-ong, T.; Menegaux, F.; Sanchez, M.; Radice, P.; Peterlongo, P.; Manoukian, S.; Pensotti, V.; Hopper, J.L.; Tsimiklis, H.; Apicella, C.; Sou-they, M.C.; Brauch, H.; Brüning, T.; Ko, Y.D.; Sigurdson, A.J.; Doody, M.M.; Hamann, U.; Torres, D.; Ulmer, H.U.; Försti, A.; Sawyer, E.J.; Tomlinson, I.; Kerin, M.J.; Miller, N.; Andrulis, I.L.; Knight, J.A.; Glendon, G.; Marie Mulligan, A.; Chenevix-Trench, G.; Balleine, R.; Giles, G.G.; Milne, R.L.; McLean, C.; Lindblom, A.; Margolin, S.; Haiman, C.A.; Henderson, B.E.; Schumacher, F.; Le Marchand, L.; Eilber, U.; Wang-Gohrke, S.; Hooning, M.J.; Hollestelle, A.; van den Ouweland, A.M.; Koppert, L.B.; Carpenter, J.; Clarke, C.; Scott, R.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Brenner, H.; Arndt, V.; Stegmaier, C.; Karina Dieffenbach, A.; Winqvist, R.; Pylkäs, K.; Jukkola-Vuorinen, A.; Grip, M.; Offit, K.; Vijai, J.; Robson, M.; Rau-Murthy, R.; Dwek, M.; Swann, R.; Annie Perkins, K.; Goldberg, M.S.; Labrèche, F.; Dumont, M.; Eccles, D.M.; Tapper, W.J.; Rafiq, S.; John, E.M.; Whittemore, A.S.; Slager, S.; Yannoukakos, D.; Toland, A.E.; Yao, S.; Zheng, W.; Halverson, S.L.; González-Neira, A.; Pita, G.; Rosario Alonso, M.; Álvarez, N.; Herrero, D.; Tessier, D.C.; Vincent, D.; Bacot, F.; Luccarini, C.; Baynes, C.; Ahmed, S.; Maranian, M.; Healey, C.S.; Simard, J.; Hall, P.; Easton, D.F.; Garcia-Closas, M. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst., 2015, 107(5)djv036
[http://dx.doi.org/10.1093/jnci/djv036] [PMID: 25855707]
[94]
Koriech, O.M. Breast cancer and early detection. J. Family Community Med., 1996, 3(1), 7-9.
[PMID: 23008541]
[95]
Carbine, N.E.; Lostumbo, L.; Wallace, J.; Ko, H. Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst. Rev., 2018, 4(4)CD002748
[http://dx.doi.org/10.1002/14651858.CD002748.pub4] [PMID: 29620792]
[96]
Rebbeck, T.R.; Burns-White, K.; Chan, A.T.; Emmons, K.; Freedman, M.; Hunter, D.J.; Kraft, P.; Laden, F.; Mucci, L.; Parmigiani, G.; Schrag, D.; Syngal, S.; Tamimi, R.M.; Viswanath, K.; Yurgelun, M.B.; Garber, J.E. Precision prevention and early detection of cancer: Fundamental principles. Cancer Discov., 2018, 8(7), 803-811.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1415] [PMID: 29907587]
[97]
Greenlee, H.; DuPont-Reyes, M.J.; Balneaves, L.G.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; Boyce, L.M.; Tripathy, D. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast can-cer treatment. CA Cancer J. Clin., 2017, 67(3), 194-232.
[http://dx.doi.org/10.3322/caac.21397] [PMID: 28436999]
[98]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[99]
Li, X.Q.; Ren, J.; Chen, P.; Chen, Y.J.; Wu, M.; Wu, Y.; Chen, K.; Li, J. Co-inhibition of Pol η and ATR sensitizes cisplatin-resistant non-small cell lung cancer cells to cisplatin by impeding DNA damage repair. Acta Pharmacol. Sin., 2018, 39(8), 1359-1372.
[http://dx.doi.org/10.1038/aps.2017.187] [PMID: 29849128]
[100]
Yimit, A.; Adebali, O.; Sancar, A.; Jiang, Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat. Commun., 2019, 10(1), 309.
[http://dx.doi.org/10.1038/s41467-019-08290-2] [PMID: 30659176]
[101]
Melnikov, S.V.; Söll, D.; Steitz, T.A.; Polikanov, Y.S. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res., 2016, 44(10), 4978-4987.
[http://dx.doi.org/10.1093/nar/gkw246] [PMID: 27079977]
[102]
Dugbartey, G.J.; Peppone, L.J.; de Graaf, I.A.M. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mecha-nisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371(585), 58-66.
[http://dx.doi.org/10.1016/j.tox.2016.10.001] [PMID: 27717837]
[103]
Matthews, S.B.; Sartorius, C.A. Steroid hormone receptor positive breast cancer patient-derived xenografts. Horm. Cancer, 2017, 8(1), 4-15.
[http://dx.doi.org/10.1007/s12672-016-0275-0] [PMID: 27796944]
[104]
Burns, K.A.; Korach, K.S. Estrogen receptors and human disease: An update. Arch. Toxicol., 2012, 86(10), 1491-1504.
[http://dx.doi.org/10.1007/s00204-012-0868-5] [PMID: 22648069]
[105]
Sasanuma, H.; Tsuda, M.; Morimoto, S.; Saha, L.K.; Rahman, M.M.; Kiyooka, Y.; Fujiike, H.; Cherniack, A.D.; Itou, J.; Callen Moreu, E.; Toi, M.; Nakada, S.; Tanaka, H.; Tsutsui, K.; Yamada, S.; Nussenzweig, A.; Takeda, S. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc. Natl. Acad. Sci. USA, 2018, 115(45), E10642-E10651.
[http://dx.doi.org/10.1073/pnas.1803177115] [PMID: 30352856]
[106]
Moore, R.L.; Faller, D.V. SIRT1 represses estrogen-signaling, ligand-independent ERα-mediated transcription, and cell proliferation in estrogen-responsive breast cells. J. Endocrinol., 2013, 216(3), 273-285.
[http://dx.doi.org/10.1530/JOE-12-0102] [PMID: 23169992]
[107]
Choi, H.J.; Lui, A.; Ogony, J.; Jan, R.; Sims, P.J.; Lewis-Wambi, J. Targeting interferon response genes sensitizes aromatase inhibitor re-sistant breast cancer cells to estrogen-induced cell death. Breast Cancer Res., 2015, 17(1), 6.
[http://dx.doi.org/10.1186/s13058-014-0506-7] [PMID: 25588716]
[108]
Fan, P.; Maximov, P.Y.; Curpan, R.F.; Abderrahman, B.; Jordan, V.C. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy. Mol. Cell. Endocrinol., 2015, 418(Pt 3), 245-263.
[http://dx.doi.org/10.1016/j.mce.2015.06.004] [PMID: 26052034]
[109]
Abbondanza, C.; Rossi, V.; Roscigno, A.; Gallo, L.; Belsito, A.; Piluso, G.; Medici, N.; Nigro, V.; Molinari, A.M.; Moncharmont, B.; Puca, G.A. Interaction of vault particles with estrogen receptor in the MCF-7 breast cancer cell. J. Cell Biol., 1998, 141(6), 1301-1310.
[http://dx.doi.org/10.1083/jcb.141.6.1301] [PMID: 9628887]
[110]
Dalenc, F.; Giamarchi, C.; Petit, M.; Poirot, M.; Favre, G.; Faye, J.C. Farnesyl-transferase inhibitor R115,777 enhances tamoxifen inhibi-tion of MCF-7 cell growth through estrogen receptor dependent and independent pathways. Breast Cancer Res., 2005, 7(6), R1159-R1167.
[http://dx.doi.org/10.1186/bcr1357] [PMID: 16457696]
[111]
Iqbal, J.; Ejaz, S.A.; Khan, I.; Ausekle, E.; Miliutina, M.; Langer, P. Exploration of quinolone and quinoline derivatives as potential anti-cancer agents. Daru, 2019, 27(2), 613-626.
[http://dx.doi.org/10.1007/s40199-019-00290-3] [PMID: 31410781]
[112]
Sorokin, D.; Shchegolev, Y.; Scherbakov, A.; Ryabaya, O.; Gudkova, M.; Berstein, L.; Krasil’nikov, M. 2020.
[113]
Taslim, C.; Lin, S.; Huang, K.; Huang, T.H.M. Integrative genome-wide chromatin signature analysis using finite mixture models. BMC Genomics, 2012, 13(Suppl. 6), S3.
[http://dx.doi.org/10.1186/1471-2164-13-S6-S3] [PMID: 23134707]
[114]
Badran, A.; Tul-Wahab, A.; Zafar, H.; Mohammad, N.; Imad, R.; Ashfaq Khan, M.; Baydoun, E.; Choudhary, M.I. Antipsychotics drug aripiprazole as a lead against breast cancer cell line (MCF-7) in vitro. PLoS One, 2020, 15(8)e0235676
[http://dx.doi.org/10.1371/journal.pone.0235676] [PMID: 32746451]
[115]
Zhang, N.; Wang, J.; Sheng, A.; Huang, S.; Tang, Y.; Ma, S.; Hong, G. Emodin inhibits the proliferation of MCF-7 human breast cancer cells through activation of Aryl hydrocarbon receptor (AhR). Front. Pharmacol., 2021, 11622046
[http://dx.doi.org/10.3389/fphar.2020.622046] [PMID: 33542691]
[116]
Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins isolated from Vitis coignetiae Pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules, 2020, 25(16), 3623.
[http://dx.doi.org/10.3390/molecules25163623] [PMID: 32784919]
[117]
Gomes, L.R.; Rocha, C.R.R.; Martins, D.J.; Fiore, A.P.Z.P.; Kinker, G.S.; Bruni-Cardoso, A.; Menck, C.F.M. ATR mediates cisplatin re-sistance in 3D-cultured breast cancer cells via translesion DNA synthesis modulation. Cell Death Dis., 2019, 10(6), 459.
[http://dx.doi.org/10.1038/s41419-019-1689-8] [PMID: 31189884]
[118]
Mi, H.; Wang, X.; Wang, F.; Li, L.; Zhu, M.; Wang, N.; Xiong, Y.; Gu, Y. SNHG15 contributes to cisplatin resistance in breast cancer through sponging miR-381. OncoTargets Ther., 2020, 13, 657-666.
[http://dx.doi.org/10.2147/OTT.S223321] [PMID: 32021307]
[119]
Kashkoulinejad-Kouhi, T.; Safarian, S.; Arnaiz, B.; Saa, L. Enhancement of cisplatin sensitivity in human breast cancer MCF-7 cell line through BiP and 14-3-3ζ co-knockdown. Oncol. Rep., 2021, 45(2), 665-679.
[http://dx.doi.org/10.3892/or.2020.7898] [PMID: 33416155]
[120]
Liao, S.; Hu, X.; Liu, Z.; Lin, Y.; Liang, R.; Zhang, Y.; Li, Q.; Li, Y.; Liao, X. Synergistic action of microwave-induced mild hyperthermia and paclitaxel in inducing apoptosis in the human breast cancer cell line MCF-7. Oncol. Lett., 2019, 17(1), 603-615.
[http://dx.doi.org/10.3892/ol.2018.9629] [PMID: 30655807]
[121]
Zhu, X.; Feng, J.; Fu, W.; Shu, X.; Wan, X.; Liu, J. Effects of cisplatin on the proliferation, invasion and apoptosis of breast cancer cells following β catenin silencing. Int. J. Mol. Med., 2020, 45(6), 1838-1850.
[http://dx.doi.org/10.3892/ijmm.2020.4543] [PMID: 32186756]
[122]
Reile, H.; Bernhardt, G.; Koch, M.; Schönenberger, H.; Hollstein, M.; Lux, F. Chemosensitivity of human MCF-7 breast cancer cells to diastereoisomeric diaqua(1,2-diphenylethylenediamine) platinum(II) sulfates and specific platinum accumulation. Cancer Chemother. Pharmacol., 1992, 30(2), 113-122.
[http://dx.doi.org/10.1007/BF00686402] [PMID: 1600591]
[123]
Kandeil, M.A.; Gomaa, S.B.; Mahmoud, M.O. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: be-havioral testing. Heliyon, 2020, 6(8)e04708
[http://dx.doi.org/10.1016/j.heliyon.2020.e04708] [PMID: 32885073]
[124]
Landau, S.I.; Guo, X.; Velazquez, H.; Torres, R.; Olson, E.; Garcia-Milian, R.; Moeckel, G.W.; Desir, G.V.; Safirstein, R. Regulated necro-sis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int., 2019, 95(4), 797-814.
[http://dx.doi.org/10.1016/j.kint.2018.11.042] [PMID: 30904067]
[125]
Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int., 2014, 2014967826
[http://dx.doi.org/10.1155/2014/967826] [PMID: 25165721]
[126]
Zhou, J.; Fan, Y.; Zhong, J.; Huang, Z.; Huang, T.; Lin, S.; Chen, H. TAK1 mediates excessive autophagy via p38 and ERK in cisplatin-induced acute kidney injury. J. Cell. Mol. Med., 2018, 22(5), 2908-2921.
[http://dx.doi.org/10.1111/jcmm.13585] [PMID: 29504713]
[127]
Mapuskar, K.A.; Wen, H.; Holanda, D.G.; Rastogi, P.; Steinbach, E.; Han, R.; Coleman, M.C.; Attanasio, M.; Riley, D.P.; Spitz, D.R.; Allen, B.G.; Zepeda-Orozco, D. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol., 2019, 20, 98-106.
[http://dx.doi.org/10.1016/j.redox.2018.09.020] [PMID: 30296702]
[128]
Perše, M. Večerić-Haler, Ž. Cisplatin-induced rodent model of kidney injury: Characteristics and challenges. BioMed Res. Int., 2018, 20181462802
[http://dx.doi.org/10.1155/2018/1462802] [PMID: 30276200]
[129]
Holditch, S.J.; Brown, C.N.; Lombardi, A.M.; Nguyen, K.N.; Edelstein, C.L. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int. J. Mol. Sci., 2019, 20(12), 3011.
[http://dx.doi.org/10.3390/ijms20123011] [PMID: 31226747]
[130]
Dupre, T.V.; Doll, M.A.; Shah, P.P.; Sharp, C.N.; Siow, D.; Megyesi, J.; Shayman, J.; Bielawska, A.; Bielawski, J.; Beverly, L.J. Hernan-dez-Corbacho, M.; Clarke, C.J.; Snider, A.J.; Schnellmann, R.G.; Obeid, L.M.; Hannun, Y.A.; Siskind, L.J. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res., 2017, 58(7), 1439-1452.
[http://dx.doi.org/10.1194/jlr.M076745] [PMID: 28490444]
[131]
Tanase, D.M.; Gosav, E.M.; Radu, S.; Costea, C.F.; Ciocoiu, M.; Carauleanu, A.; Lacatusu, C.M.; Maranduca, M.A.; Floria, M.; Rezus, C. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int. J. Mol. Sci., 2019, 20(20), 5238.
[http://dx.doi.org/10.3390/ijms20205238] [PMID: 31652595]
[132]
Xu, Q.; Liu, C.; Zang, J.; Gao, S.; Chou, C.J.; Zhang, Y. Discovery of a novel hybrid of vorinostat and riluzole as a potent antitumor agent. Front. Cell Dev. Biol., 2020, 8, 454.
[http://dx.doi.org/10.3389/fcell.2020.00454] [PMID: 32760715]
[133]
Trotsko, N.; Przekora, A.; Zalewska, J.; Ginalska, G.; Paneth, A.; Wujec, M. Synthesis and in vitro antiproliferative and antibacterial activi-ty of new thiazolidine-2,4-dione derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 17-24.
[http://dx.doi.org/10.1080/14756366.2017.1387543] [PMID: 29098896]
[134]
Hosny, M.A.; Zaki, Y.H.; Mokbel, W.A.; Abdelhamid, A.O. Synthesis of novel thiazole, pyranothiazole, thiazolo[4,5-b]pyridines and thiazolo[5,4:5,6] pyrano[2,3-d]pyrimidine derivatives and incorporating isoindoline-1,3-dione group. BMC Chem., 2019, 13(1), 37.
[http://dx.doi.org/10.1186/s13065-019-0559-x] [PMID: 31384785]
[135]
2018.
[136]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep., 2016, 6, 23401.
[http://dx.doi.org/10.1038/srep23401] [PMID: 27021742]
[137]
Abu-Melha, S.; Edrees, M.M.; Salem, H.H.; Kheder, N.A.; Gomha, S.M.; Abdelaziz, M.R. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[138]
Al-Omair, M.A.; Sayed, A.R.; Youssef, M.M. Synthesis and biological evaluation of bisthiazoles and polythiazoles. Molecules, 2018, 23(5), 1133.
[http://dx.doi.org/10.3390/molecules23051133] [PMID: 29747479]
[139]
Atamanyuk, D.; Zimenkovsky, B.; Atamanyuk, V.; Nektegayev, I.; Lesyk, R. Synthesis and biological activity of new thiopyrano[2,3-d]thiazoles containing a naphthoquinone moiety. Sci. Pharm., 2013, 81(2), 423-436.
[http://dx.doi.org/10.3797/scipharm.1301-13] [PMID: 23833711]
[140]
Zaki, Y.H.; Al-Gendey, M.S.; Abdelhamid, A.O. A facile synthesis, and antimicrobial and anticancer activities of some pyridines, thioam-ides, thiazole, urea, quinazoline, β-naphthyl carbamate, and pyrano[2,3-d]thiazole derivatives. Chem. Cent. J., 2018, 12(1), 70.
[http://dx.doi.org/10.1186/s13065-018-0439-9] [PMID: 29926299]
[141]
Xun-Zhong, Z.; An-Sheng, F.; Fu-Ran, Z.; Min-Cheng, L.; Yan-Zhi, L.; Meng, M.; Yu, L. Synthesis, crystal structures, and antimicrobial and antitumor studies of two zinc(II) complexes with pyridine thiazole derivatives. Bioinorg. Chem. Appl., 2020, 20208852470
[http://dx.doi.org/10.1155/2020/8852470] [PMID: 33014027]
[142]
Liu, D.C.; Gao, M.J.; Huo, Q.; Ma, T.; Wang, Y.; Wu, C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 829-837.
[http://dx.doi.org/10.1080/14756366.2019.1591391] [PMID: 30915869]
[143]
Spanò, V.; Attanzio, A.; Cascioferro, S.; Carbone, A.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Cirrincione, G.; Diana, P.; Parrino, B. Synthesis and antitumor activity of new thiazole nortopsentin analogs. Mar. Drugs, 2016, 14(12), 226.
[http://dx.doi.org/10.3390/md14120226] [PMID: 27983614]
[144]
Turan-Zitouni, G. Yurttaş L.; Tabbi, A.; Akalın Çiftçi, G.; Temel, H.E.; Kaplancıklı Z.A. New thiazoline-tetralin derivatives and biologi-cal activity evaluation. Molecules, 2018, 23(1), 135.
[http://dx.doi.org/10.3390/molecules23010135] [PMID: 29320423]
[145]
Nagireddy, P.K.R.; Kommalapati, V.K.; Siva Krishna, V.; Sriram, D.; Tangutur, A.D.; Kantevari, S. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega, 2019, 4(21), 19382-19398.
[http://dx.doi.org/10.1021/acsomega.9b02789] [PMID: 31763563]
[146]
Aouad, M.R.; Soliman, M.A.; Alharbi, M.O.; Bardaweel, S.K.; Sahu, P.K.; Ali, A.A.; Messali, M.; Rezki, N.; Al-Soud, Y.A. Design, syn-thesis and anticancer screening of novel benzothiazole-piperazine-1,2,3-triazole hybrids. Molecules, 2018, 23(11), 2788.
[http://dx.doi.org/10.3390/molecules23112788] [PMID: 30373247]
[147]
Gomha, S.M.; Ahmed, S.A.; Abdelhamid, A.O. Synthesis and cytotoxicity evaluation of some novel thiazoles, thiadiazoles, and pyri-do[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones incorporating triazole moiety. Molecules, 2015, 20(1), 1357-1376.
[http://dx.doi.org/10.3390/molecules20011357] [PMID: 25594346]
[148]
Madadi, N.R.; Penthala, N.R.; Howk, K.; Ketkar, A.; Eoff, R.L.; Borrelli, M.J.; Crooks, P.A.; Sciences, M.; Rock, L.; Rock, L. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4. Eur. J. Med. Chem., 2015, 103, 123-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.041] [PMID: 26352674]
[149]
Huang, X.; Shen, Q.K.; Zhang, H.J.; Li, J.L.; Tian, Y.S.; Quan, Z.S. Design and synthesis of novel dehydroepiandrosterone analogues as potent antiproliferative agents. Molecules, 2018, 23(9), 2243.
[http://dx.doi.org/10.3390/molecules23092243] [PMID: 30177642]
[150]
Alam, M.M.; Almalki, A.S.A.; Neamatallah, T.; Ali, N.M.; Malebari, A.M.; Nazreen, S. Synthesis of new 1, 3, 4-oxadiazole-incorporated 1, 2, 3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals (Basel), 2020, 13(11), 390.
[http://dx.doi.org/10.3390/ph13110390] [PMID: 33202652]
[151]
Ye, W.; Yao, Q.; Yu, S.; Gong, P.; Qin, M. Synthesis and antitumor activity of triazole-containing sorafenib Analogs. Molecules, 2017, 22(10), 1759.
[http://dx.doi.org/10.3390/molecules22101759] [PMID: 29064424]
[152]
Bębenek, E.; Jastrzębska, M.; Kadela-Tomanek, M.; Chrobak, E.; Orzechowska, B.; Zwolińska, K.; Latocha, M.; Mertas, A.; Czuba, Z.; Boryczka, S. Novel triazole hybrids of betulin: Synthesis and biological activity profile. Molecules, 2017, 22(11), 1876.
[http://dx.doi.org/10.3390/molecules22111876] [PMID: 29104263]
[153]
Zhu, X.P.; Lin, G.S.; Duan, W.G.; Li, Q.M.; Li, F.Y.; Lu, S.Z. Synthesis and antiproliferative evaluation of novel longifolene-derived tetra-lone derivatives bearing 1,2,4-triazole moiety. Molecules, 2020, 25(4), 986.
[http://dx.doi.org/10.3390/molecules25040986] [PMID: 32098438]
[154]
Boraei, A.T.A.; Ghabbour, H.A.; Gomaa, M.S.; El Ashry, E.S.H.; Barakat, A. Synthesis and anti-proliferative assessment of triazolo-thiadiazepine and triazolo-thiadiazine Scaffolds. Molecules, 2019, 24(24), 4471.
[http://dx.doi.org/10.3390/molecules24244471] [PMID: 31817609]
[155]
Kumar, S.; Saha, S.T.; Gu, L.; Palma, G.; Perumal, S.; Singh-Pillay, A.; Singh, P.; Anand, A.; Kaur, M.; Kumar, V. 1H-1,2,3-triazole teth-ered nitroimidazole-isatin conjugates: Synthesis, docking, and anti-proliferative evaluation against breast cancer. ACS Omega, 2018, 3(9), 12106-12113.
[http://dx.doi.org/10.1021/acsomega.8b01513] [PMID: 30320289]
[156]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anti-cancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[157]
Al Sheikh Ali, A.; Khan, D.; Naqvi, A.; Al-Blewi, F.F.; Rezki, N.; Aouad, M.R.; Hagar, M. Design, synthesis, molecular modeling, anti-cancer studies, and density functional theory calculations of 4-(1,2,4-triazol-3-ylsulfanylmethyl)-1,2,3-triazole derivatives. ACS Omega, 2020, 6(1), 301-316.
[http://dx.doi.org/10.1021/acsomega.0c04595] [PMID: 33458482]
[158]
Gu, L.; Wang, P.; Zhong, Q.; Deng, Y.; Xie, J.; Liu, F.; Xiao, F.; Zheng, S.; Chen, Y.; Wang, G.; He, L. Copper salt-catalyzed formation of a novel series of triazole-spirodienone conjugates with potent anticancer activity. RSC Advances, 2017, 7(16), 9412-9416.
[http://dx.doi.org/10.1039/C6RA24764D] [PMID: 30740218]
[159]
Zi, C.T.; Liu, Z.H.; Li, G.T.; Li, Y.; Zhou, J.; Ding, Z.T.; Hu, J.M.; Jiang, Z.H. Design, synthesis, and cytotoxicity of perbutyrylated glyco-sides of 4β-triazolopodophyllotoxin derivatives. Molecules, 2015, 20(2), 3255-3280.
[http://dx.doi.org/10.3390/molecules20023255] [PMID: 25690288]
[160]
Zi, C.T.; Li, G.T.; Li, Y.; Zhou, J.; Ding, Z.T.; Jiang, Z.H.; Hu, J.M. Synthesis and anticancer activity of 4β-triazole-podophyllotoxin gly-cosides. Nat. Prod. Bioprospect., 2015, 5(2), 83-90.
[http://dx.doi.org/10.1007/s13659-015-0057-3] [PMID: 25869591]
[161]
Harej, A.; Macan, A.M. Stepanić V.; Klobučar, M.; Pavelić K.; Pavelić S.K.; Raić-Malić S. The antioxidant and antiproliferative activi-ties of 1,2,3-triazolyl-L-ascorbic acid derivatives. Int. J. Mol. Sci., 2019, 20(19), 4735.
[http://dx.doi.org/10.3390/ijms20194735] [PMID: 31554245]
[162]
Singh, A.; Saha, S.T.; Perumal, S.; Kaur, M.; Kumar, V. Azide-Alkyne Cycloaddition En Route to 1H-1,2,3-triazole-tethered isatin-ferrocene, ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: Synthesis and antiproliferative evaluation. ACS Omega, 2018, 3(1), 1263-1268.
[http://dx.doi.org/10.1021/acsomega.7b01755] [PMID: 30023800]
[163]
Malarz, K.; Mrozek-Wilczkiewicz, A.; Serda, M.; Rejmund, M.; Polanski, J.; Musiol, R. The role of oxidative stress in activity of anti-cancer thiosemicarbazones. Oncotarget, 2018, 9(25), 17689-17710.
[http://dx.doi.org/10.18632/oncotarget.24844] [PMID: 29707141]
[164]
de Almeida, S.M.V.; Lafayette, E.A.; da Silva, L.P.B.G.; Amorim, C.A.; de Oliveira, T.B.; Ruiz, A.L.; de Carvalho, J.E.; de Moura, R.O.; Beltrão, E.I. de Lima, Mdo.C.; de Carvalho Júnior, L.B. Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. Int. J. Mol. Sci., 2015, 16(6), 13023-13042.
[http://dx.doi.org/10.3390/ijms160613023] [PMID: 26068233]
[165]
Pham, V.H.; Phan, T.P.D.; Phan, D.C.; Vu, B.D. Synthesis and bioactivity of thiosemicarbazones containing adamantane skeletons. Molecules, 2020, 25(2), 324.
[http://dx.doi.org/10.3390/molecules25020324] [PMID: 31941142]
[166]
Ma, L.; Wang, H.; Wang, J.; Liu, L.; Zhang, S.; Bu, M. Novel steroidal 5α8α-endoperoxide derivatives with semicarba-zone/thiosemicarbazone side-chain as apoptotic inducers through an intrinsic apoptosis pathway: Design, synthesis and biological studies. Molecules, 2020, 25(5), 1209.
[http://dx.doi.org/10.3390/molecules25051209]
[167]
Sestak, V.; Stariat, J.; Cermanova, J.; Potuckova, E.; Chladek, J.; Roh, J.; Bures, J.; Jansova, H.; Prusa, P.; Sterba, M.; Micuda, S.; Simunek, T.; Kalinowski, D.S.; Richardson, D.R.; Kovarikova, P. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarba-zones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget, 2015, 6(40), 42411-42428.
[http://dx.doi.org/10.18632/oncotarget.6389] [PMID: 26623727]
[168]
Gomha, S.M.; Abdelhady, H.A.; Hassain, D.Z.H.; Abdelmonsef, A.H.; El-Naggar, M.; Elaasser, M.M.; Mahmoud, H.K. Thiazole-based thiosemicarbazones: Synthesis, cytotoxicity evaluation and molecular docking study. Drug Des. Devel. Ther., 2021, 15, 659-677.
[http://dx.doi.org/10.2147/DDDT.S291579] [PMID: 33633443]
[169]
Bharathi, S.; Mahendiran, D.; Kumar, R.S.; Choi, H.J.; Gajendiran, M.; Kim, K.; Rahiman, A.K. Silver(I) metallodrugs of thiosemicarba-zones and naproxen: Biocompatibility, in vitro anti-proliferative activity and in silico interaction studies with EGFR, VEGFR2 and LOX re-ceptors. Toxicol. Res. (Camb.), 2020, 9(1), 28-44.
[http://dx.doi.org/10.1093/toxres/tfaa001] [PMID: 32440336]
[170]
Hernández, W.; Paz, J.; Carrasco, F.; Vaisberg, A.; Spodine, E.; Manzur, J.; Hennig, L.; Sieler, J.; Blaurock, S.; Beyer, L. Synthesis and characterization of new palladium(II) thiosemicarbazone complexes and their cytotoxic activity against various human tumor cell lines. Bioinorg. Chem. Appl., 2013, 2013524701
[http://dx.doi.org/10.1155/2013/524701] [PMID: 24391528]
[171]
Zeglis, B.M.; Divilov, V.; Lewis, J.S. Role of metalation in the topoisomerase IIα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes. J. Med. Chem., 2011, 54(7), 2391-2398.
[http://dx.doi.org/10.1021/jm101532u] [PMID: 21391686]
[172]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[173]
Curatolo, W. Physical chemical properties of oral drug candidates in the Discovery and exploratory development settings. Pharm. Sci. Technol. Today, 1998, 1, 387-393.
[http://dx.doi.org/10.1016/S1461-5347(98)00097-2]
[174]
Wenlock, M.C.; Barton, P. In silico physicochemical parameter predictions. Mol. Pharm., 2013, 10(4), 1224-1235.
[http://dx.doi.org/10.1021/mp300537k] [PMID: 23305561]
[175]
Tetko, I.V. Computing chemistry on the web. Drug Discov. Today, 2005, 10(22), 1497-1500.
[http://dx.doi.org/10.1016/S1359-6446(05)03584-1] [PMID: 16257371]
[176]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and developmental settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[177]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[178]
Zuniga, E.S.; Early, J.; Parish, T. The future for early-stage tuberculosis drug discovery. Future Microbiol., 2015, 10(2), 217-229.
[http://dx.doi.org/10.2217/fmb.14.125] [PMID: 25689534]
[179]
Manjunatha, U.H.; Smith, P.W. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. Bioorg. Med. Chem., 2015, 23(16), 5087-5097.
[http://dx.doi.org/10.1016/j.bmc.2014.12.031] [PMID: 25577708]
[180]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[181]
Chen, M.; Borlak, J.; Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology, 2013, 58(1), 388-396.
[http://dx.doi.org/10.1002/hep.26208] [PMID: 23258593]
[182]
Tarcsay, Á. Keserű G.M. Contributions of molecular properties to drug promiscuity. J. Med. Chem., 2013, 56(5), 1789-1795.
[http://dx.doi.org/10.1021/jm301514n] [PMID: 23356819]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy