Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Mini-Review Article

Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model

Author(s): Harald Hampel*, Giuseppe Caruso, Robert Nisticò, Gaia Piccioni, Nicola B. Mercuri, Filippo Sean Giorgi, Fabio Ferrarelli, Pablo Lemercier, Filippo Caraci, Simone Lista*, Andrea Vergallo and Neurodegeneration Precision Medicine Initiative (NPMI)

Volume 21, Issue 1, 2023

Published on: 31 March, 2022

Page: [31 - 53] Pages: 23

DOI: 10.2174/1570159X19666211201095701

Price: $65

Abstract

In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor’s clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine.

Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer’s disease, schizoaffective disorder, and autism spectrum disorders.

To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here.

We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.

Keywords: β-site amyloid precursor protein cleaving enzyme (BACE), systems biology, precision medicine, systems pharmacology, neurology, psychiatry.

Graphical Abstract

[1]
Anttila, V.; Bulik-Sullivan, B.; Finucane, H.K.; Walters, R.K.; Bras, J.; Duncan, L.; Escott-Price, V.; Falcone, G.J.; Gormley, P.; Malik, R.; Patsopoulos, N.A.; Ripke, S.; Wei, Z.; Yu, D.; Lee, P.H.; Turley, P.; Grenier-Boley, B.; Chouraki, V.; Kamatani, Y.; Berr, C.; Letenneur, L.; Hannequin, D.; Amouyel, P.; Boland, A.; Deleuze, J.F.; Duron, E.; Vardarajan, B.N.; Reitz, C.; Goate, A.M.; Huentelman, M.J.; Kamboh, M.I.; Larson, E.B.; Rogaeva, E.; St George-Hyslop, P.; Hakonarson, H.; Kukull, W.A.; Farrer, L.A.; Barnes, L.L.; Beach, T.G.; Demirci, F.Y.; Head, E.; Hulette, C.M.; Jicha, G.A.; Kauwe, J.S.K.; Kaye, J.A.; Leverenz, J.B.; Levey, A.I.; Lieberman, A.P.; Pankratz, V.S.; Poon, W.W.; Quinn, J.F.; Saykin, A.J.; Schneider, L.S.; Smith, A.G.; Sonnen, J.A.; Stern, R.A.; Van Deerlin, V.M.; Van Eldik, L.J.; Harold, D.; Russo, G.; Rubinsztein, D.C.; Bayer, A.; Tsolaki, M.; Proitsi, P.; Fox, N.C.; Hampel, H.; Owen, M.J.; Mead, S.; Passmore, P.; Morgan, K.; Nöthen, M.M.; Rossor, M.; Lupton, M.K.; Hoffmann, P.; Kornhuber, J.; Lawlor, B.; McQuillin, A.; Al-Chalabi, A.; Bis, J.C.; Ruiz, A.; Boada, M.; Seshadri, S.; Beiser, A.; Rice, K.; van der Lee, S.J.; De Jager, P.L.; Geschwind, D.H.; Riemenschneider, M.; Riedel-Heller, S.; Rotter, J.I.; Ransmayr, G.; Hyman, B.T.; Cruchaga, C.; Alegret, M.; Winsvold, B.; Palta, P.; Farh, K.H.; Cuenca-Leon, E.; Furlotte, N.; Kurth, T.; Ligthart, L.; Terwindt, G.M.; Freilinger, T.; Ran, C.; Gordon, S.D.; Borck, G.; Adams, H.H.H.; Lehtimäki, T.; Wedenoja, J.; Buring, J.E.; Schürks, M.; Hrafnsdottir, M.; Hottenga, J.J.; Penninx, B.; Artto, V.; Kaunisto, M.; Vepsäläinen, S.; Martin, N.G.; Montgomery, G.W.; Kurki, M.I.; Hämäläinen, E.; Huang, H.; Huang, J.; Sandor, C.; Webber, C.; Muller-Myhsok, B.; Schreiber, S.; Salomaa, V.; Loehrer, E.; Göbel, H.; Macaya, A.; Pozo-Rosich, P.; Hansen, T.; Werge, T.; Kaprio, J.; Metspalu, A.; Kubisch, C.; Ferrari, M.D.; Belin, A.C.; van den Maagdenberg, A.M.J.M.; Zwart, J.A.; Boomsma, D.; Eriksson, N.; Olesen, J.; Chasman, D.I.; Nyholt, D.R.; Avbersek, A.; Baum, L.; Berkovic, S.; Bradfield, J.; Buono, R.J.; Catarino, C.B.; Cossette, P.; De Jonghe, P.; Depondt, C.; Dlugos, D.; Ferraro, T.N.; French, J.; Hjalgrim, H.; Jamnadas-Khoda, J.; Kälviäinen, R.; Kunz, W.S.; Lerche, H.; Leu, C.; Lindhout, D.; Lo, W.; Lowenstein, D.; McCormack, M.; Møller, R.S.; Molloy, A.; Ng, P.W.; Oliver, K.; Privitera, M.; Radtke, R.; Ruppert, A.K.; Sander, T.; Schachter, S.; Schankin, C.; Scheffer, I.; Schoch, S.; Sisodiya, S.M.; Smith, P.; Sperling, M.; Striano, P.; Surges, R.; Thomas, G.N.; Visscher, F.; Whelan, C.D.; Zara, F.; Heinzen, E.L.; Marson, A.; Becker, F.; Stroink, H.; Zimprich, F.; Gasser, T.; Gibbs, R.; Heutink, P.; Martinez, M.; Morris, H.R.; Sharma, M.; Ryten, M.; Mok, K.Y.; Pulit, S.; Bevan, S.; Holliday, E.; Attia, J.; Battey, T.; Boncoraglio, G.; Thijs, V.; Chen, W.M.; Mitchell, B.; Rothwell, P.; Sharma, P.; Sudlow, C.; Vicente, A.; Markus, H.; Kourkoulis, C.; Pera, J.; Raffeld, M.; Silliman, S.; Boraska Perica, V.; Thornton, L.M.; Huckins, L.M.; William Rayner, N.; Lewis, C.M.; Gratacos, M.; Rybakowski, F.; Keski-Rahkonen, A.; Raevuori, A.; Hudson, J.I.; Reichborn-Kjennerud, T.; Monteleone, P.; Karwautz, A.; Mannik, K.; Baker, J.H.; O’Toole, J.K.; Trace, S.E.; Davis, O.S.P.; Helder, S.G.; Ehrlich, S.; Herpertz-Dahlmann, B.; Danner, U.N.; van Elburg, A.A.; Clementi, M.; Forzan, M.; Docampo, E.; Lissowska, J.; Hauser, J.; Tortorella, A.; Maj, M.; Gonidakis, F.; Tziouvas, K.; Papezova, H.; Yilmaz, Z.; Wagner, G.; Cohen-Woods, S.; Herms, S.; Julià, A.; Rabionet, R.; Dick, D.M.; Ripatti, S.; Andreassen, O.A.; Espeseth, T.; Lundervold, A.J.; Steen, V.M.; Pinto, D.; Scherer, S.W.; Aschauer, H.; Schosser, A.; Alfredsson, L.; Padyukov, L.; Halmi, K.A.; Mitchell, J.; Strober, M.; Bergen, A.W.; Kaye, W.; Szatkiewicz, J.P.; Cormand, B.; Ramos-Quiroga, J.A.; Sánchez-Mora, C.; Ribasés, M.; Casas, M.; Hervas, A.; Arranz, M.J.; Haavik, J.; Zayats, T.; Johansson, S.; Williams, N.; Dempfle, A.; Rothenberger, A.; Kuntsi, J.; Oades, R.D.; Banaschewski, T.; Franke, B.; Buitelaar, J.K.; Arias Vasquez, A.; Doyle, A.E.; Reif, A.; Lesch, K.P.; Freitag, C.; Rivero, O.; Palmason, H.; Romanos, M.; Langley, K.; Rietschel, M.; Witt, S.H.; Dalsgaard, S.; Børglum, A.D.; Waldman, I.; Wilmot, B.; Molly, N.; Bau, C.H.D.; Crosbie, J.; Schachar, R.; Loo, S.K.; McGough, J.J.; Grevet, E.H.; Medland, S.E.; Robinson, E.; Weiss, L.A.; Bacchelli, E.; Bailey, A.; Bal, V.; Battaglia, A.; Betancur, C.; Bolton, P.; Cantor, R.; Celestino-Soper, P.; Dawson, G.; De Rubeis, S.; Duque, F.; Green, A.; Klauck, S.M.; Leboyer, M.; Levitt, P.; Maestrini, E.; Mane, S.; De-Luca, D.M.; Parr, J.; Regan, R.; Reichenberg, A.; Sandin, S.; Vorstman, J.; Wassink, T.; Wijsman, E.; Cook, E.; Santangelo, S.; Delorme, R.; Rogé, B.; Magalhaes, T.; Arking, D.; Schulze, T.G.; Thompson, R.C.; Strohmaier, J.; Matthews, K.; Melle, I.; Morris, D.; Blackwood, D.; McIntosh, A.; Bergen, S.E.; Schalling, M.; Jamain, S.; Maaser, A.; Fischer, S.B.; Reinbold, C.S.; Fullerton, J.M.; Guzman-Parra, J.; Mayoral, F.; Schofield, P.R.; Cichon, S.; Mühleisen, T.W.; Degenhardt, F.; Schumacher, J.; Bauer, M.; Mitchell, P.B.; Gershon, E.S.; Rice, J.; Potash, J.B.; Zandi, P.P.; Craddock, N.; Ferrier, I.N.; Alda, M.; Rouleau, G.A.; Turecki, G.; Ophoff, R.; Pato, C.; Anjorin, A.; Stahl, E.; Leber, M.; Czerski, P.M.; Cruceanu, C.; Jones, I.R.; Posthuma, D.; Andlauer, T.F.M.; Forstner, A.J.; Streit, F.; Baune, B.T.; Air, T.; Sinnamon, G.; Wray, N.R.; MacIntyre, D.J.; Porteous, D.; Homuth, G.; Rivera, M.; Grove, J.; Middeldorp, C.M.; Hickie, I.; Pergadia, M.; Mehta, D.; Smit, J.H.; Jansen, R.; de Geus, E.; Dunn, E.; Li, Q.S.; Nauck, M.; Schoevers, R.A.; Beekman, A.T.; Knowles, J.A.; Viktorin, A.; Arnold, P.; Barr, C.L.; Bedoya-Berrio, G.; Bienvenu, O.J.; Brentani, H.; Burton, C.; Camarena, B.; Cappi, C.; Cath, D.; Cavallini, M.; Cusi, D.; Darrow, S.; Denys, D.; Derks, E.M.; Dietrich, A.; Fernandez, T.; Figee, M.; Freimer, N.; Gerber, G.; Grados, M.; Greenberg, E.; Hanna, G.L.; Hartmann, A.; Hirschtritt, M.E.; Hoekstra, P.J.; Huang, A.; Huyser, C.; Illmann, C.; Jenike, M.; Kuperman, S.; Leventhal, B.; Lochner, C.; Lyon, G.J.; Macciardi, F.; Madruga-Garrido, M.; Malaty, I.A.; Maras, A.; McGrath, L.; Miguel, E.C.; Mir, P.; Nestadt, G.; Nicolini, H.; Okun, M.S.; Pakstis, A.; Paschou, P.; Piacentini, J.; Pittenger, C.; Plessen, K.; Ramensky, V.; Ramos, E.M.; Reus, V.; Richter, M.A.; Riddle, M.A.; Robertson, M.M.; Roessner, V.; Rosário, M.; Samuels, J.F.; Sandor, P.; Stein, D.J.; Tsetsos, F.; Van Nieuwerburgh, F.; Weatherall, S.; Wendland, J.R.; Wolanczyk, T.; Worbe, Y.; Zai, G.; Goes, F.S.; McLaughlin, N.; Nestadt, P.S.; Grabe, H.J.; Depienne, C.; Konkashbaev, A.; Lanzagorta, N.; Valencia-Duarte, A.; Bramon, E.; Buccola, N.; Cahn, W.; Cairns, M.; Chong, S.A.; Cohen, D.; Crespo-Facorro, B.; Crowley, J.; Davidson, M.; DeLisi, L.; Dinan, T.; Donohoe, G.; Drapeau, E.; Duan, J.; Haan, L.; Hougaard, D.; Karachanak-Yankova, S.; Khrunin, A.; Klovins, J.; Kučinskas, V.; Lee Chee Keong, J.; Limborska, S.; Loughland, C.; Lönnqvist, J.; Maher, B.; Mattheisen, M.; McDonald, C.; Murphy, K.C.; Nenadic, I.; van Os, J.; Pantelis, C.; Pato, M.; Petryshen, T.; Quested, D.; Roussos, P.; Sanders, A.R.; Schall, U.; Schwab, S.G.; Sim, K.; So, H.C.; Stögmann, E.; Subramaniam, M.; Toncheva, D.; Waddington, J.; Walters, J.; Weiser, M.; Cheng, W.; Cloninger, R.; Curtis, D.; Gejman, P.V.; Henskens, F.; Mattingsdal, M.; Oh, S.Y.; Scott, R.; Webb, B.; Breen, G.; Churchhouse, C.; Bulik, C.M.; Daly, M.; Dichgans, M.; Faraone, S.V.; Guerreiro, R.; Holmans, P.; Kendler, K.S.; Koeleman, B.; Mathews, C.A.; Price, A.; Scharf, J.; Sklar, P.; Williams, J.; Wood, N.W.; Cotsapas, C.; Palotie, A.; Smoller, J.W.; Sullivan, P.; Rosand, J.; Corvin, A.; Neale, B.M.; Schott, J.M.; Anney, R.; Elia, J.; Grigoroiu-Serbanescu, M.; Edenberg, H.J.; Murray, R. Analysis of shared heritability in common disorders of the brain. Science, 2018, 360(6395), eaap8757.
[http://dx.doi.org/10.1126/science.aap8757] [PMID: 29930110]
[2]
Hernandez, L.M.; Kim, M.; Hoftman, G.D.; Haney, J.R.; de la Torre-Ubieta, L.; Pasaniuc, B.; Gandal, M.J. Transcriptomic insight into the polygenic mechanisms underlying psychiatric disorders. biol. Psychiatry, 2021, 89(1), 54-64.
[http://dx.doi.org/10.1016/j.biopsych.2020.06.005] [PMID: 32792264]
[3]
Yan, L.; Zhang, W. Precision medicine becomes reality-tumor type-agnostic therapy. Cancer Commun. (Lond.), 2018, 38(1), 6.
[http://dx.doi.org/10.1186/s40880-018-0274-3] [PMID: 29764494]
[4]
Goldberg, K.B.; Blumenthal, G.M.; McKee, A.E.; Pazdur, R. The FDA Oncology Center of Excellence and precision medicine. Exp. Biol. Med. (Maywood), 2018, 243(3), 308-312.
[http://dx.doi.org/10.1177/1535370217740861] [PMID: 29105511]
[5]
Blumenthal, G.M.; Goldberg, K.B.; Pazdur, R. Drug development, trial design, and endpoints in oncology: Adapting to rapidly changing science. Clin. Pharmacol. Ther., 2017, 101(5), 572-574.
[http://dx.doi.org/10.1002/cpt.623] [PMID: 28074476]
[6]
Arenaza-Urquijo, E.M.; Vemuri, P. Resistance vs resilience to Alzheimer disease: Clarifying terminology for preclinical studies. Neurology, 2018, 90(15), 695-703.
[http://dx.doi.org/10.1212/WNL.0000000000005303] [PMID: 29592885]
[7]
Hampel, H.; Lista, S.; Neri, C.; Vergallo, A. Time for the systems-level integration of aging: Resilience enhancing strategies to prevent Alzheimer’s disease. Prog. Neurobiol., 2019, 181, 101662.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101662] [PMID: 31351912]
[8]
Ressler, K.J.; Williams, L.M. Big data in psychiatry: multiomics, neuroimaging, computational modeling, and digital phenotyping. Neuropsychopharmacology, 2021, 46(1), 1-2.
[http://dx.doi.org/10.1038/s41386-020-00862-x] [PMID: 32919403]
[9]
Hampel, H.; Nisticò, R.; Seyfried, N.T.; Levey, A.I.; Modeste, E.; Lemercier, P.; Baldacci, F.; Toschi, N.; Garaci, F.; Perry, G.; Emanuele, E.; Valenzuela, P.L.; Lucia, A.; Urbani, A.; Sancesario, G.M.; Mapstone, M.; Corbo, M.; Vergallo, A.; Lista, S. Omics sciences for systems biology in Alzheimer’s disease: State-of-the-art of the evidence. Ageing Res. Rev., 2021, 69, 101346.
[http://dx.doi.org/10.1016/j.arr.2021.101346] [PMID: 33915266]
[10]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[11]
Vassar, R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci., 2004, 23(1-2), 105-114.
[http://dx.doi.org/10.1385/JMN:23:1-2:105] [PMID: 15126696]
[12]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[13]
Head, E.; Powell, D.; Gold, B.T.; Schmitt, F.A. Alzheimer’s Disease in Down Syndrome. Eur. J. Neurodegener. Dis., 2012, 1(3), 353-364.
[PMID: 25285303]
[14]
Jiang, Y.; Rigoglioso, A.; Peterhoff, C.M.; Pawlik, M.; Sato, Y.; Bleiwas, C.; Stavrides, P.; Smiley, J.F.; Ginsberg, S.D.; Mathews, P.M.; Levy, E.; Nixon, R.A. Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiol. Aging, 2016, 39, 90-98.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.013] [PMID: 26923405]
[15]
Mei, L.; Xiong, W-C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci., 2008, 9(6), 437-452.
[http://dx.doi.org/10.1038/nrn2392] [PMID: 18478032]
[16]
Luo, X.; He, W.; Hu, X.; Yan, R. Reversible overexpression of bace1-cleaved neuregulin-1 N-terminal fragment induces schizophrenia-like phenotypes in mice. Biol. Psychiatry, 2014, 76(2), 120-127.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.026] [PMID: 24210810]
[17]
Seshadri, S.; Kamiya, A.; Yokota, Y.; Prikulis, I.; Kano, S.; Hayashi-Takagi, A.; Stanco, A.; Eom, T.Y.; Rao, S.; Ishizuka, K.; Wong, P.; Korth, C.; Anton, E.S.; Sawa, A. Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc. Natl. Acad. Sci. USA, 2010, 107(12), 5622-5627.
[http://dx.doi.org/10.1073/pnas.0909284107] [PMID: 20212127]
[18]
Zhang, Z.; Huang, J.; Shen, Y.; Li, R. BACE1-Dependent Neuregulin-1 Signaling: An Implication for Schizophrenia. Front. Mol. Neurosci., 2017, 10, 302.
[http://dx.doi.org/10.3389/fnmol.2017.00302] [PMID: 28993723]
[19]
Ray, B.; Long, J.M.; Sokol, D.K.; Lahiri, D.K. Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One, 2011, 6(6), e20405.
[http://dx.doi.org/10.1371/journal.pone.0020405] [PMID: 21731612]
[20]
Esnafoglu, E. Levels of peripheral Neuregulin 1 are increased in non-medicated autism spectrum disorder patients. J. Clin. Neurosci., 2018, 57, 43-45.
[http://dx.doi.org/10.1016/j.jocn.2018.08.043] [PMID: 30150060]
[21]
Ghafouri-Fard, S.; Namvar, A.; Arsang-Jang, S.; Komaki, A.; Taheri, M. Expression analysis of BDNF, BACE1, and their natural occurring antisenses in autistic patients. J. Mol. Neurosci., 2020, 70(2), 194-200.
[http://dx.doi.org/10.1007/s12031-019-01432-7] [PMID: 31760580]
[22]
Hu, X.; Hicks, C.W.; He, W.; Wong, P.; Macklin, W.B.; Trapp, B.D.; Yan, R. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci., 2006, 9(12), 1520-1525.
[http://dx.doi.org/10.1038/nn1797] [PMID: 17099708]
[23]
Ou-Yang, M-H.; Kurz, J.E.; Nomura, T.; Popovic, J.; Rajapaksha, T.W.; Dong, H.; Contractor, A.; Chetkovich, D.M.; Tourtellotte, W.G.; Vassar, R. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci. Transl. Med., 2018, 10(459), eaao5620.
[http://dx.doi.org/10.1126/scitranslmed.aao5620] [PMID: 30232227]
[24]
Vassar, R. Editorial: Implications for BACE1 inhibitor clinical trials: Adult conditional BACE1 knockout mice exhibit axonal organization defects in the hippocampus. J. Prev. Alzheimers Dis., 2019, 6(2), 78-84.
[http://dx.doi.org/10.14283/jpad.2019.3] [PMID: 30756113]
[25]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[26]
Voytyuk, I.; Mueller, S.A.; Herber, J.; Snellinx, A.; Moechars, D.; van Loo, G.; Lichtenthaler, S.F.; De Strooper, B. BACE2 distribution in major brain cell types and identification of novel substrates. Life Sci. Alliance, 2018, 1(1), e201800026.
[http://dx.doi.org/10.26508/lsa.201800026] [PMID: 30456346]
[27]
Huentelman, M.; De Both, M.; Jepsen, W.; Piras, I.S.; Talboom, J.S.; Willeman, M.; Reiman, E.M.; Hardy, J.; Myers, A.J. Common BACE2 Polymorphisms are Associated with Altered Risk for Alzheimer’s Disease and CSF Amyloid Biomarkers in APOE ε4 Non-Carriers. Sci. Rep., 2019, 9(1), 9640.
[http://dx.doi.org/10.1038/s41598-019-45896-4] [PMID: 31270419]
[28]
Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J.C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[29]
Wilhelm, B.G.; Mandad, S.; Truckenbrodt, S.; Kröhnert, K.; Schäfer, C.; Rammner, B.; Koo, S.J.; Claßen, G.A.; Krauss, M.; Haucke, V.; Urlaub, H.; Rizzoli, S.O. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science, 2014, 344(6187), 1023-1028.
[http://dx.doi.org/10.1126/science.1252884] [PMID: 24876496]
[30]
Seabrook, G.R.; Smith, D.W.; Bowery, B.J.; Easter, A.; Reynolds, T.; Fitzjohn, S.M.; Morton, R.A.; Zheng, H.; Dawson, G.R.; Sirinathsinghji, D.J.; Davies, C.H.; Collingridge, G.L.; Hill, R.G. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 1999, 38(3), 349-359.
[http://dx.doi.org/10.1016/S0028-3908(98)00204-4] [PMID: 10219973]
[31]
Rice, H.C.; de Malmazet, D.; Schreurs, A.; Frere, S.; Van Molle, I.; Volkov, A.N.; Creemers, E.; Vertkin, I.; Nys, J.; Ranaivoson, F.M.; Comoletti, D.; Savas, J.N.; Remaut, H.; Balschun, D.; Wierda, K.D.; Slutsky, I.; Farrow, K.; De Strooper, B.; de Wit, J. Secreted amyloid-β precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science, 2019, 363(6423), eaao4827.
[http://dx.doi.org/10.1126/science.aao4827] [PMID: 30630900]
[32]
Giuffrida, M.L.; Tomasello, M.F.; Pandini, G.; Caraci, F.; Battaglia, G.; Busceti, C.; Di Pietro, P.; Pappalardo, G.; Attanasio, F.; Chiechio, S.; Bagnoli, S.; Nacmias, B.; Sorbi, S.; Vigneri, R.; Rizzarelli, E.; Nicoletti, F.; Copani, A. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Front. Cell. Neurosci., 2015, 9, 297.
[http://dx.doi.org/10.3389/fncel.2015.00297] [PMID: 26300732]
[33]
Zimbone, S.; Monaco, I.; Gianì, F.; Pandini, G.; Copani, A.G.; Giuffrida, M.L.; Rizzarelli, E. Amyloid Beta monomers regulate cyclic adenosine monophosphate response element binding protein functions by activating type-1 insulin-like growth factor receptors in neuronal cells. Aging Cell, 2018, 17(1), e12684.
[http://dx.doi.org/10.1111/acel.12684] [PMID: 29094448]
[34]
Tyan, S-H.; Shih, A.Y-J.; Walsh, J.J.; Maruyama, H.; Sarsoza, F.; Ku, L.; Eggert, S.; Hof, P.R.; Koo, E.H.; Dickstein, D.L. Amyloid precursor protein (APP) regulates synaptic structure and function. Mol. Cell. Neurosci., 2012, 51(1-2), 43-52.
[http://dx.doi.org/10.1016/j.mcn.2012.07.009] [PMID: 22884903]
[35]
Abramov, E.; Dolev, I.; Fogel, H.; Ciccotosto, G.D.; Ruff, E.; Slutsky, I. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci., 2009, 12(12), 1567-1576.
[http://dx.doi.org/10.1038/nn.2433] [PMID: 19935655]
[36]
Basi, G.; Frigon, N.; Barbour, R.; Doan, T.; Gordon, G.; McConlogue, L.; Sinha, S.; Zeller, M. Antagonistic effects of beta-site amyloid precursor protein-cleaving enzymes 1 and 2 on beta-amyloid peptide production in cells. J. Biol. Chem., 2003, 278(34), 31512-31520.
[http://dx.doi.org/10.1074/jbc.M300169200] [PMID: 12801932]
[37]
Fluhrer, R.; Capell, A.; Westmeyer, G.; Willem, M.; Hartung, B.; Condron, M.M.; Teplow, D.B.; Haass, C.; Walter, J. A non-amyloidogenic function of BACE-2 in the secretory pathway. J. Neurochem., 2002, 81(5), 1011-1020.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00908.x] [PMID: 12065613]
[38]
Shi, X-P.; Tugusheva, K.; Bruce, J.E.; Lucka, A.; Wu, G-X.; Chen-Dodson, E.; Price, E.; Li, Y.; Xu, M.; Huang, Q.; Sardana, M.K.; Hazuda, D.J. Beta-secretase cleavage at amino acid residue 34 in the amyloid beta peptide is dependent upon gamma-secretase activity. J. Biol. Chem., 2003, 278(23), 21286-21294.
[http://dx.doi.org/10.1074/jbc.M209859200] [PMID: 12665519]
[39]
Abdul-Hay, S.O.; Sahara, T.; McBride, M.; Kang, D.; Leissring, M.A. Identification of BACE2 as an avid ß-amyloid-degrading protease. Mol. Neurodegener., 2012, 7, 46.
[http://dx.doi.org/10.1186/1750-1326-7-46] [PMID: 22986058]
[40]
Dominguez, D.; Tournoy, J.; Hartmann, D.; Huth, T.; Cryns, K.; Deforce, S.; Serneels, L.; Camacho, I.E.; Marjaux, E.; Craessaerts, K.; Roebroek, A.J.; Schwake, M.; D’Hooge, R.; Bach, P.; Kalinke, U.; Moechars, D.; Alzheimer, C.; Reiss, K.; Saftig, P.; De Strooper, B. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem., 2005, 280(35), 30797-30806.
[http://dx.doi.org/10.1074/jbc.M505249200] [PMID: 15987683]
[41]
Yang, J.Z.; Si, T.M.; Ruan, Y.; Ling, Y.S.; Han, Y.H.; Wang, X.L.; Zhou, M.; Zhang, H.Y.; Kong, Q.M.; Liu, C.; Zhang, D.R.; Yu, Y.Q.; Liu, S.Z.; Ju, G.Z.; Shu, L.; Ma, D.L.; Zhang, D. Association study of neuregulin 1 gene with schizophrenia. Mol. Psychiatry, 2003, 8(7), 706-709.
[http://dx.doi.org/10.1038/sj.mp.4001377] [PMID: 12874607]
[42]
Yan, R.; Fan, Q.; Zhou, J.; Vassar, R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci. Biobehav. Rev., 2016, 65, 326-340.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.025] [PMID: 27044452]
[43]
Pigoni, M.; Wanngren, J.; Kuhn, P-H.; Munro, K.M.; Gunnersen, J.M.; Takeshima, H.; Feederle, R.; Voytyuk, I.; De Strooper, B.; Levasseur, M.D.; Hrupka, B.J.; Müller, S.A.; Lichtenthaler, S.F. Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol. Neurodegener., 2016, 11(1), 67.
[http://dx.doi.org/10.1186/s13024-016-0134-z] [PMID: 27716410]
[44]
Zhu, K.; Xiang, X.; Filser, S.; Marinković, P.; Dorostkar, M.M.; Crux, S.; Neumann, U.; Shimshek, D.R.; Rammes, G.; Haass, C.; Lichtenthaler, S.F.; Gunnersen, J.M.; Herms, J. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6. Biol. Psychiatry, 2018, 83(5), 428-437.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.023] [PMID: 28129943]
[45]
Barão, S.; Gärtner, A.; Leyva-Díaz, E.; Demyanenko, G.; Munck, S.; Vanhoutvin, T.; Zhou, L.; Schachner, M.; López-Bendito, G.; Maness, P.F.; De Strooper, B. Antagonistic effects of BACE1 and APH1B-γ-secretase control axonal guidance by regulating growth cone collapse. Cell Rep., 2015, 12(9), 1367-1376.
[http://dx.doi.org/10.1016/j.celrep.2015.07.059] [PMID: 26299962]
[46]
Hitt, B.; Riordan, S.M.; Kukreja, L.; Eimer, W.A.; Rajapaksha, T.W.; Vassar, R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J. Biol. Chem., 2012, 287(46), 38408-38425.
[http://dx.doi.org/10.1074/jbc.M112.415505] [PMID: 22988240]
[47]
Wang, Z.; Xu, Q.; Cai, F.; Liu, X.; Wu, Y.; Song, W. BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight, 2019, 4(1), 123431.
[http://dx.doi.org/10.1172/jci.insight.123431] [PMID: 30626751]
[48]
Czarnek, M.; Bereta, J. Proteolytic processing of neuregulin 2. Mol. Neurobiol., 2020, 57(4), 1799-1813.
[http://dx.doi.org/10.1007/s12035-019-01846-9] [PMID: 31838721]
[49]
Martiskainen, H.; Herukka, S-K.; Stančáková, A.; Paananen, J.; Soininen, H.; Kuusisto, J.; Laakso, M.; Hiltunen, M. Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers. Ann. Neurol., 2017, 82(1), 128-132.
[http://dx.doi.org/10.1002/ana.24969] [PMID: 28556232]
[50]
Zhou, L.; Brouwers, N.; Benilova, I.; Vandersteen, A.; Mercken, M.; Van Laere, K.; Van Damme, P.; Demedts, D.; Van Leuven, F.; Sleegers, K.; Broersen, K.; Van Broeckhoven, C.; Vandenberghe, R.; De Strooper, B. Amyloid precursor protein mutation E682K at the alternative β-secretase cleavage β′-site increases Aβ generation. EMBO Mol. Med., 2011, 3(5), 291-302.
[http://dx.doi.org/10.1002/emmm.201100138] [PMID: 21500352]
[51]
Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet., 1992, 1(5), 345-347.
[http://dx.doi.org/10.1038/ng0892-345] [PMID: 1302033]
[52]
Fukumoto, H.; Cheung, B.S.; Hyman, B.T.; Irizarry, M.C. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol., 2002, 59(9), 1381-1389.
[http://dx.doi.org/10.1001/archneur.59.9.1381] [PMID: 12223024]
[53]
Zhao, J.; Fu, Y.; Yasvoina, M.; Shao, P.; Hitt, B.; O’Connor, T.; Logan, S.; Maus, E.; Citron, M.; Berry, R.; Binder, L.; Vassar, R. Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J. Neurosci., 2007, 27(14), 3639-3649.
[http://dx.doi.org/10.1523/JNEUROSCI.4396-06.2007] [PMID: 17409228]
[54]
Sadleir, K.R.; Kandalepas, P.C.; Buggia-Prévot, V.; Nicholson, D.A.; Thinakaran, G.; Vassar, R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol., 2016, 132(2), 235-256.
[http://dx.doi.org/10.1007/s00401-016-1558-9] [PMID: 26993139]
[55]
Wisniewski, K.E.; Wisniewski, H.M.; Wen, G.Y. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol., 1985, 17(3), 278-282.
[http://dx.doi.org/10.1002/ana.410170310] [PMID: 3158266]
[56]
Alić, I.; Goh, P.A.; Murray, A.; Portelius, E.; Gkanatsiou, E.; Gough, G.; Mok, K.Y.; Koschut, D.; Brunmeir, R.; Yeap, Y.J.; O’Brien, N.L.; Groet, J.; Shao, X.; Havlicek, S.; Dunn, N.R.; Kvartsberg, H.; Brinkmalm, G.; Hithersay, R.; Startin, C.; Hamburg, S.; Phillips, M.; Pervushin, K.; Turmaine, M.; Wallon, D.; Rovelet-Lecrux, A.; Soininen, H.; Volpi, E.; Martin, J.E.; Foo, J.N.; Becker, D.L.; Rostagno, A.; Ghiso, J.; Krsnik, Ž.; Šimić, G.; Kostović, I.; Mitrečić, D.; Francis, P.T.; Blennow, K.; Strydom, A.; Hardy, J.; Zetterberg, H.; Nižetić, D. Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Mol. Psychiatry, 2021, 26(10), 5766-5788.
[http://dx.doi.org/10.1038/s41380-020-0806-5] [PMID: 32647257]
[57]
Caraci, F.; Iulita, M.F.; Pentz, R.; Flores Aguilar, L.; Orciani, C.; Barone, C.; Romano, C.; Drago, F.; Cuello, A.C. Searching for new pharmacological targets for the treatment of Alzheimer’s disease in Down syndrome. Eur. J. Pharmacol., 2017, 817, 7-19.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.004] [PMID: 28987272]
[58]
Myllykangas, L.; Wavrant-De Vrièze, F.; Polvikoski, T.; Notkola, I-L.; Sulkava, R.; Niinistö, L.; Edland, S.D.; Arepalli, S.; Adighibe, O.; Compton, D.; Hardy, J.; Haltia, M.; Tienari, P.J. Chromosome 21 BACE2 haplotype associates with Alzheimer’s disease: a two-stage study. J. Neurol. Sci., 2005, 236(1-2), 17-24.
[http://dx.doi.org/10.1016/j.jns.2005.04.008] [PMID: 16023140]
[59]
Mok, K.Y.; Jones, E.L.; Hanney, M.; Harold, D.; Sims, R.; Williams, J.; Ballard, C.; Hardy, J. Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in Down syndrome. Neurobiol. Aging, 2014, 35(6), 1513.e1-1513.e5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.12.022] [PMID: 24462566]
[60]
Rovelet-Lecrux, A.; Charbonnier, C.; Wallon, D.; Nicolas, G.; Seaman, M.N.J.; Pottier, C.; Breusegem, S.Y.; Mathur, P.P.; Jenardhanan, P.; Le Guennec, K.; Mukadam, A.S.; Quenez, O.; Coutant, S.; Rousseau, S.; Richard, A.C.; Boland, A.; Deleuze, J.F.; Frebourg, T.; Hannequin, D.; Campion, D. De novo deleterious genetic variations target a biological network centered on Aβ peptide in early-onset Alzheimer disease. Mol. Psychiatry, 2015, 20(9), 1046-1056.
[http://dx.doi.org/10.1038/mp.2015.100] [PMID: 26194182]
[61]
Holler, C.J.; Webb, R.L.; Laux, A.L.; Beckett, T.L.; Niedowicz, D.M.; Ahmed, R.R.; Liu, Y.; Simmons, C.R.; Dowling, A.L.; Spinelli, A.; Khurgel, M.; Estus, S.; Head, E.; Hersh, L.B.; Murphy, M.P. BACE2 expression increases in human neurodegenerative disease. Am. J. Pathol., 2012, 180(1), 337-350.
[http://dx.doi.org/10.1016/j.ajpath.2011.09.034] [PMID: 22074738]
[62]
Qiu, K.; Liang, W.; Wang, S.; Kong, T.; Wang, X.; Li, C.; Wang, Z.; Wu, Y. BACE2 degradation is mediated by both the proteasome and lysosome pathways. BMC Mol. Cell Biol., 2020, 21(1), 13.
[http://dx.doi.org/10.1186/s12860-020-00260-7] [PMID: 32160867]
[63]
Thibaudeau, T.A.; Anderson, R.T.; Smith, D.M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun., 2018, 9(1), 1097.
[http://dx.doi.org/10.1038/s41467-018-03509-0] [PMID: 29545515]
[64]
Bettens, K.; Vermeulen, S.; Van Cauwenberghe, C.; Heeman, B.; Asselbergh, B.; Robberecht, C.; Engelborghs, S.; Vandenbulcke, M.; Vandenberghe, R.; De Deyn, P.P.; Cruts, M.; Van Broeckhoven, C.; Sleegers, K. Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Mol. Neurodegener., 2015, 10, 30.
[http://dx.doi.org/10.1186/s13024-015-0024-9] [PMID: 26179372]
[65]
Ge, S.; Wang, Y.; Song, M.; Li, X.; Yu, X.; Wang, H.; Wang, J.; Zeng, Q.; Wang, W. Type 2 diabetes mellitus: Integrative analysis of multiomics data for biomarker discovery. OMICS, 2018, 22(7), 514-523.
[http://dx.doi.org/10.1089/omi.2018.0053] [PMID: 30004843]
[66]
Ghosh, A.K.; Brindisi, M.; Yen, Y-C.; Lendy, E.K.; Kovela, S.; Cárdenas, E.L.; Reddy, B.S.; Rao, K.V.; Downs, D.; Huang, X.; Tang, J.; Mesecar, A.D. Highly selective and potent human β-secretase 2 (BACE2) inhibitors against type 2 diabetes: Design, synthesis, X-ray structure and structure-activity relationship studies. ChemMedChem, 2019, 14(5), 545-560.
[http://dx.doi.org/10.1002/cmdc.201900100] [PMID: 30637955]
[67]
Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog. Neurobiol., 2013, 108, 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[68]
Biosa, A.; Outeiro, T.F.; Bubacco, L.; Bisaglia, M. Diabetes mellitus as a risk factor for Parkinson’s disease: A molecular point of view. Mol. Neurobiol., 2018, 55(11), 8754-8763.
[http://dx.doi.org/10.1007/s12035-018-1025-9] [PMID: 29594935]
[69]
Barbiero, L.; Benussi, L.; Ghidoni, R.; Alberici, A.; Russo, C.; Schettini, G.; Pagano, S.F.; Parati, E.A.; Mazzoli, F.; Nicosia, F.; Signorini, S.; Feudatari, E.; Binetti, G. BACE-2 is overexpressed in Down’s syndrome. Exp. Neurol., 2003, 182(2), 335-345.
[http://dx.doi.org/10.1016/S0014-4886(03)00049-9] [PMID: 12895444]
[70]
Sun, X.; He, G.; Song, W. BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J., 2006, 20(9), 1369-1376.
[http://dx.doi.org/10.1096/fj.05-5632com] [PMID: 16816112]
[71]
Kong, D.H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci., 2018, 19(4), E1057.
[http://dx.doi.org/10.3390/ijms19041057] [PMID: 29614819]
[72]
Cook-Mills, J.M.; Marchese, M.E.; Abdala-Valencia, H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal., 2011, 15(6), 1607-1638.
[http://dx.doi.org/10.1089/ars.2010.3522] [PMID: 21050132]
[73]
Ballester-López, C.; Conlon, T.M.; Ertüz, Z.; Greiffo, F.R.; Irmler, M.; Verleden, S.E.; Beckers, J.; Fernandez, I.E.; Eickelberg, O.; Yildirim, A.Ö. The Notch ligand DNER regulates macrophage IFNγ release in chronic obstructive pulmonary disease. EBioMedicine, 2019, 43, 562-575.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.054] [PMID: 31060902]
[74]
Wang, L.; Wu, Q.; Zhu, S.; Li, Z.; Yuan, J.; Yu, D.; Xu, Z.; Li, J.; Sun, S.; Wang, C. Delta/notch-like epidermal growth factor-related receptor (DNER) orchestrates stemness and cancer progression in prostate cancer. Am. J. Transl. Res., 2017, 9(11), 5031-5039.
[PMID: 29218101]
[75]
Sun, P.; Xia, S.; Lal, B.; Eberhart, C.G.; Quinones-Hinojosa, A.; Maciaczyk, J.; Matsui, W.; Dimeco, F.; Piccirillo, S.M.; Vescovi, A.L.; Laterra, J. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells, 2009, 27(7), 1473-1486.
[http://dx.doi.org/10.1002/stem.89] [PMID: 19544453]
[76]
Eiraku, M.; Hirata, Y.; Takeshima, H.; Hirano, T.; Kengaku, M. Delta/notch-like epidermal growth factor (EGF)-related receptor, a novel EGF-like repeat-containing protein targeted to dendrites of developing and adult central nervous system neurons. J. Biol. Chem., 2002, 277(28), 25400-25407.
[http://dx.doi.org/10.1074/jbc.M110793200] [PMID: 11950833]
[77]
Nanda, A.; Buckhaults, P.; Seaman, S.; Agrawal, N.; Boutin, P.; Shankara, S.; Nacht, M.; Teicher, B.; Stampfl, J.; Singh, S.; Vogelstein, B.; Kinzler, K.W.; St Croix, B. Identification of a binding partner for the endothelial cell surface proteins TEM7 and TEM7R. Cancer Res., 2004, 64(23), 8507-8511.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2716] [PMID: 15574754]
[78]
Miller-Delaney, S.F.C.; Lieberam, I.; Murphy, P.; Mitchell, K.J. Plxdc2 is a mitogen for neural progenitors. PLoS One, 2011, 6(1), e14565.
[http://dx.doi.org/10.1371/journal.pone.0014565] [PMID: 21283688]
[79]
Schwarze, S.R.; Fu, V.X.; Desotelle, J.A.; Kenowski, M.L.; Jarrard, D.F. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia, 2005, 7(9), 816-823.
[http://dx.doi.org/10.1593/neo.05250] [PMID: 16229804]
[80]
McMurray, H.R.; Sampson, E.R.; Compitello, G.; Kinsey, C.; Newman, L.; Smith, B.; Chen, S.R.; Klebanov, L.; Salzman, P.; Yakovlev, A.; Land, H. Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature, 2008, 453(7198), 1112-1116.
[http://dx.doi.org/10.1038/nature06973] [PMID: 18500333]
[81]
Hallstrom, T.C.; Mori, S.; Nevins, J.R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell, 2008, 13(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2007.11.031] [PMID: 18167336]
[82]
Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform., 2011, 12(5), 449-462.
[http://dx.doi.org/10.1093/bib/bbr042] [PMID: 21873635]
[83]
Ornitz, D.M.; Xu, J.; Colvin, J.S.; McEwen, D.G.; MacArthur, C.A.; Coulier, F.; Gao, G.; Goldfarb, M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem., 1996, 271(25), 15292-15297.
[http://dx.doi.org/10.1074/jbc.271.25.15292] [PMID: 8663044]
[84]
Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[85]
Wang, L.; Song, G.; Tan, W.; Qi, M.; Zhang, L.; Chan, J.; Yu, J.; Han, J.; Han, B. MiR-573 inhibits prostate cancer metastasis by regulating epithelial-mesenchymal transition. Oncotarget, 2015, 6(34), 35978-35990.
[http://dx.doi.org/10.18632/oncotarget.5427] [PMID: 26451614]
[86]
Gunnersen, J.M.; Kim, M.H.; Fuller, S.J.; De Silva, M.; Britto, J.M.; Hammond, V.E.; Davies, P.J.; Petrou, S.; Faber, E.S.; Sah, P.; Tan, S.S. Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron, 2007, 56(4), 621-639.
[http://dx.doi.org/10.1016/j.neuron.2007.09.018] [PMID: 18031681]
[87]
Håvik, B.; Røkke, H.; Dagyte, G.; Stavrum, A.K.; Bramham, C.R.; Steen, V.M. Synaptic activity-induced global gene expression patterns in the dentate gyrus of adult behaving rats: induction of immunity-linked genes. Neuroscience, 2007, 148(4), 925-936.
[http://dx.doi.org/10.1016/j.neuroscience.2007.07.024] [PMID: 17764852]
[88]
Causevic, M.; Dominko, K.; Malnar, M.; Vidatic, L.; Cermak, S.; Pigoni, M.; Kuhn, P.H.; Colombo, A.; Havas, D.; Flunkert, S.; McDonald, J.; Gunnersen, J.M.; Hutter-Paier, B.; Tahirovic, S.; Windisch, M.; Krainc, D.; Lichtenthaler, S.F.; Hecimovic, S. BACE1-cleavage of Sez6 and Sez6L is elevated in Niemann-Pick type C disease mouse brains. PLoS One, 2018, 13(7), e0200344.
[http://dx.doi.org/10.1371/journal.pone.0200344] [PMID: 29979789]
[89]
Esterházy, D.; Stützer, I.; Wang, H.; Rechsteiner, M.P.; Beauchamp, J.; Döbeli, H.; Hilpert, H.; Matile, H.; Prummer, M.; Schmidt, A.; Lieske, N.; Boehm, B.; Marselli, L.; Bosco, D.; Kerr-Conte, J.; Aebersold, R.; Spinas, G.A.; Moch, H.; Migliorini, C.; Stoffel, M. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab., 2011, 14(3), 365-377.
[http://dx.doi.org/10.1016/j.cmet.2011.06.018] [PMID: 21907142]
[90]
Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, Y.S.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem., 2001, 276(20), 17132-17139.
[http://dx.doi.org/10.1074/jbc.M006723200] [PMID: 11278314]
[91]
Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.; Camargo, S.M.; Makrides, V.; Ramadan, T.; Verrey, F.; Wagner, C.A.; Penninger, J.M. Essential role for collectrin in renal amino acid transport. Nature, 2006, 444(7122), 1088-1091.
[http://dx.doi.org/10.1038/nature05475] [PMID: 17167413]
[92]
Fukui, K.; Yang, Q.; Cao, Y.; Takahashi, N.; Hatakeyama, H.; Wang, H.; Wada, J.; Zhang, Y.; Marselli, L.; Nammo, T.; Yoneda, K.; Onishi, M.; Higashiyama, S.; Matsuzawa, Y.; Gonzalez, F.J.; Weir, G.C.; Kasai, H.; Shimomura, I.; Miyagawa, J.; Wollheim, C.B.; Yamagata, K. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab., 2005, 2(6), 373-384.
[http://dx.doi.org/10.1016/j.cmet.2005.11.003] [PMID: 16330323]
[93]
Vuille-dit-Bille R.N.; Camargo, S.M.; Emmenegger, L.; Sasse, T.; Kummer, E.; Jando, J.; Hamie, Q.M.; Meier, C.F.; Hunziker, S.; Forras-Kaufmann, Z.; Kuyumcu, S.; Fox, M.; Schwizer, W.; Fried, M.; Lindenmeyer, M.; Götze, O.; Verrey, F. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids, 2015, 47(4), 693-705.
[http://dx.doi.org/10.1007/s00726-014-1889-6] [PMID: 25534429]
[94]
Fu, W.; Ruangkittisakul, A.; MacTavish, D.; Shi, J.Y.; Ballanyi, K.; Jhamandas, J.H. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J. Biol. Chem., 2012, 287(22), 18820-18830.
[http://dx.doi.org/10.1074/jbc.M111.331181] [PMID: 22500019]
[95]
Caruso, G.; Fresta, C.G.; Lazzarino, G.; Distefano, D.A.; Parlascino, P.; Lunte, S.M.; Lazzarino, G.; Caraci, F. Sub-toxic human amylin fragment concentrations promote the survival and proliferation of SH-SY5Y cells via the release of VEGF and HspB5 from endothelial RBE4 cells. Int. J. Mol. Sci., 2018, 19(11), E3659.
[http://dx.doi.org/10.3390/ijms19113659] [PMID: 30463298]
[96]
Lorenzo, A.; Razzaboni, B.; Weir, G.C.; Yankner, B.A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature, 1994, 368(6473), 756-760.
[http://dx.doi.org/10.1038/368756a0] [PMID: 8152488]
[97]
Nishi, M.; Sanke, T.; Seino, S.; Eddy, R.L.; Fan, Y.S.; Byers, M.G.; Shows, T.B.; Bell, G.I.; Steiner, D.F. Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history. Mol. Endocrinol., 1989, 3(11), 1775-1781.
[http://dx.doi.org/10.1210/mend-3-11-1775] [PMID: 2608057]
[98]
Rulifson, I.C.; Cao, P.; Miao, L.; Kopecky, D.; Huang, L.; White, R.D.; Samayoa, K.; Gardner, J.; Wu, X.; Chen, K.; Tsuruda, T.; Homann, O.; Baribault, H.; Yamane, H.; Carlson, T.; Wiltzius, J.; Li, Y. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate. PLoS One, 2016, 11(2), e0147254.
[http://dx.doi.org/10.1371/journal.pone.0147254] [PMID: 26840340]
[99]
Hoashi, T.; Watabe, H.; Muller, J.; Yamaguchi, Y.; Vieira, W.D.; Hearing, V.J. MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J. Biol. Chem., 2005, 280(14), 14006-14016.
[http://dx.doi.org/10.1074/jbc.M413692200] [PMID: 15695812]
[100]
Rochin, L.; Hurbain, I.; Serneels, L.; Fort, C.; Watt, B.; Leblanc, P.; Marks, M.S.; De Strooper, B.; Raposo, G.; van Niel, G. BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10658-10663.
[http://dx.doi.org/10.1073/pnas.1220748110] [PMID: 23754390]
[101]
Mathalon, D.H.; Sullivan, E.V.; Lim, K.O.; Pfefferbaum, A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch. Gen. Psychiatry, 2001, 58(2), 148-157.
[http://dx.doi.org/10.1001/archpsyc.58.2.148] [PMID: 11177116]
[102]
Harrison, P.J.; Law, A.J. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol. Psychiatry, 2006, 60(2), 132-140.
[http://dx.doi.org/10.1016/j.biopsych.2005.11.002] [PMID: 16442083]
[103]
Pickard, B.S. Schizophrenia biomarkers: translating the descriptive into the diagnostic. J. Psychopharmacol., 2015, 29(2), 138-143.
[http://dx.doi.org/10.1177/0269881114566631] [PMID: 25601396]
[104]
Hayashi-Takagi, A.; Vawter, M.P.; Iwamoto, K. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol. Psychiatry, 2014, 75(12), 920-928.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.035] [PMID: 24286759]
[105]
Stefansson, H.; Sigurdsson, E.; Steinthorsdottir, V.; Bjornsdottir, S.; Sigmundsson, T.; Ghosh, S.; Brynjolfsson, J.; Gunnarsdottir, S.; Ivarsson, O.; Chou, T.T.; Hjaltason, O.; Birgisdottir, B.; Jonsson, H.; Gudnadottir, V.G.; Gudmundsdottir, E.; Bjornsson, A.; Ingvarsson, B.; Ingason, A.; Sigfusson, S.; Hardardottir, H.; Harvey, R.P.; Lai, D.; Zhou, M.; Brunner, D.; Mutel, V.; Gonzalo, A.; Lemke, G.; Sainz, J.; Johannesson, G.; Andresson, T.; Gudbjartsson, D.; Manolescu, A.; Frigge, M.L.; Gurney, M.E.; Kong, A.; Gulcher, J.R.; Petursson, H.; Stefansson, K. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet., 2002, 71(4), 877-892.
[http://dx.doi.org/10.1086/342734] [PMID: 12145742]
[106]
Walss-Bass, C.; Raventos, H.; Montero, A.P.; Armas, R.; Dassori, A.; Contreras, S.; Liu, W.; Medina, R.; Levinson, D.F.; Pereira, M.; Leach, R.J.; Almasy, L.; Escamilla, M.A. Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr. Scand., 2006, 113(4), 314-321.
[http://dx.doi.org/10.1111/j.1600-0447.2005.00631.x] [PMID: 16638076]
[107]
Fleck, D.; Voss, M.; Brankatschk, B.; Giudici, C.; Hampel, H.; Schwenk, B.; Edbauer, D.; Fukumori, A.; Steiner, H.; Kremmer, E.; Haug-Kröper, M.; Rossner, M.J.; Fluhrer, R.; Willem, M.; Haass, C. Proteolytic Processing of Neuregulin 1 Type III by Three Intramembrane-cleaving Proteases. J. Biol. Chem., 2016, 291(1), 318-333.
[http://dx.doi.org/10.1074/jbc.M115.697995] [PMID: 26574544]
[108]
Savonenko, A.V.; Melnikova, T.; Laird, F.M.; Stewart, K-A.; Price, D.L.; Wong, P.C. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc. Natl. Acad. Sci. USA, 2008, 105(14), 5585-5590.
[http://dx.doi.org/10.1073/pnas.0710373105] [PMID: 18385378]
[109]
Buonanno, A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res. Bull., 2010, 83(3-4), 122-131.
[http://dx.doi.org/10.1016/j.brainresbull.2010.07.012] [PMID: 20688137]
[110]
Mei, L.; Nave, K-A. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron, 2014, 83(1), 27-49.
[http://dx.doi.org/10.1016/j.neuron.2014.06.007] [PMID: 24991953]
[111]
Wang, H.; Li, R.; Shen, Y. β-Secretase: its biology as a therapeutic target in diseases. Trends Pharmacol. Sci., 2013, 34(4), 215-225.
[http://dx.doi.org/10.1016/j.tips.2013.01.008] [PMID: 23452816]
[112]
Allen, N.C.; Bagade, S.; McQueen, M.B.; Ioannidis, J.P.A.; Kavvoura, F.K.; Khoury, M.J.; Tanzi, R.E.; Bertram, L. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet., 2008, 40(7), 827-834.
[http://dx.doi.org/10.1038/ng.171] [PMID: 18583979]
[113]
Hu, X.; Fan, Q.; Hou, H.; Yan, R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J. Neurochem., 2016, 136(2), 234-249.
[http://dx.doi.org/10.1111/jnc.13395] [PMID: 26465092]
[114]
Hahn, C-G.; Wang, H-Y.; Cho, D-S.; Talbot, K.; Gur, R.E.; Berrettini, W.H.; Bakshi, K.; Kamins, J.; Borgmann-Winter, K.E.; Siegel, S.J.; Gallop, R.J.; Arnold, S.E. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat. Med., 2006, 12(7), 824-828.
[http://dx.doi.org/10.1038/nm1418] [PMID: 16767099]
[115]
Krivosheya, D.; Tapia, L.; Levinson, J.N.; Huang, K.; Kang, Y.; Hines, R.; Ting, A.K.; Craig, A.M.; Mei, L.; Bamji, S.X.; El-Husseini, A. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J. Biol. Chem., 2008, 283(47), 32944-32956.
[http://dx.doi.org/10.1074/jbc.M800073200] [PMID: 18819924]
[116]
Lang, U.E.; Hellweg, R.; Gallinat, J. Association of BDNF serum concentrations with central serotonergic activity: evidence from auditory signal processing. Neuropsychopharmacology, 2005, 30(6), 1148-1153.
[http://dx.doi.org/10.1038/sj.npp.1300666] [PMID: 15668721]
[117]
Corfas, G.; Roy, K.; Buxbaum, J.D. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci., 2004, 7(6), 575-580.
[http://dx.doi.org/10.1038/nn1258] [PMID: 15162166]
[118]
Barakat, A.; Dean, B.; Scarr, E.; Evin, G. Decreased Neuregulin 1 C-terminal fragment in Brodmann’s area 6 of patients with schizophrenia. Schizophr. Res., 2010, 124(1-3), 200-207.
[http://dx.doi.org/10.1016/j.schres.2010.09.001] [PMID: 20926259]
[119]
Dean, B.; Soulby, A.; Evin, G.M.; Scarr, E. Levels of [(3)H]pirenzepine binding in Brodmann’s area 6 from subjects with schizophrenia is not associated with changes in the transcription factor SP1 or BACE1. Schizophr. Res., 2008, 106(2-3), 229-236.
[http://dx.doi.org/10.1016/j.schres.2008.08.003] [PMID: 18790604]
[120]
Marballi, K.; Cruz, D.; Thompson, P.; Walss-Bass, C. Differential neuregulin 1 cleavage in the prefrontal cortex and hippocampus in schizophrenia and bipolar disorder: preliminary findings. PLoS One, 2012, 7(5), e36431.
[http://dx.doi.org/10.1371/journal.pone.0036431] [PMID: 22590542]
[121]
Zhang, Z.; Cui, J.; Gao, F.; Li, Y.; Zhang, G.; Liu, M.; Yan, R.; Shen, Y.; Li, R. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 161-168.
[http://dx.doi.org/10.1016/j.pnpbp.2018.11.018] [PMID: 30500411]
[122]
Zhang, Z.; Li, Y.; He, F.; Cui, Y.; Zheng, Y.; Li, R. Sex differences in circulating neuregulin1-β1 and β-secretase 1 expression in childhood-onset schizophrenia. Compr. Psychiatry, 2020, 100, 152176.
[http://dx.doi.org/10.1016/j.comppsych.2020.152176] [PMID: 32430144]
[123]
Shibuya, M.; Komi, E.; Wang, R.; Kato, T.; Watanabe, Y.; Sakai, M.; Ozaki, M.; Someya, T.; Nawa, H. Measurement and comparison of serum neuregulin 1 immunoreactivity in control subjects and patients with schizophrenia: an influence of its genetic polymorphism. J. Neural Transm. (Vienna), 2010, 117(7), 887-895.
[http://dx.doi.org/10.1007/s00702-010-0418-3] [PMID: 20526724]
[124]
Muthusamy, N.; Faundez, V.; Bergson, C. Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes. J. Neurochem., 2012, 123(1), 60-72.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07814.x] [PMID: 22650988]
[125]
Alberi, S.; Boda, B.; Steiner, P.; Nikonenko, I.; Hirling, H.; Muller, D. The endosomal protein NEEP21 regulates AMPA receptor-mediated synaptic transmission and plasticity in the hippocampus. Mol. Cell. Neurosci., 2005, 29(2), 313-319.
[http://dx.doi.org/10.1016/j.mcn.2005.03.011] [PMID: 15911354]
[126]
Norstrom, E.M.; Zhang, C.; Tanzi, R.; Sisodia, S.S. Identification of NEEP21 as a ß-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J. Neurosci., 2010, 30(46), 15677-15685.
[http://dx.doi.org/10.1523/JNEUROSCI.4464-10.2010] [PMID: 21084623]
[127]
Trantham-Davidson, H.; Vazdarjanova, A.; Dai, R.; Terry, A.; Bergson, C. Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice. Behav. Brain Res., 2008, 189(2), 244-249.
[http://dx.doi.org/10.1016/j.bbr.2007.12.031] [PMID: 18295356]
[128]
Vazdarjanova, A.; Bunting, K.; Muthusamy, N.; Bergson, C. Calcyon upregulation in adolescence impairs response inhibition and working memory in adulthood. Mol. Psychiatry, 2011, 16(6), 672-684.
[http://dx.doi.org/10.1038/mp.2011.14] [PMID: 21403673]
[129]
Kato, T.; Kasai, A.; Mizuno, M.; Fengyi, L.; Shintani, N.; Maeda, S.; Yokoyama, M.; Ozaki, M.; Nawa, H. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS One, 2010, 5(12), e14185.
[http://dx.doi.org/10.1371/journal.pone.0014185] [PMID: 21151609]
[130]
Yin, D-M.; Chen, Y-J.; Liu, S.; Jiao, H.; Shen, C.; Sathyamurthy, A.; Lin, T.W.; Xiong, W.C.; Li, B.M.; Mei, L.; Bergson, C. Calcyon stimulates neuregulin 1 maturation and signaling. Mol. Psychiatry, 2015, 20(10), 1251-1260.
[http://dx.doi.org/10.1038/mp.2014.131] [PMID: 25349163]
[131]
Kumari, V.; Das, M.; Zachariah, E.; Ettinger, U.; Sharma, T. Reduced prepulse inhibition in unaffected siblings of schizophrenia patients. Psychophysiology, 2005, 42(5), 588-594.
[http://dx.doi.org/10.1111/j.1469-8986.2005.00346.x] [PMID: 16176381]
[132]
Cadenhead, K.S.; Swerdlow, N.R.; Shafer, K.M.; Diaz, M.; Braff, D.L. Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am. J. Psychiatry, 2000, 157(10), 1660-1668.
[http://dx.doi.org/10.1176/appi.ajp.157.10.1660] [PMID: 11007721]
[133]
Hennah, W.; Thomson, P.; Peltonen, L.; Porteous, D. Genes and schizophrenia: beyond schizophrenia: the role of DISC1 in major mental illness. Schizophr. Bull., 2006, 32(3), 409-416.
[http://dx.doi.org/10.1093/schbul/sbj079] [PMID: 16699061]
[134]
Deng, Q-S.; Dong, X-Y.; Wu, H.; Wang, W.; Wang, Z-T.; Zhu, J-W.; Liu, C.F.; Jia, W.Q.; Zhang, Y.; Schachner, M.; Ma, Q.H.; Xu, R.X. Disrupted-in-schizophrenia-1 attenuates amyloid-β generation and cognitive deficits in APP/PS1 transgenic mice by reduction of β-Site APP-cleaving enzyme 1 levels. Neuropsychopharmacology, 2016, 41(2), 440-453.
[http://dx.doi.org/10.1038/npp.2015.164] [PMID: 26062786]
[135]
Wang, Z-T.; Lu, M-H.; Zhang, Y.; Ji, W-L.; Lei, L.; Wang, W.; Fang, L.P.; Wang, L.W.; Yu, F.; Wang, J.; Li, Z.Y.; Wang, J.R.; Wang, T.H.; Dou, F.; Wang, Q.W.; Wang, X.L.; Li, S.; Ma, Q.H.; Xu, R.X. Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse model of Alzheimer’s disease as a mitophagy receptor. Aging Cell, 2019, 18(1), e12860.
[http://dx.doi.org/10.1111/acel.12860] [PMID: 30488644]
[136]
Paredes, R.M.; Piccart, E.; Navaira, E.; Cruz, D.; Javors, M.A.; Koek, W.; Beckstead, M.J.; Walss-Bass, C. Physiological and behavioral effects of amphetamine in BACE1(-/-) mice. Genes Brain Behav., 2015, 14(5), 411-418.
[http://dx.doi.org/10.1111/gbb.12222] [PMID: 25912880]
[137]
Ledonne, A.; Mercuri, N.B. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling. Front. Mol. Neurosci., 2018, 11, 346.
[http://dx.doi.org/10.3389/fnmol.2018.00346] [PMID: 30327588]
[138]
Ledonne, A.; Nobili, A.; Latagliata, E.C.; Cavallucci, V.; Guatteo, E.; Puglisi-Allegra, S.; D’Amelio, M.; Mercuri, N.B. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol. Psychiatry, 2015, 20(8), 959-973.
[http://dx.doi.org/10.1038/mp.2014.109] [PMID: 25266126]
[139]
Stertz, L.; Contreras-Shannon, V.; Monroy-Jaramillo, N.; Sun, J.; Walss-Bass, C. BACE1-deficient mice exhibit alterations in immune system pathways. Mol. Neurobiol., 2018, 55(1), 709-717.
[http://dx.doi.org/10.1007/s12035-016-0341-1] [PMID: 28004339]
[140]
Xu, J.; Sun, J.; Chen, J.; Wang, L.; Li, A.; Helm, M.; Dubovsky, S.L.; Bacanu, S.A.; Zhao, Z.; Chen, X. RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genomics, 2012, 13(Suppl. 8), S2.
[http://dx.doi.org/10.1186/1471-2164-13-S8-S2] [PMID: 23282246]
[141]
Dimitrov, D.H.; Lee, S.; Yantis, J.; Valdez, C.; Paredes, R.M.; Braida, N.; Velligan, D.; Walss-Bass, C. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: potential role for IL-17 pathway. Schizophr. Res., 2013, 151(1-3), 29-35.
[http://dx.doi.org/10.1016/j.schres.2013.10.019] [PMID: 24210870]
[142]
Gandal, M.J.; Haney, J.R.; Parikshak, N.N.; Leppa, V.; Ramaswami, G.; Hartl, C.; Schork, A.J.; Appadurai, V.; Buil, A.; Werge, T.M.; Liu, C.; White, K.P.; Horvath, S.; Geschwind, D.H. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 2018, 359(6376), 693-697.
[http://dx.doi.org/10.1126/science.aad6469] [PMID: 29439242]
[143]
Cheung, C.; Yu, K.; Fung, G.; Leung, M.; Wong, C.; Li, Q.; Sham, P.; Chua, S.; McAlonan, G. Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One, 2010, 5(8), e12233.
[http://dx.doi.org/10.1371/journal.pone.0012233] [PMID: 20805880]
[144]
Yoo, H.J.; Woo, R-S.; Cho, S-C.; Kim, B-N.; Kim, J-W.; Shin, M-S.; Park, T.W.; Son, J.W.; Chung, U.S.; Park, S.; Park, M.; Kim, S.A. Genetic association analyses of neuregulin 1 gene polymorphism with endopheontype for sociality of Korean autism spectrum disorders family. Psychiatry Res., 2015, 227(2-3), 366-368.
[http://dx.doi.org/10.1016/j.psychres.2015.03.015] [PMID: 25858800]
[145]
Sokol, D.K.; Chen, D.; Farlow, M.R.; Dunn, D.W.; Maloney, B.; Zimmer, J.A.; Lahiri, D.K. High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J. Child Neurol., 2006, 21(6), 444-449.
[http://dx.doi.org/10.1177/08830738060210062201] [PMID: 16948926]
[146]
Lahiri, D.K.; Sokol, D.K.; Erickson, C.; Ray, B.; Ho, C.Y.; Maloney, B. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front. Cell. Neurosci., 2013, 7, 94.
[http://dx.doi.org/10.3389/fncel.2013.00094] [PMID: 23801940]
[147]
Wang, Y-Y.; Zhao, B.; Wu, M-M.; Zheng, X-L.; Lin, L.; Yin, D-M. Overexpression of neuregulin 1 in GABAergic interneurons results in reversible cortical disinhibition. Nat. Commun., 2021, 12(1), 278.
[http://dx.doi.org/10.1038/s41467-020-20552-y] [PMID: 33436636]
[148]
Feng, T.; Tammineni, P.; Agrawal, C.; Jeong, Y.Y.; Cai, Q. Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation. J. Biol. Chem., 2017, 292(5), 1679-1690.
[http://dx.doi.org/10.1074/jbc.M116.766584] [PMID: 28028177]
[149]
Do Carmo, S.; Hanzel, C.E.; Jacobs, M.L.; Machnes, Z.; Iulita, M.F.; Yang, J.; Yu, L.; Ducatenzeiler, A.; Danik, M.; Breuillaud, L.S.; Bennett, D.A.; Szyf, M.; Cuello, A.C. Rescue of early bace-1 and global DNA demethylation by S-adenosylmethionine reduces amyloid pathology and improves cognition in an Alzheimer’s model. Sci. Rep., 2016, 6, 34051.
[http://dx.doi.org/10.1038/srep34051] [PMID: 27681803]
[150]
Tan, G-H.; Liu, Y-Y.; Hu, X-L.; Yin, D-M.; Mei, L.; Xiong, Z-Q. Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons. Nat. Neurosci., 2011, 15(2), 258-266.
[http://dx.doi.org/10.1038/nn.3005] [PMID: 22158510]
[151]
Li, K-X.; Lu, Y-M.; Xu, Z-H.; Zhang, J.; Zhu, J-M.; Zhang, J-M.; Cao, S.X.; Chen, X.J.; Chen, Z.; Luo, J.H.; Duan, S.; Li, X.M. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat. Neurosci., 2011, 15(2), 267-273.
[http://dx.doi.org/10.1038/nn.3006] [PMID: 22158511]
[152]
Gabrielsen, T.P.; Anderson, J.S.; Stephenson, K.G.; Beck, J.; King, J.B.; Kellems, R.; Top, D.N., Jr; Russell, N.C.C.; Anderberg, E.; Lundwall, R.A.; Hansen, B.; South, M. Functional MRI connectivity of children with autism and low verbal and cognitive performance. Mol. Autism, 2018, 9, 67.
[http://dx.doi.org/10.1186/s13229-018-0248-y] [PMID: 30603063]
[153]
Penault-Llorca, F.; Rudzinski, E.R.; Sepulveda, A.R. Testing algorithm for identification of patients with TRK fusion cancer. J. Clin. Pathol., 2019, 72(7), 460-467.
[http://dx.doi.org/10.1136/jclinpath-2018-205679] [PMID: 31072837]
[154]
Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A. Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413.
[http://dx.doi.org/10.1126/science.aan6733] [PMID: 28596308]
[155]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[156]
Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer, 2018, 18(7), 407-418.
[http://dx.doi.org/10.1038/s41568-018-0007-6] [PMID: 29692415]
[157]
Ballard, D.H.; Boyer, C.J.; Alexander, J.S. Organoids - preclinical models of human disease. N. Engl. J. Med., 2019, 380(20), 1981-1982.
[http://dx.doi.org/10.1056/NEJMc1903253] [PMID: 31091396]
[158]
Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol., 2017, 14(9), 531-548.
[http://dx.doi.org/10.1038/nrclinonc.2017.14] [PMID: 28252003]
[159]
Parikh, A.R.; Leshchiner, I.; Elagina, L.; Goyal, L.; Levovitz, C.; Siravegna, G.; Livitz, D.; Rhrissorrakrai, K.; Martin, E.E.; Van Seventer, E.E.; Hanna, M.; Slowik, K.; Utro, F.; Pinto, C.J.; Wong, A.; Danysh, B.P.; de la Cruz, F.F.; Fetter, I.J.; Nadres, B.; Shahzade, H.A.; Allen, J.N.; Blaszkowsky, L.S.; Clark, J.W.; Giantonio, B.; Murphy, J.E.; Nipp, R.D.; Roeland, E.; Ryan, D.P.; Weekes, C.D.; Kwak, E.L.; Faris, J.E.; Wo, J.Y.; Aguet, F.; Dey-Guha, I.; Hazar-Rethinam, M.; Dias-Santagata, D.; Ting, D.T.; Zhu, A.X.; Hong, T.S.; Golub, T.R.; Iafrate, A.J.; Adalsteinsson, V.A.; Bardelli, A.; Parida, L.; Juric, D.; Getz, G.; Corcoran, R.B. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med., 2019, 25(9), 1415-1421.
[http://dx.doi.org/10.1038/s41591-019-0561-9] [PMID: 31501609]
[160]
Marchiò, C.; Scaltriti, M.; Ladanyi, M.; Iafrate, A.J.; Bibeau, F.; Dietel, M.; Hechtman, J.F.; Troiani, T.; López-Rios, F.; Douillard, J.Y.; Andrè, F.; Reis-Filho, J.S. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol., 2019, 30(9), 1417-1427.
[http://dx.doi.org/10.1093/annonc/mdz204] [PMID: 31268127]
[161]
Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit. Med., 2019, 2, 69.
[http://dx.doi.org/10.1038/s41746-019-0148-3] [PMID: 31372505]
[162]
Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; Mascarenhas, L.; Geoerger, B.; Dowlati, A.; Pappo, A.S.; Bielack, S.; Doz, F.; McDermott, R.; Patel, J.D.; Schilder, R.J.; Tahara, M.; Pfister, S.M.; Witt, O.; Ladanyi, M.; Rudzinski, E.R.; Nanda, S.; Childs, B.H.; Laetsch, T.W.; Hyman, D.M.; Drilon, A. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol., 2020, 21(4), 531-540.
[http://dx.doi.org/10.1016/S1470-2045(19)30856-3] [PMID: 32105622]
[163]
Bassett, D.S.; Sporns, O. Network neuroscience. Nat. Neurosci., 2017, 20(3), 353-364.
[http://dx.doi.org/10.1038/nn.4502] [PMID: 28230844]
[164]
Shine, J.M.; Breakspear, M.; Bell, P.T.; Ehgoetz Martens, K.A.; Shine, R.; Koyejo, O.; Sporns, O.; Poldrack, R.A. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci., 2019, 22(2), 289-296.
[http://dx.doi.org/10.1038/s41593-018-0312-0] [PMID: 30664771]
[165]
Chiesa, P.A.; Houot, M.; Vergallo, A.; Cavedo, E.; Lista, S.; Potier, M.C.; Zetterberg, H.; Blennow, K.; Vanmechelen, E.; De Vos, A.; Dubois, B.; Hampel, H. Association of brain network dynamics with plasma biomarkers in subjective memory complainers. Neurobiol. Aging, 2020, 88, 83-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.017] [PMID: 32087948]
[166]
Shen, Y.; Wang, H.; Sun, Q.; Yao, H.; Keegan, A.P.; Mullan, M.; Wilson, J.; Lista, S.; Leyhe, T.; Laske, C.; Rujescu, D.; Levey, A.; Wallin, A.; Blennow, K.; Li, R.; Hampel, H. Increased plasma beta-secretase 1 may predict conversion to Alzheimer’s disease dementia in individuals with mild cognitive impairment. Biol. Psychiatry, 2018, 83(5), 447-455.
[http://dx.doi.org/10.1016/j.biopsych.2017.02.007] [PMID: 28359566]
[167]
Vergallo, A.; Lemercier, P.; Cavedo, E.; Lista, S.; Vanmechelen, E.; De Vos, A.; Zetterberg, H.; Blennow, K.; Habert, M.O.; Potier, M.C.; Dubois, B.; Teipel, S.; Hampel, H. Plasma β-secretase1 concentrations correlate with basal forebrain atrophy and neurodegeneration in cognitively healthy individuals at risk for AD. Alzheimers Dement., 2021, 17(4), 629-640.
[http://dx.doi.org/10.1002/alz.12228] [PMID: 33527718]
[168]
Vergallo, A.; Houot, M.; Cavedo, E.; Lemercier, P.; Vanmechelen, E.; De Vos, A.; Habert, M.O.; Potier, M.C.; Dubois, B.; Lista, S.; Hampel, H. Brain Aβ load association and sexual dimorphism of plasma BACE1 concentrations in cognitively normal individuals at risk for AD. Alzheimers Dement., 2019, 15(10), 1274-1285.
[http://dx.doi.org/10.1016/j.jalz.2019.07.001] [PMID: 31627825]
[169]
Schipke, C.G.; De Vos, A.; Fuentes, M.; Jacobs, D.; Vanmechelen, E.; Peters, O. Neurogranin and BACE1 in CSF as potential biomarkers differentiating depression with cognitive deficits from early Alzheimer’s disease: A pilot study. Dement. Geriatr. Cogn. Disord. Extra, 2018, 8(2), 277-289.
[http://dx.doi.org/10.1159/000489847] [PMID: 30186306]
[170]
Zetterberg, H.; Andreasson, U.; Hansson, O.; Wu, G.; Sankaranarayanan, S.; Andersson, M.E.; Buchhave, P.; Londos, E.; Umek, R.M.; Minthon, L.; Simon, A.J.; Blennow, K. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch. Neurol., 2008, 65(8), 1102-1107.
[http://dx.doi.org/10.1001/archneur.65.8.1102] [PMID: 18695061]
[171]
Ewers, M.; Cheng, X.; Zhong, Z.; Nural, H.F.; Walsh, C.; Meindl, T.; Teipel, S.J.; Buerger, K.; He, P.; Shen, Y.; Hampel, H. Increased CSF-BACE1 activity associated with decreased hippocampus volume in Alzheimer’s disease. J. Alzheimers Dis., 2011, 25(2), 373-381.
[http://dx.doi.org/10.3233/JAD-2011-091153] [PMID: 21460439]
[172]
Vergallo, A.; Lista, S.; Zhao, Y.; Lemercier, P.; Teipel, S.J.; Potier, M-C.; Habert, M.O.; Dubois, B.; Lukiw, W.J.; Hampel, H. MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints. Transl. Psychiatry, 2021, 11(1), 78.
[http://dx.doi.org/10.1038/s41398-020-01184-8] [PMID: 33504764]
[173]
Williamson, P.C.; Allman, J.M. A framework for interpreting functional networks in schizophrenia. Front. Hum. Neurosci., 2012, 6, 184.
[http://dx.doi.org/10.3389/fnhum.2012.00184] [PMID: 22737116]
[174]
Vercammen, A.; Knegtering, H.; den Boer, J.A.; Liemburg, E.J.; Aleman, A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol. Psychiatry, 2010, 67(10), 912-918.
[http://dx.doi.org/10.1016/j.biopsych.2009.11.017] [PMID: 20060103]
[175]
Dekhil, O.; Hajjdiab, H.; Shalaby, A.; Ali, M.T.; Ayinde, B.; Switala, A.; Elshamekh, A.; Ghazal, M.; Keynton, R.; Barnes, G.; El-Baz, A. Using resting state functional MRI to build a personalized autism diagnosis system. PLoS One, 2018, 13(10), e0206351.
[http://dx.doi.org/10.1371/journal.pone.0206351] [PMID: 30379950]
[176]
Reininghaus, U.; Böhnke, J.R.; Chavez-Baldini, U.; Gibbons, R.; Ivleva, E.; Clementz, B.A.; Pearlson, G.D.; Keshavan, M.S.; Sweeney, J.A.; Tamminga, C.A. Transdiagnostic dimensions of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). World Psychiatry, 2019, 18(1), 67-76.
[http://dx.doi.org/10.1002/wps.20607] [PMID: 30600629]
[177]
Hampel, H.; Lista, S.; Vergallo, A. Commentary: Development of the blood-based Alzheimer’s disease liquid biopsy. J. Prev. Alzheimers Dis., 2019, 6(3), 182-184.
[http://dx.doi.org/10.14283/jpad.2019.22] [PMID: 31062832]
[178]
Hampel, H.; Lista, S.; Vanmechelen, E.; Zetterberg, H.; Giorgi, F.S.; Galgani, A.; Blennow, K.; Caraci, F.; Das, B.; Yan, R.; Vergallo, A. β-Secretase1 biological markers for Alzheimer’s disease: state-of-art of validation and qualification. Alzheimers Res. Ther., 2020, 12(1), 130.
[http://dx.doi.org/10.1186/s13195-020-00686-3] [PMID: 33066807]
[179]
Musante, C.J.; Ramanujan, S.; Schmidt, B.J.; Ghobrial, O.G.; Lu, J.; Heatherington, A.C. Quantitative systems pharmacology: A case for disease models. Clin. Pharmacol. Ther., 2017, 101(1), 24-27.
[http://dx.doi.org/10.1002/cpt.528] [PMID: 27709613]
[180]
Geerts, H.; Hofmann-Apitius, M.; Anastasio, T.J. Knowledgedriven computational modeling in Alzheimer’s disease research: Current state and future trends. Alzheimers Dement, 2017, 13(11), 1292-1302.
[http://dx.doi.org/10.1016/j.jalz.2017.08.011] [PMID: 28917669]
[181]
Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A.A.; Shoichet, B.K.; Roth, B.L.; Irwin, J.J. Ultra-large library docking for discovering new chemotypes. Nature, 2019, 566(7743), 224-229.
[http://dx.doi.org/10.1038/s41586-019-0917-9] [PMID: 30728502]
[182]
Harrold, J.M.; Ramanathan, M.; Mager, D.E. Network-based approaches in drug discovery and early development. Clin. Pharmacol. Ther., 2013, 94(6), 651-658.
[http://dx.doi.org/10.1038/clpt.2013.176] [PMID: 24025802]
[183]
Geerts, H.; Spiros, A.; Roberts, P.; Carr, R. Towards the virtual human patient. Quantitative Systems Pharmacology in Alzheimer’s disease. Eur. J. Pharmacol., 2017, 817, 38-45.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.062] [PMID: 28583429]
[184]
Leil, T.A.; Bertz, R. Quantitative Systems Pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front. Pharmacol., 2014, 5, 247.
[http://dx.doi.org/10.3389/fphar.2014.00247] [PMID: 25426074]
[185]
Diaz, K.; Lancashire, L.; Jeromin, A.; Haas, M.; Spiros, A.; Geerts, H. P2-102: MAPTA: Modeling alliance of systems pharmacology in tauopathies. Alzheimers Dement., 2018, 14(75), 707.
[http://dx.doi.org/10.1016/j.jalz.2018.06.788]
[186]
Ly, P.T.; Wu, Y.; Zou, H.; Wang, R.; Zhou, W.; Kinoshita, A.; Zhang, M.; Yang, Y.; Cai, F.; Woodgett, J.; Song, W. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest., 2013, 123(1), 224-235.
[http://dx.doi.org/10.1172/JCI64516] [PMID: 23202730]
[187]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[188]
Calabrese, V.; Copani, A.; Testa, D.; Ravagna, A.; Spadaro, F.; Tendi, E.; Nicoletti, V.G.; Giuffrida Stella, A.M. Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res., 2000, 60(5), 613-622.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000601)60:5<613:AID-JNR6>3.0.CO;2-8] [PMID: 10820432]
[189]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12, 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[190]
Richards, B.A.; Lillicrap, T.P.; Beaudoin, P.; Bengio, Y.; Bogacz, R.; Christensen, A.; Clopath, C.; Costa, R.P.; de Berker, A.; Ganguli, S.; Gillon, C.J.; Hafner, D.; Kepecs, A.; Kriegeskorte, N.; Latham, P.; Lindsay, G.W.; Miller, K.D.; Naud, R.; Pack, C.C.; Poirazi, P.; Roelfsema, P.; Sacramento, J.; Saxe, A.; Scellier, B.; Schapiro, A.C.; Senn, W.; Wayne, G.; Yamins, D.; Zenke, F.; Zylberberg, J.; Therien, D.; Kording, K.P. A deep learning framework for neuroscience. Nat. Neurosci., 2019, 22(11), 1761-1770.
[http://dx.doi.org/10.1038/s41593-019-0520-2] [PMID: 31659335]
[191]
Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the Surprising Behavior of Distance Metrics in High Dimensional Space. In: International Conference on Database Theory. Database Theory — ICDT 2001. Lecture Notes in Computer Science book series (LNCS); Van den Bussche, J; Vianu , V Springer: Berlin, Heidelberg, 2001; 1973, pp. 420-434.
[http://dx.doi.org/10.1007/3-540-44503-X_27]
[192]
Lydon-Staley, D.M.; Cornblath, E.J.; Blevins, A.S.; Bassett, D.S. Modeling brain, symptom, and behavior in the winds of change. Neuropsychopharmacology, 2021, 46(1), 20-32.
[http://dx.doi.org/10.1038/s41386-020-00805-6] [PMID: 32859996]
[193]
Saxe, A.; Nelli, S.; Summerfield, C. If deep learning is the answer, what is the question? Nat. Rev. Neurosci., 2021, 22(1), 55-67.
[http://dx.doi.org/10.1038/s41583-020-00395-8] [PMID: 33199854]
[194]
Molnar, C. Interpretable machine learning. A Guide for Making Black Box Models Explainable 2019. Available from: https://christophm.github.io/interpretable-ml-book/ (Accessed November 17, 2021).
[195]
Kundu, S. AI in medicine must be explainable. Nat. Med., 2021, 27(8), 1328.
[http://dx.doi.org/10.1038/s41591-021-01461-z] [PMID: 34326551]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy